Coulomb excitation 1985Oh03,1969Tv01

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 191,1 (2023)	22-Aug-2023

- See also another Coulomb excitation dataset from 1997Ge07 using ${}^{167}\text{Er}({}^{209}\text{Bi}, {}^{209}\text{Bi}'\gamma)$, E=5.4 MeV/nucleon, with no B(E2) values deduced in that work.
- 1985Oh03 (also 1983Oh03): $E({}^{35}Cl)=160$ MeV from 20-UR Tandem Accelerator of the JAERI. Beam energy was chosen somewhat higher than the Coulomb barrier in order to populate high-spin levels. Targets were 91.5% enriched metallic ${}^{167}Er$. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$ at seven angles from 0° to 90° in 15° steps, $\gamma\gamma(\theta)(DCO)$ for 0° and 90° geometry, and level lifetimes by Doppler-shift attenuation measurements (DSAM) using Ge(Li) detector with Compton-suppression for singles γ spectrum. Deduced levels, multipolarities, mixing ratios, B(M1) and B(E2) from lifetime data for levels and γ transitions in the ground-state rotational band ($\nu7/2[633]$) in ${}^{167}Er$ up to 25/2⁺. Comparison with Coriolis band-mixing calculations.
- 1978Wo02: ${}^{167}\text{Er}(\alpha, \alpha'), \text{E}(\alpha)=12 \text{ MeV}$ from the University of Frankfurt Van de Graaff generator. Thin (10-30 μ g/cm²) >91.2% enriched targets of ${}^{167}\text{Er}$. Measured E α , I α for ten levels, 7/2⁺ to 15/2⁺ in g.s. (ν 7/2[633]) band, 3/2⁺ and 5/2⁺ members of ν 3/2[651] band, 5/2⁺ and 7/2⁺ members of ν 5/2[642] band, and 11/2⁺ member of 11/2⁺ γ -vibrational band. FWHM=21 keV. Deduced seven E2 and one E4 matrix elements from α -particle yields, and intrinsic quadrupole and hexadecapole moments.
- 1969Tv01: $E(^{16}O)=36-52$ MeV from the Niels Bohr Institute tandem accelerator, with most spectra taken at 48 MeV. Enriched thin self-supporting metallic targets of 1-2 mg/cm² thickness. Measured $E\gamma$, $I\gamma$, excitation functions, $\sigma(E\gamma)$, $(^{16}O)\gamma$ -coin using Ge(Li) detectors. A total of 18 γ rays reported placed among ten excited states up to 874 keV, with ground-state rotational band (v7/2[633]) 3/2⁺, K-2, and 11/2⁺ K+2 γ -vibrational bands.

Others:

- 1978Br20: ¹⁶⁷Er(α, α'),E(α)=9.0-13.5 MeV from the University of Pittsburgh Van de Graaff accelerator. Target thickness was \approx 30 μ g/cm² evaporated on 10 μ g/cm² carbon backing. Measured E α , I α using Enge split-pole spectrograph with a position sensitive detector located in the focal plane. Deduced B(E2) for two excited states in the g.s. rotational band.
- 1971Da17: $(\alpha, \alpha' \text{ ce}), E(\alpha) = 4.0 \text{ MeV}$. Measured lifetime of the 70-keV level by $\alpha(\text{ce})(t)$, a modified microwave method. Deduced magnitude of g_{K} - g_{R} value.
- 1970Ga19: $({}^{14}N, {}^{14}N'\gamma)$, E=59 MeV. Measured E γ , I γ using Ge(Li) detector. Deduced B(M1) for three $\Delta J=1$ transitions in g.s. band.

1969Wi17: (p,p'γ),E=3 MeV from Tulane University Tandem Van de Graaff accelerator. Target was 87.2% enriched ¹⁶⁷Er. Measured Mossbauer effect for 79.3-keV γ ray and deduced line width, from which half-life of the 79.3-keV level was determined as ≥103 ps 6, using α (total)(theory)=5.2 for the 79.3-keV γ ray.

1967As03: (^{16}O , $^{16}O'\gamma$). Measured lifetime of the 79-keV level by decay curve of (^{16}O) γ -coin.

1966Bo16: $({}^{16}O, {}^{16}O'\gamma)$, E=42-47 MeV. Measured E γ , I γ for 79.3, 177.6, 293.6 and 432.4 levels in the g.s. band, and γ -ray branching ratios from the 178 and 294 levels. Deduced (g_K-g_R), g_R and g_K values.

1966As02: (p,p') E=2.4 MeV. Measured E γ , $\gamma\gamma$ -coin, $X\gamma$ -coin, $p\gamma\gamma(\theta)$. Deduced mixing ratios, conversion coefficients.

1962Go23: (p,p') E=3.1-3.4 MeV protons from the Saclay accelerator. Measured E γ , I γ , p γ -coin, $\gamma(\theta)$. Deduced transition strengths.

1960Ol02: (p,p'),(d,d') E=4.5 MeV. Measured E γ , γ yields. Deduced transition strengths.

1959De29: (p,p') E=4 MeV. Measured E γ , I γ , $\gamma(\theta)$. Deduced γ -ray transition strengths, mixing ratios.

1958Ch36: (e,e') electron beam from the A-48 accelerator at UCRL, Livermore. Measured $E\gamma$, γ -ray yields using a high-precision bent quartz crystal spectrograph.

1955He64: (α, α') E=6 MeV. Measured E γ , I γ with a NaI(Tl) detector. Deduced B(E2).

The level scheme for g.s. band members with $J^{\pi} \ge 17/2^+$ and most data are from 1985Oh03. The rest of the level scheme and considerable data are from 1969Tv01.

¹⁶⁷Er Levels

E(level) [†]	J π #	T _{1/2} @	Comments
0.0 <mark>&</mark>	7/2+		
79.338 <mark>&</mark> 8	9/2+	119 ps 9	B(E2)↑=2.51 8
			B(E2) \uparrow : weighted average of 2.61 8 (1963El06), 2.49 <i>10</i> (1978Br20), and 2.40 9 (1978Wo02). E2 matrix element from 0, 7/2 ⁺ to 79, 9/2+=+4.38 8 (1978Wo02).

Continued on next page (footnotes at end of table)

Coulomb excitation 1985Oh03,1969Tv01 (continued)

¹⁶⁷Er Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{(0)}$	Comments
			T _{1/2} : from (α)(ce)(t) (microwave method) for δ^2 (79.3γ)=0.10 (1971Da17). Others: 118 ps 20 from B(E2) if δ (79.3)=0.32 (as in 1971Da17), but T _{1/2} =51 ps 20 if δ (79.3)=-0.20 4 (as in 1966As02); 1971Da17 obtain 115 ps 9 if δ =0.20; 71 ps 21 (1967As03, impurity lines prevented accurate determination); ≥103 ps 6 from Mossbauer measurements in Coul. ex. and using α (total)(theory)=5.2 for the 79.3-keV γ ray (1969Wi17).
			Intrinsic quadrupole moment $Q_0=7.68$ 15 (1978Br20). Deduced magnitude of $(g_K-g_R)=0.410$ 16 (1971Da17).
177.973 ^{&} 8	11/2+	55 ps 6	B(E2)↑=0.629 6 B(E2)↑: weighted average of 0.648 <i>19</i> (1978Br20) and 0.627 6 (1978Wo02). Other value: 0.61 4 (1963El06).
			E2 matrix element from 0, $7/2^+$ to 178, $11/2+=+2.24$ <i>I</i> (1978Wo02). $T_{1/2}$: from B(E2) and adopted properties for 178.0 γ . Intrinsic quadrupole moment $Q_0=7.73$ <i>II</i> (1978Br20). Intrinsic quadrupole moment $Q_{20}=7.60$ <i>I0</i> (1978Wo02) deduced from experimental E2 matrix elements for the 9/2 ⁺ and 11/2 ⁺ states of the 7/2[633] band.
294.961 ^{&} 10	13/2+	29 ps 6	B(E4)↑=0.074 +94-66 (1978Wo02) Intrinsic hexadecapole moment Q ₄₀ =1.35 +69-90 (1978Wo02) deduced from experimental E4 matrix element.
			E4 matrix element from 0, $7/2^+$ to 178, $13/2+=+0.77 \text{ eb}^2 + 39-51$ (1978Wo02). T _{1/2} : from DSA for 215.6 γ (1985Oh03).
434.452 ^{&} 11	$15/2^{+}$	22 ps 6	$T_{1/2}$: from DSA for 256.5 γ (1985Oh03).
532.0 ^{‡<i>a</i>} 5	3/2+	19.3 ps 23	$B(E2)\uparrow=0.034~4$ B(E2): weighted average of 0.0377 38 (1969Tv01) and 0.030 4 (1978Wo02). Other: 0.042 (1962Ga14).
4			$T_{1/2}$: from B(E2) and adopted properties for 532 γ .
574.2 ⁺⁴ 2	5/2+	36 ps 12	B(E2)↑=0.0201 30 B(E2): weighted average of 0.0221 21 (1978Wo02) and 0.0155 32 (1969Tv01). E2 matrix element from 0, 7/2 ⁺ to 574, 5/2+=+0.42 2 (1978Wo02). B(E2)(79, 9/2 ⁺ to 574, 5/2 ⁺)=0.0093 28 (1969Tv01). T _{1/2} : from B(E2)(495 γ) and adopted 495 γ properties.
587.382 ^{&} 12	17/2+	11.1 ps 21	$T_{1/2}$: from DSA for 292.4 γ in Fig. 6 of 1985Oh03, where mean lifetime τ =16 ps 3. Uncertainty is 2 ps in authors' Table 5.
641.2 [‡] 2	7/2+		B(E2)(79, 9/2 ⁺ to 641, 7/2 ⁺)=0.0052 <i>30</i> ; B(E2)(0, 7/2 ⁺ to 641, 7/2 ⁺)=0.0051 <i>30</i> (1969Tv01).
711.3 [‡] 2	11/2+		B(E2) \uparrow =0.056 6 B(E2): weighted average of 0.061 6 (1978Wo02) and 0.0479 80 (1969Tv01). E2 matrix element from 0, 7/2 ⁺ to 711, 11/2+=+0.70 2 (1978Wo02). B(E2)(79, 9/2 ⁺ to 711, (11/2 ⁺))=0.0170 30 (1969Tv01).
772.693 <mark>&</mark> 15	$19/2^{+}$	6.9 ps 14	$T_{1/2}$: from DSA for 338.24 γ (1985Oh03).
812.5 ^{‡b} 5	5/2+	1	$B(E2)\uparrow=0.033~4$
	- 1		B(E2): weighted average of 0.035 4 (1978Wo02) and 0.025 8 (1969Tv01). E2 matrix element from 0, $7/2^+$ to 812, $5/2+=+0.53$ 3 (1978Wo02).
873.8 [‡] <i>b</i> 5	7/2+		B(E2)↑=0.024 5 (1978Wo02) E2 matrix element from 0, $7/2^+$ to 874, $7/2+=+0.44$ 4 (1978Wo02). B(E2)(79, $9/2^+$ to 874, $7/2^+$)=0.018 8 (1969Tv01).
955.00 ^{&} 4	$21/2^+$	3.5 ps 7	$T_{1/2}$: from DSA for 367.62 γ (1985Oh03).
1194.20 ^{&} 10	$23/2^+$	2.4 ps 5	$T_{1/2}$: from DSA for 421.5 γ (1985Oh03).
1394.0 ^{&} 10	$25/2^{+}$		

Coulomb excitation 1985Oh03,1969Tv01 (continued)

¹⁶⁷Er Levels (continued)

- [†] From a least-squares adjustment of E γ data, assuming 0.5 keV uncertainty when not stated as in 1969Tv01.
- [±] Level from 1969Tv01, not studied in 1985Oh03.
- [#] As given by 1985Oh03 and 1969Tv01 based on $\gamma(\theta)$ and $\gamma\gamma(\theta)$ (DCO) data in 1985Oh03 and band assignments in 1969Tv01. Assignments in the Adopted Levels are the same, with the exception that J^{π} values for the 711 and 1394 levels are considered as tentative.
- [@] From Doppler-broadened γ-ray lineshapes (1985Oh03) for 294.9, 434.4, 587.4, 772.7, 955.0 and 1194.2 levels.
- & Band(A): v7/2[633].
- ^a Band(B): v3/2[651].
- ^b Band(C): v5/2[642].

$\gamma(^{167}{\rm Er})$

A₂, A₄, and DCO values are from 1985Oh03. Two type of $\gamma\gamma(\theta)$ or DCO values were measured for $\Delta J=1$ transitions to obtain $\delta(Q/D)$ (or $\delta(E2/M1)$): DCO(1) for $J \rightarrow J-1 \rightarrow J-3$ and DCO(2) for $J+2 \rightarrow J \rightarrow J+1$, where $\delta(Q/D)$ is for $\Delta J=1$ transitions in each case.

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ #	α &	Comments
79.33 1	563 56	79.338	9/2+	0.0	7/2+	M1+E2	-0.32 3	5.70 9	α(K)exp=4.50 21 (1966As02) $ α(K)=4.37 8; α(L)=1.03 6; α(M)=0.236 15 $ $ α(N)=0.054 4; α(O)=0.0073 4; $ $ α(P)=0.000268 5 $ Eγ=79.3 (1969Tv01). $ α(K)exp from (x ray)γ-coin (1966As02). $ $ δ: from δ2=0.10 (1971Da17), with 20% $ uncertainty assumed by evaluators; sign from 1966As02. Magnitude disagrees with δ=-0.20 4 from pγγ(θ) (1966As02); 1971Da17 suggest that γγ(θ) results in 1966As02 may have been affected by hyperfine interactions. $ δ=0.40 11$ from α(K)exp.
98.62 1	305 31	177.973	11/2+	79.338	9/2+	M1+E2	-0.28 3	2.97	α(K)exp=2.07 14 (1966As02) DCO(2)=0.93 8; A ₂ =-0.038 12; A ₄ =+0.031 54 (1985Oh03) B(M1)↓=0.21 4 (1970Ga19) $α(K)=2.38 4; α(L)=0.456 19; α(M)=0.104$ 5 $α(N)=0.0240 11; α(O)=0.00330 12; α(P)=0.000146 3$ Eγ=98.3 (1969Tv01). $α(K)exp from (x ray)γ-coin (1966As02).$ δ: weighted average of -0.27 3 (1966As02, pγγ(θ)) and -0.45 15 (1985Oh03, -0.45 15 from γ(θ) and -0.6 10 from DCO ratio). Other δ: 0.71 16 from α(K)exp (1966As02); 0.33 +17-10 (1959De29); 0.302 20 deduced from crossover-to-cascade branching ratio and using Eq. 2 (1969Tv01) is in agreement.

¹⁶⁷₆₈Er₉₉-4

				Coulomb	excitatio	on 1985O	h03,1969Tv	01 (continue	<u>(b)</u>	
$\gamma(^{167}\text{Er})$ (continued)										
E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	α &	Comments	
116.99 <i>I</i>	88 9	294.961	13/2+	177.973	11/2+	M1+E2	-0.23 11	1.81	DCO(1)=1.29 22; DCO(2)=0.66 8; A ₂ =-0.195 22; A ₄ =+0.002 30 B(M1) \downarrow =0.208 49; B(E2) \downarrow =1.2 11 (1985Oh03); B(M1) \downarrow =0.25 6 (1970Ga19) α (K)=1.48 5; α (L)=0.25 3; α (M)=0.057 7 α (N)=0.0131 15; α (O)=0.00185 16; α (P)=9.1×10 ⁻⁵ 4 E γ =1116.1 (1969Tv01). δ : from 1985Oh03 (average of -0.33 15 from $\gamma(\theta)$, -0.15 15 and -0.24 50 from DCO ratios). Evaluators obtain averaged δ =-0.24 10. Other δ : 0.296 30, deduced from crossover-to-cascade branching ratio and using Eq. 2 (1969Tv01) is in agreement	
139.50 1	37 4	434.452	15/2+	294.961	13/2+	M1+E2	-0.25 9	1.088 <i>19</i>	(19691v01) is in agreement. DCO(1)=1.63 10; DCO(2)=0.48 7; A ₂ =-0.245 13; A ₄ =+0.028 18 B(M1) \downarrow =0.158 49; B(E2) \downarrow =0.73 68 (19850h03); B(M1) \downarrow =0.28 (1970Ga19) α (K)=0.897 25; α (L)=0.149 9; α (M)=0.0334 22 α (N)=0.0077 5; α (O)=0.00110 5; α (P)=5.47×10 ⁻⁵ 19 Ey=138.7 (1969Tv01). δ : from 19850h03 (average of -0.20 10 from $\gamma(\theta)$, -1.0 10 and -0.35 15 from DCO ratios). Other δ : 0.304 40, deduced from crossover-to-cascade branching ratio and using Eq. 2 (1969Tv01) is in agreement	
152.93 <i>1</i>	13 <i>I</i>	587.382	17/2+	434.452	15/2+	M1+E2	-0.31 8	0.831 <i>16</i>	DCO(1)=1.72 <i>16</i> ; DCO(2)=0.50 <i>15</i> ; A ₂ =-0.303 <i>9</i> ; A ₄ =-0.039 <i>12</i> B(M1) \downarrow =0.190 <i>30</i> ; B(E2) \downarrow =1.13 <i>61</i> (19850h03) α (K)=0.682 <i>19</i> ; α (L)=0.116 <i>5</i> ; α (M)=0.0260 <i>13</i> α (N)=0.0060 <i>3</i> ; α (O)=0.00085 <i>3</i> ; α (P)=4.14×10 ⁻⁵ <i>14</i> δ : from 19850h03 (average of -0.30 <i>10</i> from $\gamma(\theta)$, -0.30 <i>15</i> and -0.9 <i>6</i> from DCO ratios). Evaluators note that negative A ₄ is inconsistent with Δ J=1, dipole + quadrupole transition.	
177.98 <i>1</i>	100 5	177.973	11/2+	0.0	7/2+				$A_2 = +0.0176 \ 39; \ A_4 = -0.001 \ 6$ Ey=177.6 (1969Tv01). Measured Iy(177.9y)/Iy(98.6y)= 0.340 7 (1966Bo16).	
182.3 2	1.3 2	955.00	21/2+	772.693	19/2+	M1(+E2)	-0.15 45	0.52 5	Mult.: E2 in 1985Oh03. DCO(1)=1.48 <i>13</i> (1985Oh03)	

Continued on next page (footnotes at end of table)

 $^{167}_{68}\mathrm{Er}_{99}$ -5

			-	Coulomb e	excitatio	n 19850)h03,1969Tv	7 <mark>01</mark> (continu	ed)	
$\gamma(^{167}\text{Er})$ (continued)										
E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	α &	Comments	
									B(M1)↓=0.30 9; B(E2)↓=0.3 18 (1985Oh03) α (K)=0.43 6; α (L)=0.066 9; α (M)=0.0146 24 α (N)=0.0034 6; α (O)=0.00049 5; α (P)=2.6×10 ⁻⁵ 5 δ(E2/M1)=-0.15 45 from DCO ratio in 1985Oh03, but this does not include uncertainty in	
185.3 2	2.9 5	772.693	19/2+	587.382	17/2+	M1+E2	-0.35 15	0.478 17	alignment attenuation factors. DCO(1)=2.11 <i>14</i> (1985Oh03) B(M1) \downarrow =0.103 <i>31</i> ; B(E2) \downarrow =0.53 <i>48</i> (1985Oh03) $\alpha(K)$ =0.394 <i>21</i> ; $\alpha(L)$ =0.066 <i>3</i> ; $\alpha(M)$ =0.0147 <i>9</i> $\alpha(N)$ =0.00342 <i>19</i> ; $\alpha(O)$ =0.000482 <i>17</i> ; $\alpha(P)$ =2.39×10 ⁻⁵ <i>16</i> δ ; from DCO ratio (1985Oh03)	
215.63 1	76 4	294.961	13/2+	79.338	9/2+	E2		0.196	a) from DCO ratio (19850h05). A ₂ =+0.078 4; A ₄ =+0.012 6 B(E2)↓=0.94 20 (19850h03) α(K)=0.1303 19; α(L)=0.0508 8; α(M)=0.01207 17 α(N)=0.00275 4; α(O)=0.000342 5; α(P)=6.25×10 ⁻⁶ 9 Eγ=214.8 (1969Tv01). Evaluators note that positive A ₄ is inconsistent with ΔJ=2, quadrupole transition. Measured Iγ(215.6γ)/Iγ(116.9γ)= 0.80.5 (1966Bo16)	
239.4 6	0.56 6	1194.20	23/2+	955.00	21/2+	M1+E2	-0.20 10	0.241 6	A ₂ =-0.35 10; A ₄ =+0.010 43 B(M1) \downarrow =0.204 51; B(E2) \downarrow =0.20 21 (1985Oh03) α (K)=0.202 6; α (L)=0.0306 5; α (M)=0.00680 12 α (N)=0.00159 3; α (O)=0.000228 4; α (P)=1.23×10 ⁻⁵ 4 δ (E2/M1)=-0.20 10 from $\gamma(\theta)$ in 1985Oh03, but this does not include uncertainty in alignment attenuation factors	
256.47 1	60 <i>3</i>	434.452	15/2+	177.973	11/2+	E2		0.1122	DCO=0.96 6; A ₂ =+0.110 4; A ₄ =+0.015 5 B(E2) \downarrow =0.96 28 (1985Oh03) α (K)=0.0789 11; α (L)=0.0257 4; α (M)=0.00606 9 α (N)=0.001384 20; α (O)=0.0001750 25; α (P)=3.94×10 ⁻⁶ 6 Evaluators note that positive A ₄ is inconsistent with Δ J=2, quadrupole transition.	
292.42 1	36 18	587.382	17/2+	294.961	13/2+	E2		0.0747	$E\gamma=255.2$ (19691 v01). DCO=1.05 5; A ₂ =+0.144 4; A ₄ =-0.017 5 B(E2) \downarrow =1.39 20 (1985Oh03)	

Continued on next page (footnotes at end of table)

				Coulomb	excitati	ion 1985	Oh03,1969	Tv01 (continued)
						$\gamma(^{167}{\rm Er})$ (continued)	
E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α &	Comments
								$\alpha(K)=0.0543 \ 8; \ \alpha(L)=0.01569 \ 22; \ \alpha(M)=0.00368 \\ 6 \\ \alpha(N)=0.000841 \ 12; \ \alpha(O)=0.0001078 \ 15; \\ \alpha(P)=2.78 \times 10^{-6} \ 4$
338.24 1	17 <i>1</i>	772.693	19/2+	434.452	15/2+	E2	0.0483	DCO= 0.986 ; A ₂ =+ 0.1754 ; A ₄ =- 0.0075 B(E2) = $14132(19850b03)$
367.62 4	5.7 6	955.00	$21/2^+$	587.382	$17/2^{+}$	E2	0.0379	DCO=0.82 13; A ₂ =+0.121 15; A ₄ =-0.010 20
421.5 <i>1</i>	2.3 3	1194.20	23/2+	772.693	19/2+	(E2)	0.0259	B(E2) \downarrow =1.76 43 (1985Oh03) DCO=0.87 31; A ₂ =+0.298 37; A ₄ =-0.009 45 B(E2) \downarrow =1.29 33 (1985Oh03) Mult : E2 in 1985Oh03
439 1		1394.0	$25/2^{+}$	955.00	$21/2^{+}$			Mult.: E2 in 1985Oh03. Mult.: E2 in 1985Oh03.
463.0 [@]		641.2	$7/2^{+}$	177.973	$11/2^{+}$			
494.5 [@]		574.2	5/2+	79.338	$9/2^{+}$	[E2]	0.01692	
532.0 [@]		532.0	$3/2^{+}$	0.0	7/2+			
533.5 ^{@a}		711.3	11/2+	177.973	11/2+			
561.5 [@]		641.2	$7/2^{+}$	79.338	9/2+			
574.5 [@]		574.2	5/2+	0.0	7/2+			Measured $I\gamma(574.5\gamma)/I\gamma(494.5\gamma)=0.76\ 15$ (1969Tv01).
632.3 [@]		711.3	$11/2^{+}$	79.338	9/2+			
641.7 [@]		641.2	7/2+	0.0	7/2+			Measured $I\gamma(641.7\gamma)/I\gamma(561.5\gamma)=0.37$ 17 (1969Tv01).
711.0 [@]		711.3	11/2+	0.0	7/2+			Measured $I\gamma(711.0\gamma)/I\gamma(632.3\gamma)=0.47$ 7 (1969Tv01).
794.5 [@]		873.8	7/2+	79.338	9/2+			
812.5 [@]		812.5	$5/2^{+}$	0.0	7/2+			

[†] From 1985Oh03, except as noted. [‡] From $\gamma(\theta)$ except where noted, with mult=M1 and E2 assigned by comparison to RUL.

[#] Weighted average from $\gamma(\theta)$ and DCO ratio data of 1985Oh03, except where noted.

 ^(a) From Fig. 4 of 1969Tv01, uncertainties not stated by authors.
 [&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Placement of transition in the level scheme is uncertain.

¹⁶⁷₆₈Er₉₉

Coulomb excitation 1985Oh03,1969Tv01

¹⁶⁷₆₈Er₉₉