¹⁶⁷Tm ε decay (9.25 d) **1968Fu09**

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 191,1 (2023)	22-Aug-2023

Parent: ¹⁶⁷Tm: E=0.0; $J^{\pi}=1/2^+$; $T_{1/2}=9.25$ d 2; $Q(\varepsilon)=746.1$ 13; % ε decay=100

 167 Tm-J^{π},T_{1/2}: From Adopted Levels of 167 Tm.

¹⁶⁷Tm-Q(ε): From 2021Wa16.

1968Fu09 (also 1965Fu04): ¹⁶⁷Tm from ¹⁶⁵Ho(α ,2n). Measured E γ , I γ , delayed (x ray)(ce)-coin using Ge(Li) and Si(Li) detectors at Rossendorf cyclotron facility.

2016Ch04: ¹⁶⁷Tm produced in ¹⁶⁵Ho(α ,2n),E α =29 MeV reaction at the 88-Inch Cyclotron at LBNL. Measured x rays and γ rays using coaxial and planer HPGe detectors; Measured absolute γ -ray branching ratios for 207.8- and 531.5-keV γ rays.

1979ArZU: measured subshell ce data for 57.1, 207.8 and 264.9 γ rays, and Auger electron intensities using a magnetic spectrometer.

Others:

1996BeZY: measured K-shell capture probability PK for 265 and 532 levels.

1991Mu15: measured α (K)exp for 207.8 γ and α (L)exp for 57.1 γ .

1991Be15: measured K-shell capture probability P_K by $\gamma(x ray)$ -coin.

1990Mu05: measured K-shell capture probability P_K using sum-coin method for γ and x rays.

1987BaZB: measured L-subshell ratios for 57.1 and 207.8 γ rays.

1982BeYN: measured (x ray) γ -coin; deduced K- and L-shell capture probabilities.

1982Ar22 (also 1979ArZU): measured L-Series Auger electron spectra.

1966Ja16: measured half-life of the 265-keV level by $\gamma\gamma(t)$.

1963A132: measured E γ for 50 and 208 γ rays, half-life of the 208-keV isomer, K-conversion coefficient for 208 γ .

1962Ko09: measured multipolarity of 208 and 532 γ rays.

1962Dz03: data for 532 level.

1960Na14: measured $E\gamma$, $I\gamma$ for four γ rays.

1959Ha09: measured ce for 57, 208 and 532 γ rays.

1958Be72: measured half-life of 264-keV level by (x ray)(ce)-coin.

1957Mi01: measured half-life and K/L ratio for the 208-keV isomer in ¹⁶⁷Er.

1957Gr74: measured ce spectrum.

1957Go78: measured $E\gamma$, $I\gamma$ for three γ rays.

1955Ne01: measured E γ , I γ for five γ rays, half-life of ¹⁶⁷Tm decay.

Additional information 1.

Theory references for decay of ¹⁶⁷Tm: 2023Ke01, 1975Fe13.

¹⁶⁷Er Levels

E(level) [†]	Jπ‡	T _{1/2} ‡	Comments
0.0	7/2+	stable	
207.801 5	$1/2^{-}$	2.269 s 6	$T_{1/2}$: values from this study: 2.27 s 5 (1963Al32), 2.5 s (1957Mi01).
264.874 5	3/2-	1.47 ns 5	$T_{1/2}$: adopted value from (x ray)(ce)(t) (1968Fu09) in this study. Others: 1.46 ns 8 (1966Ja16, $\gamma\gamma(t)$); 2.0 ns 5 (1958Be72, (x ray)(57 γ ce)(t)).
281.3 5	$5/2^{-}$		
346.5 <i>3</i>	$5/2^{-}$		
531.54 4	$3/2^{+}$		

[†] From a least-squares fit to $E\gamma$ data.

[‡] From the Adopted Levels. Values from this dataset are given under comments.

¹⁶⁷Tm ε decay (9.25 d) **1968Fu09** (continued)

ε radiations

 ε feedings are from intensity imbalance at each level; no feeding to g.s. is expected, because $\Delta J=3$.

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments
(214.6 13)	531.54	1.6 4	7.28 11	 εK=0.7504 11; εL=0.1864 6; εM+=0.06317 32 K-capture probability measurement: 0.755 28 (1991Be15). εL(exp)/εK(exp)=0.243 17 (1991Be15), implying Q(ε)=750 +30-20 (1991Be15 is presumed to supersede 1982BeYN).
(399.6 <i>13</i>) (481.2 <i>13</i>)	346.5 264.874	0.025 5 28 6	9.43 ¹ <i>u</i> 9 6.87 9	 εK=0.7288 9; εL=0.2022 5; εM+=0.06899 29 εK=0.80614 38; εL=0.14632 17; εM+=0.04755 14 K-capture probability measurements: 0.813 30 (1996BeZY), 0.835 29 (1990Mu05). εL(exp)/εK(exp)=0 180 16 (1996BeZY).
(538.3 13)	207.801	70 17	6.58 11	εK =0.80998 35; εL =0.14354 16; εM +=0.04648 13

 † Absolute intensity per 100 decays.

From ENSDF

$\gamma(^{167}\text{Er})$

Iy normalization: From total I(γ +ce) to g.s.=100%; no feeding to g.s. is expected because Δ J=3.

Measured L-shell Auger electron intensities (1979ArZU): 0.45% 5 for KL1L1, 0.67% 7 for KL1L2, 0.09% 4 for KL2L2, 0.57% 6 for KL1L3, 1.13% 11 for KL2L3, 0.50% 5 for KL3L3, 3.4% 2 for summed KLL, and 150% 30 for summed LXY. See also 1982Ar22 (from the same group as 1979ArZU) for L-Auger spectrum. I(Er K α x ray)=310, relative to I γ =10.0 for 531.5 γ (1960Na14) (after correction for absorption and assuming $\omega_{\rm K}$ =0.949), compared with I(Er K α x ray)=466 from decay scheme.

Eγ	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	δ&	α ^c	Comments
(16.7 [#])	@	281.3	5/2-	264.874	3/2-				
57.0723 [‡] 12	29 [†] 5	264.874	3/2-	207.801	1/2-	M1+E2	0.352 16	5.02 23	%Iγ=4.6 10 α (L)=3.88 18; α (M)=0.91 5 α (N)=0.208 10; α (O)=0.0264 11; α (P)=0.000684 11 I _γ : deduced from I _γ (207.8γ) and Ice(L)(57.1γ)/Ice(K)(207.8γ)=18.7 9/19.76 24 (1979ArZU). L1:L2:L3:M1:M2:M3=7.3 6:5.6 4:5.8 5:1.5 2:1.4 2:1.5 2, and L1:M45:N:O=7.3 6:0.04 2:1.1 1:0.14 3 (1979ArZU); L1/L2=1.43 4, L1/L3=1.17 3 (1987BaZB); L1:L2:L3:M1:M2=280:235:245:180:50 (1959Ha09). δ: deduced by evaluators using BrIccMixing code. α (L)exp=18.3 7 in 1991Mu15 implying δ =2.7 +6-4 seems discrepant in view of much lower δ (E2/M1) value from subshell ratios.
(73.8 [#])	@	281.3	5/2-	207.801	1/2-	E2		9.64	α (K)=1.90 3; α (L)=5.93 9; α (M)=1.446 21 α (N)=0.327 5; α (O)=0.0379 6; α (P)=8.80×10 ⁻⁵ 13 Mult.: from the Adopted Gammas.
207.801 [‡] 5	258 [†] <i>35</i>	207.801	1/2-	0.0	7/2+	E3		1.380	%Iy=41.3 4 α (K)exp=0.50 5 (1963A132); α (K)exp=0.47 2 (1991Mu15) α (K)=0.476 7; α (L)=0.689 10; α (M)=0.1718 24 α (N)=0.0392 6; α (O)=0.00466 7; α (P)=2.75×10 ⁻⁵ 4 Measured absolute intensity=41.9% 16 (2016Ch04). Other E γ =207.8 (1968Fu09). K:L1:L2:L3:M:N:O=19.76 24:2.0 2:16.7 17:10.0 10, and K:M:N:O:=19.76 24:7.5 8:2.0 3:0.3 1 (1979ArZU). K:L2:L3:M:N=1000:820:430:370:100 (1959Ha09); L1/L2=0.16 1 and L1/L3=0.25 1 (1987Ba7B); K/L=0.72 7 (1957Mi01).
250.2 [†] 5	0.014 [†] 3	531.54	3/2+	281.3	5/2-	[E1]		0.0292 5	$\alpha(K)=0.0246 \ 4; \ \alpha(L)=0.00359 \ 6; \ \alpha(M)=0.000793 \ 12 \\ \alpha(N)=0.000183 \ 3; \ \alpha(O)=2.56\times10^{-5} \ 4; \ \alpha(P)=1.249\times10^{-6} \ 19 \\ \%I\gamma=0.0022 \ 6$
264.9 [†]	≤0.46	264.874	3/2-	0.0	$7/2^{+}$	[M2]		0.833	$\alpha(K)=0.664 \ 10; \ \alpha(L)=0.1306 \ 19; \ \alpha(M)=0.0300 \ 5$

					1	67 Tm ε de	cay (9.25 d)) 1968Fu09 (continued)
γ ⁽¹⁶⁷ Er) (continued)								
E_{γ}	I_{γ}^{b}	E_i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult.&	α ^{C}	Comments
								α (N)=0.00702 <i>10</i> ; α (O)=0.000999 <i>14</i> ; α (P)=5.12×10 ⁻⁵ 8 %I γ =0.04 <i>4</i> I $_{\gamma}$: upper limit of 0.46 <i>6</i> deduced from I γ (207.8 γ) and Ice(L)(264.9 γ)/Ice(K)(207.8 γ) \leq 0.1/19.76 24 (1979ArZU).
266.5 [†] 5	0.014 [†] 3	531.54	3/2+	264.874	3/2-	E1 ^{<i>a</i>}	0.0249	α (K)exp≤0.02 (1965Fu04) α (K)=0.0210 4; α (L)=0.00305 5; α (M)=0.000673 10 α (N)=0.0001556 23; α (O)=2.18×10 ⁻⁵ 4; α (P)=1.072×10 ⁻⁶ 16 %1 γ =0.0022 6
323.7† 5	0.013 [†] 3	531.54	3/2+	207.801	1/2-	E1 ^{<i>a</i>}	0.01538	α (K)exp≤0.01 (1965Fu04) α (K)=0.01299 <i>19</i> ; α (L)=0.00187 <i>3</i> ; α (M)=0.000411 <i>6</i> α (N)=9.51×10 ⁻⁵ <i>14</i> ; α (O)=1.340×10 ⁻⁵ <i>20</i> ; α (P)=6.75×10 ⁻⁷ <i>10</i> %I γ =0.0021 <i>6</i>
346.5 [†] <i>3</i>	0.155 [†] 20	346.5	5/2-	0.0	7/2+	E1	0.01304	α (K)=0.01102 <i>16</i> ; α (L)=0.001577 <i>23</i> ; α (M)=0.000347 <i>5</i> α (N)=8.04×10 ⁻⁵ <i>12</i> ; α (O)=1.135×10 ⁻⁵ <i>16</i> ; α (P)=5.76×10 ⁻⁷ <i>9</i> %I γ =0.025 <i>5</i> Mult.: from the Adopted Gammas.
531.54 [‡] 4	10.0 [†]	531.54	3/2+	0.0	7/2+	E2 ^{<i>a</i>}	0.01407	%Iγ=1.6 α (K)exp=0.013 (1965Fu04) α (K)=0.01128 <i>16</i> ; α (L)=0.00217 <i>3</i> ; α (M)=0.000494 <i>7</i> α (N)=0.0001140 <i>16</i> ; α (O)=1.551×10 ⁻⁵ <i>22</i> ; α (P)=6.27×10 ⁻⁷ <i>9</i> Measured absolute intensity=1.73% <i>7</i> (2016Ch04). K:L1:M=2.2:0.35:0.1 (1959Ha09). Other Eγ=531.5 (1968Fu09).

4

[†] From 1968Fu09. [‡] From the Adopted Gammas.

[#] Rounded-off value from the Adopted Gammas. Transition is expected, but has not been observed in ¹⁶⁷Tm ε decay. [@] Negligible; if it is assumed that there is no ε branch, the only feeding into the 281.6 level is from 250.2 γ (I γ =0.014).

[&] From ce data as given under comments, unless otherwise noted. The same values are adopted in Adopted Gammas.

^{*a*} From (x ray) γ - and (ce) γ -coin (1965Fu04).

^{*b*} For absolute intensity per 100 decays, multiply by 0.160 22.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{167}_{68}\mathrm{Er}_{99}$ -4

¹⁶⁷Tm ε decay (9.25 d) 1968Fu09

Decay Scheme

