## <sup>166</sup>Lu ε decay (2.65 min) 1974De09,2007Mc08

| History         |                 |                      |                        |  |  |  |  |  |  |  |
|-----------------|-----------------|----------------------|------------------------|--|--|--|--|--|--|--|
| Туре            | Author          | Citation             | Literature Cutoff Date |  |  |  |  |  |  |  |
| Full Evaluation | Coral M. Baglin | NDS 109, 1103 (2008) | 1-Mar-2008             |  |  |  |  |  |  |  |

Parent: <sup>166</sup>Lu: E=0.;  $J^{\pi}=6^-$ ;  $T_{1/2}=2.65 \text{ min } 10$ ;  $Q(\varepsilon)=5570 \ 30$ ;  $\%\varepsilon+\%\beta^+$  decay=100.0

2007Mc08: measured  $\gamma\gamma(\theta)$  out-of-beam for three cascades using 8 Compton suppressed segmented YRAST Ball Clover HPGE detectors. These data are a byproduct of a study of <sup>168</sup>Ta  $\varepsilon$  decay for which the source was produced using 130-MeV <sup>16</sup>O bombardment of <sup>159</sup>Tb; the <sup>166</sup>Lu component May Be a mixture of all three isomers, but the 6<sup>-</sup> isomer's presence is confirmed by the observation of the 997 $\gamma$  which is known from that decay but not from the 0<sup>-</sup> or 3<sup>(-)</sup> isomer decays.

## 166Yb Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$             | T <sub>1/2</sub> | Comments                       |
|-----------------------|--------------------------------|------------------|--------------------------------|
| 0                     | $0^{+}$                        |                  |                                |
| 102.38 <i>3</i>       | 2+                             |                  |                                |
| 330.48 4              | 4+                             |                  |                                |
| 667.95 5              | 6+                             |                  |                                |
| (932.38 5)            |                                |                  | E(level): from Adopted Levels. |
| 1039.20 6             | $(3)^{+}$                      |                  |                                |
| 1098.24 6             | 8+                             |                  |                                |
| 1162.87 6             | $(4)^+$                        |                  |                                |
| 1327.81 5             | $(5)^{+}$                      |                  |                                |
| 1482.39 6             | $(6)^{+}$                      |                  |                                |
| 1505.38 7             | (5)-                           |                  |                                |
| 1570.55 15            | (5)-                           |                  |                                |
| 1616.85 6             | (4 <sup>-</sup> )              |                  |                                |
| 1684.82 15            | $(2^+, 3, 4^+)$                |                  |                                |
| 1724.81 11            | $(6^+,7^+)$                    |                  |                                |
| 1744.6 <i>3</i>       | $(3^+, 4^+)$                   |                  |                                |
| 1790.31 7             | (5 <sup>-</sup> )              |                  |                                |
| 1812.62 16            | (8 <sup>+</sup> )              |                  |                                |
| 1818.01 23            | $(4^+, 5, 6^+)$                |                  |                                |
| 1833.2 5              | $(7)^{-}$                      |                  |                                |
| 1865.39 6             | (6)-                           |                  |                                |
| 1957.06 6             | $(5,6)^+$                      |                  |                                |
| 1958.89 7             | 7-                             |                  |                                |
| 2016.34 22            | $(4^+, 5, 6^+)$                |                  |                                |
| 2165.73 7             | $(6,7)^+$                      |                  |                                |
| 2233.32 6             | 6 <sup>-</sup> ,7 <sup>-</sup> | <10 ns           |                                |
| † Engen 1.            |                                | ( F              |                                |

<sup>†</sup> From least-squares fit to  $E\gamma$ .

<sup>‡</sup> From Adopted Levels.

#### $\varepsilon, \beta^+$ radiations

I $\varepsilon$ , log *ft* The total intensity of  $\gamma$  rays not placed in the decay scheme is 14%; consequently, I $\varepsilon$  and log *ft* values are given for only the strongest branches, and the values for the 2233 level alone can Be considered to Be reliable.

| E(decay)†                 | E(level) | Ιβ <sup>+</sup> ‡ | $I\varepsilon^{\ddagger}$ | Log ft  | $I(\varepsilon + \beta^+)^{\ddagger}$ | Comments                                            |
|---------------------------|----------|-------------------|---------------------------|---------|---------------------------------------|-----------------------------------------------------|
| 3247                      | 2233.32  | 19 <i>1</i>       | 50 4                      | 4.69 4  | 69 5                                  | av Eβ=1046 14; εK=0.608 7; εL=0.0953 11; εM+=0.0287 |
| (3.61×10 <sup>3#</sup> 3) | 1957.06  | 0.7 4             | 1.5 7                     | 6.30 22 | 2.2 11                                | av Eβ=1171 14; εK=0.548 7; εL=0.0857 11; εM+=0.0258 |

|                                            |          |                   | <sup>166</sup> Lu a                | e decay (2.65                 | min) <b>197</b>                                | 1974De09,2007Mc08 (continued)                                                                                                        |  |  |  |  |  |  |
|--------------------------------------------|----------|-------------------|------------------------------------|-------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| $\epsilon, \beta^+$ radiations (continued) |          |                   |                                    |                               |                                                |                                                                                                                                      |  |  |  |  |  |  |
| E(decay)†                                  | E(level) | Ιβ <sup>+</sup> ‡ | $\mathrm{I}\varepsilon^{\ddagger}$ | Log ft                        | $\mathrm{I}(\varepsilon + \beta^+)^{\ddagger}$ | Comments                                                                                                                             |  |  |  |  |  |  |
|                                            |          |                   |                                    |                               |                                                | 4                                                                                                                                    |  |  |  |  |  |  |
| $(3.78 \times 10^{3\#} 3)$                 | 1790.31  | 1.1 7             | 1.7 11                             | 6.3 3                         | 2.8 18                                         | av Eβ=1246 14; εK=0.512 7; εL=0.0800 11; εM+=0.0241 3                                                                                |  |  |  |  |  |  |
| $(3.85 \times 10^3 \ 3)$                   | 1724.81  | 1.5 2             | 2.3 4                              | 6.16 8                        | 3.8 6                                          | av Eβ=1276 14; εK=0.498 7; εL=0.0778 10; εM+=0.0234 3                                                                                |  |  |  |  |  |  |
| $(4.06 \times 10^3 \ 3)$                   | 1505.38  | 1.5 3             | 1.7 3                              | 6.32 9                        | 3.2 6                                          | av Eβ=1376 14; εK=0.453 6; εL=0.0706 10; εM+=0.0212 3                                                                                |  |  |  |  |  |  |
| $(4.24 \times 10^3 \ 3)$                   | 1327.81  | 2.2 8             | 2.3 8                              | 6.25 16                       | 4.5 16                                         | av $E\beta = 1458 \ 14$ ; $\varepsilon K = 0.418 \ 6$ ; $\varepsilon L = 0.0651 \ 9$ ; $\varepsilon M + = 0.0196 \ 3$                |  |  |  |  |  |  |
| $(4.41 \times 10^3 \ 3)$                   | 1162.87  | 1.4 5             | 3.1 11                             | $8.00^{1u}$ 16                | 4.5 16                                         | av $E\beta$ =1513 14; $\varepsilon$ K=0.577 5; $\varepsilon$ L=0.0921 9; $\varepsilon$ M+=0.0278 3                                   |  |  |  |  |  |  |
| $(4.90 \times 10^3 \ 3)$                   | 667.95   | 3.6 8             | 2.1 4                              | 6.40 10                       | 5.7 12                                         | av E $\beta$ =1762 <i>14</i> ; $\varepsilon$ K=0.307 <i>5</i> ; $\varepsilon$ L=0.0477 <i>7</i> ; $\varepsilon$ M+=0.01433 <i>21</i> |  |  |  |  |  |  |
| $(5.24 \times 10^3 \ 3)$                   | 330.48   | 2.0 7             | 2.2 7                              | 8.45 <sup>1</sup> <i>u</i> 15 | 4.2 14                                         | av E $\beta$ =1885 14; $\varepsilon$ K=0.441 5; $\varepsilon$ L=0.0698 8; $\varepsilon$ M+=0.02104 23                                |  |  |  |  |  |  |

<sup>†</sup> E(β<sup>+</sup>) to the 2233-keV level has been measured as 2225 keV *160*.
<sup>‡</sup> Absolute intensity per 100 decays.
<sup>#</sup> Existence of this branch is questionable.

 $\gamma(^{166}\text{Yb})$ 

I $\gamma$  normalization: No  $\beta^+$  or  $\varepsilon$  feeding to <sup>166</sup>Yb g.s. is expected ( $\Delta J=6$ ), so  $\Sigma$  (I( $\gamma$ +ce) to g.s.)=100. 1974De09 pointed out that the following  $\gamma$  rays definitely belong to <sup>166</sup>Lu decay but could not be assigned with sufficient certainty to one of the three activities. The intensity given for these lines is normalized to the ground-state decay values of <sup>166</sup>Lu.

Conversion coefficient data from 1974De09 normalized so  $\alpha(K)\exp(337.5\gamma)=0.0383=\alpha(K)(E2 \text{ theory})$ .

|   | $E\gamma$             | $1\gamma$               | E $\gamma$             |                      | lγ               |                       |                    |            |
|---|-----------------------|-------------------------|------------------------|----------------------|------------------|-----------------------|--------------------|------------|
|   | 308.8 6               | 0.63                    | 1389.8                 | 6                    | 1.2 6            |                       |                    |            |
|   | 512.9 4<br>401 7 3    | 0.04                    | 1546.2                 | 6                    | 0.5 5<br>0.6 3   |                       |                    |            |
|   | 416.1 5               | 0.63                    | 1620.2                 | 6                    | 0.63             |                       |                    |            |
|   | 549.6 6               | 0.8 4                   | 1654.0                 | 6                    | 0.8 4            |                       |                    |            |
|   | 612.1 6               | 1.6 4                   | 1693.9                 | 6                    | 0.6 3            |                       |                    |            |
|   | 671.6 4               | 1.5 4                   | 1809.3                 | 6                    | 0.6 3            |                       |                    |            |
|   | 697.3 6               | 0.9 3                   | 1888.1                 | 6                    | 0.6 3            |                       |                    |            |
|   | 735.2 6               | 0.9 3                   | 2149.2                 | 6                    | 0.6 3            |                       |                    |            |
|   | 769.4 8               | 0.4 2                   | 2259.0                 | 6                    | 1.0 3            |                       |                    |            |
|   | 915.9 6               | 0.74                    | 2262.8                 | 6                    | 1.0 3            |                       |                    |            |
|   | 942.0 0               | 0.94                    | 2302.0                 | 10                   | 1.0.5            |                       |                    |            |
| S | 962 1 6               | 0.8.4                   | 2440.5                 | 6                    | 053              |                       |                    |            |
| - | 1011.6 6              | 0.9 4                   | 2489.6                 | 6                    | 0.5 3            |                       |                    |            |
|   | 1171.0 6              | 1.0 4                   | 2547.5                 | 6                    | 0.5 2            |                       |                    |            |
|   | 1316.6 10             | 0.6 3                   | 2762.5                 | 5                    | 0.4 2            |                       |                    |            |
|   | $E_{\gamma}$          | $I_{\gamma}^{\ddagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{f}$ | $J_f^{\pi}$           | Mult. <sup>†</sup> | α <b>#</b> |
|   | 67.57.4               | 9.7.10                  | 2233.32                | 67-                  | 2165.73          | $(6.7)^+$             | E1                 | 0.943      |
|   |                       | ,                       |                        | - ,,                 |                  | (0,))                 |                    |            |
|   |                       |                         |                        |                      |                  |                       |                    |            |
|   | 74.92 10              | 2.2 3                   | 1865.39                | (6)-                 | 1790.31          | (5 <sup>-</sup> )     | M1,E2              | 8.9 12     |
|   |                       |                         |                        |                      |                  |                       |                    |            |
|   | 02.0.5                | 051                     | 1050.00                | 7-                   | 10(5.20          | $\langle f \rangle =$ |                    | 4 177 77   |
|   | 93.2 5                | 0.5 1                   | 1958.89                | /                    | 1865.39          | (6)                   | [M1,E2]            | 4.1/11     |
|   | <sup>x</sup> 99.53 20 | 1.1 <i>1</i>            |                        |                      |                  |                       |                    |            |
|   | 102.38 <i>3</i>       | 61.5 30                 | 102.38                 | $2^{+}$              | 0                | $0^{+}$               | E2                 | 2.93       |

| α#      | Comments                                                                                                                                                                                                                                        |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.943   | $\alpha$ (K)=0.767 <i>11</i> ; $\alpha$ (L)=0.1379 <i>20</i> ; $\alpha$ (M)=0.0310 <i>5</i> ; $\alpha$ (N+)=0.00802 <i>12</i><br>$\alpha$ (N)=0.00708 <i>10</i> ; $\alpha$ (O)=0.000901 <i>13</i> ; $\alpha$ (P)=3.22×10 <sup>-5</sup> <i>5</i> |
|         | Mult.: from $\alpha(\exp)=0.70\ 26\ (\alpha(\exp))$ have been deduced from $\gamma\gamma$ coincidence measurement) (1974De09).                                                                                                                  |
| 8.9 12  | $\alpha$ (K)=4.0 25; $\alpha$ (L)=4 3; $\alpha$ (M)=0.9 7; $\alpha$ (N+)=0.23 18                                                                                                                                                                |
|         | $\alpha(N)=0.21$ 16; $\alpha(O)=0.024$ 17; $\alpha(P)=0.00024$ 16                                                                                                                                                                               |
|         | Mult.: from $\alpha(\exp)=9.4\ 20$ deduced from $\gamma\gamma$ -coincidence measurement (1974De09).                                                                                                                                             |
| 4.17 11 | $\alpha(K)=2.3 \ 12; \ \alpha(L)=1.4 \ 9; \ \alpha(M)=0.35 \ 23; \ \alpha(N+)=0.09 \ 6$                                                                                                                                                         |
|         | $\alpha$ (N)=0.08 6; $\alpha$ (O)=0.009 6; $\alpha$ (P)=0.00013 8                                                                                                                                                                               |
| 2.93    | $\alpha(K)=0.968$ 14; $\alpha(L)=1.501$ 22; $\alpha(M)=0.370$ 6; $\alpha(N+)=0.0941$ 14                                                                                                                                                         |
|         | $\alpha(N)=0.0844 \ 12; \ \alpha(O)=0.00970 \ 14; \ \alpha(P)=4.10\times10^{-5} \ 6$                                                                                                                                                            |
|         | Mult.: from $\alpha$ (K)exp=1.1 3, $\alpha$ (L)exp=1.4 3 and $\alpha$ (M+N)=0.51 9 (1974De09).                                                                                                                                                  |
|         | $\%$ I $\gamma$ =25.4 6 assuming recommended normalization.                                                                                                                                                                                     |

 $^{166}_{70}$ Yb<sub>96</sub>-3

|                                                                          |                                            |                        |                                                      | $^{166}L$          | u ɛ decay (2                                          | 2.65 min)                | <b>1974D</b> | e09,2007N      | 1c08 (continued)                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------|--------------------------------------------|------------------------|------------------------------------------------------|--------------------|-------------------------------------------------------|--------------------------|--------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                          |                                            |                        |                                                      |                    |                                                       | <u>γ(<sup>166</sup>Υ</u> | (conti       | nued)          |                                                                                                                                                                                                                                                                                                                                                                                           |
| Eγ                                                                       | $I_{\gamma}^{\ddagger}$                    | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                                   | $\mathbf{E}_{f}$   | ${ m J}_f^\pi$                                        | Mult. <sup>†</sup>       | δ            | α <sup>#</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                  |
| 139.0 <i>3</i><br><i>x</i> 160.0 <i>6</i>                                | 1.0 <i>3</i><br>0.6 <i>3</i>               | 1957.06                | (5,6)+                                               | 1818.01            | (4+,5,6+)                                             |                          |              |                |                                                                                                                                                                                                                                                                                                                                                                                           |
| 166.6 <sup>&amp;</sup><br><sup>x</sup> 191.8 3<br><sup>x</sup> 195 54 15 | 1.2 2                                      | 1957.06                | (5,6)+                                               | 1790.31            | (5 <sup>-</sup> )                                     |                          |              |                | from fig. 7 of 1974De09; absent from tabulated data.                                                                                                                                                                                                                                                                                                                                      |
| 208.65 10                                                                | 9.1 9                                      | 2165.73                | (6,7)+                                               | 1957.06            | (5,6)+                                                | M1+E2                    | 0.9 4        | 0.34 5         | $\alpha(K)=0.26~6$ ; $\alpha(L)=0.060~4$ ; $\alpha(M)=0.0138~11$ ; $\alpha(N+)=0.00365~24$                                                                                                                                                                                                                                                                                                |
| 212.4 3                                                                  | 2.8 3                                      | 1957.06                | (5,6)+                                               | 1744.6             | (3+,4+)                                               | (E2)                     |              | 0.220          | $\alpha$ (N)=0.00321 23; $\alpha$ (O)=0.000423 13; $\alpha$ (P)=1.5×10 <sup>-5</sup> 4<br>Mult.: from $\alpha$ (K)exp=0.27 5 (1974De09).<br>$\alpha$ (K)=0.1391 21; $\alpha$ (L)=0.0621 10; $\alpha$ (M)=0.01499 23;<br>$\alpha$ (N+)=0.00387 6                                                                                                                                           |
|                                                                          |                                            |                        |                                                      |                    |                                                       |                          |              |                | $\alpha$ (N)=0.00344 6; $\alpha$ (O)=0.000417 7; $\alpha$ (P)=6.59×10 <sup>-6</sup> 10<br>Mult.: from $\alpha$ (K)exp=0.28 18 (1974De09).( $\alpha$ (K)exp consistent<br>with M1 or E2 but $\Delta$ J=2 from decay scheme).                                                                                                                                                               |
| 219.4 <i>3</i><br>228.12 <i>3</i>                                        | 0.8 <i>1</i><br>188.5 <i>14</i>            | 1790.31<br>330.48      | (5 <sup>-</sup> )<br>4 <sup>+</sup>                  | 1570.55<br>102.38  | $(5)^{-}$<br>2 <sup>+</sup>                           | E2                       |              | 0.1743         | $\alpha(K)=0.1136\ 16;\ \alpha(L)=0.0466\ 7;\ \alpha(M)=0.01121\ 16;\ \alpha(N+)=0.00290\ 4$                                                                                                                                                                                                                                                                                              |
| 248.53 7                                                                 | 11.8 6                                     | 1865.39                | (6)-                                                 | 1616.85            | (4 <sup>-</sup> )                                     | (E2)                     |              | 0.1324         | $\alpha$ (N)=0.00258 4; $\alpha$ (O)=0.000314 5; $\alpha$ (P)=5.47×10 <sup>-6</sup> 8<br>Mult.: from $\alpha$ (K)exp=0.10 1, $\alpha$ (L)exp=0.045 4 (1974De09) and<br>A <sub>2</sub> =+0.104 20, A <sub>4</sub> =+0.005 26 for 228 $\gamma$ -102 $\gamma$ ( $\theta$ ) (2007Mc08).<br>$\alpha$ (K)=0.0891 13; $\alpha$ (L)=0.0333 5; $\alpha$ (M)=0.00797 12;<br>$\alpha$ (N+)=0.00206 3 |
| <sup>x</sup> 268 16 <i>16</i>                                            | 202                                        |                        |                                                      |                    |                                                       |                          |              |                | $\alpha$ (N)=0.00183 3; $\alpha$ (O)=0.000226 4; $\alpha$ (P)=4.38×10 <sup>-6</sup> 7<br>Mult.: from $\alpha$ (K)exp=0.14 6 (1974De09).                                                                                                                                                                                                                                                   |
| 272.2 <i>5</i><br>274.41 <i>4</i>                                        | 4.0 5<br>24.4 <i>15</i>                    | 1957.06<br>2233.32     | (5,6) <sup>+</sup><br>6 <sup>-</sup> ,7 <sup>-</sup> | 1684.82<br>1958.89 | (2 <sup>+</sup> ,3,4 <sup>+</sup> )<br>7 <sup>-</sup> | M1                       |              | 0.200          | $\alpha$ (K)=0.1678 24; $\alpha$ (L)=0.0252 4; $\alpha$ (M)=0.00564 8;<br>$\alpha$ (N+)=0.001523 22                                                                                                                                                                                                                                                                                       |
| 276.28 4                                                                 | 33.4 20                                    | 2233.32                | 6 <sup>-</sup> ,7 <sup>-</sup>                       | 1957.06            | (5,6)+                                                | (E1)                     |              | 0.0244         | $\alpha$ (N)=0.001324 <i>19</i> ; $\alpha$ (O)=0.000190 <i>3</i> ; $\alpha$ (P)=1.015×10 <sup>-5</sup> <i>15</i><br>Mult.: from $\alpha$ (K)exp=0.184 <i>26</i> (1974De09).<br>$\alpha$ (K)=0.0205 <i>3</i> ; $\alpha$ (L)=0.00304 <i>5</i> ; $\alpha$ (M)=0.000677 <i>10</i> ;<br>$\alpha$ (N+)=0.000180 <i>3</i>                                                                        |
|                                                                          |                                            |                        |                                                      |                    |                                                       |                          |              |                | $\alpha$ (N)=0.0001575 22; $\alpha$ (O)=2.18×10 <sup>-5</sup> 3; $\alpha$ (P)=1.031×10 <sup>-6</sup> 15<br>Mult.: from $\alpha$ (K)exp=0.058 20 (1974De09).                                                                                                                                                                                                                               |
| 288.87 <sup><sup>(@)</sup> 5</sup>                                       | 4.67 <sup>@</sup> 11                       | 1327.81                | $(5)^+$                                              | 1039.20            | (3)+                                                  | E2                       |              | 0.0829         | $\alpha(K)=0.0585 \ 9; \ \alpha(L)=0.0187 \ 3; \ \alpha(M)=0.00446 \ 7; \ \alpha(N+)=0.001159 \ 17$                                                                                                                                                                                                                                                                                       |
| 288.87 <sup>@</sup> 5<br>294.84 26<br>*319.37 15                         | 4.67 <sup>@</sup> 11<br>0.95 20<br>1.85 25 | 1616.85<br>1865.39     | (4 <sup>-</sup> )<br>(6) <sup>-</sup>                | 1327.81<br>1570.55 | $(5)^+$<br>$(5)^-$                                    |                          |              |                | $\alpha(1N)=0.001028 \ I3; \ \alpha(O)=0.0001286 \ I8; \ \alpha(P)=2.97\times10^{\circ} \ S$                                                                                                                                                                                                                                                                                              |
| 330.9 <sup>@</sup> 5                                                     | 1.1 <sup>@</sup> 2                         | 1812.62                | (8 <sup>+</sup> )                                    | 1482.39            | $(6)^{+}$                                             |                          |              |                |                                                                                                                                                                                                                                                                                                                                                                                           |

4

 $^{166}_{70} Yb_{96}$ -4

| <sup>166</sup> Lu ε decay (2.65 min |                    |                        |                                |                  |                        |                    | 1974De0     | 9,2007Mc08 (continued)                                                                                                                   |
|-------------------------------------|--------------------|------------------------|--------------------------------|------------------|------------------------|--------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                    |                        |                                |                  |                        | $\gamma(^{166})$   | Yb) (contin | ued)                                                                                                                                     |
| Eγ                                  | $I_{\gamma}$ ‡     | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$           | $\mathbf{E}_{f}$ | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>†</sup> | α <b>#</b>  | Comments                                                                                                                                 |
| 330.9 <sup>@</sup> 5                | 1.1 <sup>@</sup> 2 | 2016.34                | $(4^+, 5, 6^+)$                | 1684.82          | $(2^+,3,4^+)$          | <b>F</b> 2         | 0.0521      |                                                                                                                                          |
| 337.50 3                            | 100                | 667.95                 | 0                              | 330.48           | 4'                     | E2                 | 0.0521      | $\alpha(\mathbf{K})=0.0383\ 6;\ \alpha(\mathbf{L})=0.01066\ 13;\ \alpha(\mathbf{M})=0.00232\ 4;\ \alpha(\mathbf{N}+)=0.000657$<br>10     |
|                                     |                    |                        |                                |                  |                        |                    |             | $\alpha(N)=0.000581 \ 9; \ \alpha(O)=7.40\times10^{-5} \ 11; \ \alpha(P)=2.00\times10^{-6} \ 3$                                          |
| x353.96 20                          | 1.3 3              |                        |                                |                  |                        |                    |             | Mult from $a(L)exp=0.011.5 (1974De09).$                                                                                                  |
| 360.09 7                            | 8.8 7              | 1865.39                | (6) <sup>-</sup>               | 1505.38          | (5)-                   | M1                 | 0.0966      | $\alpha$ (K)=0.0811 <i>12</i> ; $\alpha$ (L)=0.01210 <i>17</i> ; $\alpha$ (M)=0.00270 <i>4</i> ; $\alpha$ (N+)=0.000730 <i>11</i>        |
|                                     |                    |                        |                                |                  |                        |                    |             | $\alpha$ (N)=0.000635 9; $\alpha$ (O)=9.09×10 <sup>-5</sup> 13; $\alpha$ (P)=4.89×10 <sup>-6</sup> 7                                     |
| 367 95 3                            | 76723              | 2233 32                | 6-7-                           | 1865 39          | $(6)^{-}$              | M1                 | 0.0913      | Mult.: from $\alpha(K)$ exp=0.103 25 (19/4De09).<br>$\alpha(K)$ =0.0766 11: $\alpha(L)$ =0.01142 16: $\alpha(M)$ =0.00255 4:             |
| 501.95 5                            | 10.1 25            | 2233.32                | 0,7                            | 1005.57          | (0)                    | 1011               | 0.0915      | $\alpha(N+)=0.000689 \ 10$                                                                                                               |
|                                     |                    |                        |                                |                  |                        |                    |             | $\alpha$ (N)=0.000599 9; $\alpha$ (O)=8.58×10 <sup>-5</sup> 12; $\alpha$ (P)=4.61×10 <sup>-6</sup> 7                                     |
| x377 4 4                            | 092                |                        |                                |                  |                        |                    |             | Mult.: from $\alpha(K)\exp=0.085 \ 8, \ \alpha(L)\exp=0.014 \ 3 \ (19/4De09).$                                                           |
| 382.97 4                            | 7.5 5              | 1865.39                | (6) <sup>-</sup>               | 1482.39          | $(6)^{+}$              | (E1)               | 0.01110     | $\alpha(K)=0.00936\ 14;\ \alpha(L)=0.001357\ 19;\ \alpha(M)=0.000302\ 5;$                                                                |
|                                     |                    |                        |                                |                  |                        |                    |             | $\alpha$ (N+)=8.06×10 <sup>-5</sup> 12                                                                                                   |
|                                     |                    |                        |                                |                  |                        |                    |             | $\alpha(N) = 7.03 \times 10^{-5} \ 10; \ \alpha(O) = 9.82 \times 10^{-6} \ 14; \ \alpha(P) = 4.84 \times 10^{-7} \ 7$                    |
| 386.7 6                             | 0.7 3              | 1957.06                | $(5,6)^+$                      | 1570.55          | (5)-                   |                    |             | Mun noin $u(\mathbf{K})\exp(-0.029/14/(19/4De09))$ .                                                                                     |
| 397.02 10                           | 3.6 1              | 1724.81                | $(6^+, 7^+)$                   | 1327.81          | $(5)^+$                |                    |             |                                                                                                                                          |
| 430.28 <i>3</i>                     | 12.2 7             | 1098.24                | 8+                             | 667.95           | 6+                     | E2                 | 0.0264      | $\alpha(K)=0.0203 \ 3; \ \alpha(L)=0.00470 \ 7; \ \alpha(M)=0.001096 \ 16; \ \alpha(N)=0.000288 \ 4$                                     |
|                                     |                    |                        |                                |                  |                        |                    |             | $\alpha(N)=0.00025844; \alpha(O)=3.32\times10^{-5}5; \alpha(P)=1.098\times10^{-6}16$                                                     |
| 442.87 20                           | 1.3 3              | 2233.32                | 6 <sup>-</sup> ,7 <sup>-</sup> | 1790.31          | (5 <sup>-</sup> )      |                    |             |                                                                                                                                          |
| 445.8 4                             | 0.53 21            | 2016.34                | $(4^+, 5, 6^+)$                | 1570.55          | $(5)^{-}$              |                    |             |                                                                                                                                          |
| 453.86 8<br><sup>x</sup> 467 6 5    | 3.85 25<br>0.9.3   | 1616.85                | (4)                            | 1162.87          | (4)                    |                    |             |                                                                                                                                          |
| 474.74 6                            | 6.7 4              | 1957.06                | $(5,6)^+$                      | 1482.39          | $(6)^{+}$              |                    |             |                                                                                                                                          |
| <sup>x</sup> 487.2 3                | 1.5 4              |                        |                                |                  | ( <b>m</b> )           |                    |             |                                                                                                                                          |
| 490.4 5                             | 1.1 3              | 1818.01                | $(4^+, 5, 6^+)$                | 1327.81          | $(5)^+$                |                    |             |                                                                                                                                          |
| x523.9 5                            | 1.24 12            | 1102.07                | (4)                            | 007.95           | 0                      |                    |             |                                                                                                                                          |
| 534.2 <sup>&amp;</sup> 6            | 1.3 4              | 2016.34                | $(4^+, 5, 6^+)$                | 1482.39          | $(6)^{+}$              |                    |             | $E\gamma$ , $I\gamma$ from table 1a of 1974De09, assignment to 2.65 min decay from fig. 7 of 1974De09                                    |
| 537.64 4                            | 20.0 8             | 1865.39                | (6) <sup>-</sup>               | 1327.81          | (5) <sup>+</sup>       | (E1)               | 0.00518     | $\alpha(K)=0.00438\ 7;\ \alpha(L)=0.000622\ 9;\ \alpha(M)=0.0001379\ 20;$<br>$\alpha(N+)=3.70\times10^{-5}\ 6$                           |
|                                     |                    |                        |                                |                  |                        |                    |             | $\alpha(N)=3.22\times10^{-5} 5; \alpha(O)=4.53\times10^{-6} 7; \alpha(P)=2.31\times10^{-7} 4$                                            |
|                                     |                    |                        |                                |                  |                        |                    |             | Mult.: from $\alpha$ (K)exp=0.016 8 (1974De09).                                                                                          |
| 577.70 5                            | 9.9 6              | 1616.85                | (4 <sup>-</sup> )              | 1039.20          | $(3)^{+}$              | [E1]               | 0.00444     | $\alpha(K)=0.00376\ 6;\ \alpha(L)=0.000531\ 8;\ \alpha(M)=0.0001177\ 17;$                                                                |
|                                     |                    |                        |                                |                  |                        |                    |             | $\alpha(N+)=3.10\times10^{-5}$<br>$\alpha(N)=2.75\times10^{-5}$ 4: $\alpha(\Omega)=3.88\times10^{-6}$ 6: $\alpha(P)=1.99\times10^{-7}$ 3 |
|                                     |                    |                        |                                |                  |                        |                    |             | $u_{(1)} = 1.0010 $ , $u_{(0)} = 5.00010 $ , $u_{(1)} = 1.00010 $                                                                        |

S

|                                                    | <sup>166</sup> Lu ε decay (2.65 min) <b>1974De09,2007Mc08</b> (continued) |                    |                                       |                    |                                    |                    |                                 |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|----------------------------------------------------|---------------------------------------------------------------------------|--------------------|---------------------------------------|--------------------|------------------------------------|--------------------|---------------------------------|------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                    |                                                                           |                    |                                       |                    |                                    |                    | $\gamma(^{166}\text{Yb})$ (cont | inued)     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Eγ                                                 | $I_{\gamma}^{\ddagger}$                                                   | $E_i$ (level)      | $\mathbf{J}_i^{\pi}$                  | $E_f$              | $J_f^{\pi}$                        | Mult. <sup>†</sup> | δ                               | α <b>#</b> | $I_{(\gamma+ce)}$ ‡ | Comments                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 625.3 <sup>&amp;</sup><br>629.32 7                 | 5 1.0 <i>3</i><br>17.1 <i>10</i>                                          | 1724.81<br>1957.06 | $ {(6^+,7^+)} \\ (5,6)^+ $            | 1098.24<br>1327.81 | 8 <sup>+</sup><br>(5) <sup>+</sup> | M1                 |                                 | 0.0227     |                     | $\alpha(K)=0.0191 \ 3; \ \alpha(L)=0.00280 \ 4; \ \alpha(M)=0.000624 \ 9; \\ \alpha(N+)=0.0001688 \ 24 \\ \alpha(N)=0.0001466 \ 21; \ \alpha(O)=2.10\times10^{-5} \ 3; \\ \alpha(P)=1.140\times10^{-6} \ 16 \\ Mult.: \ from \ \alpha(K)exp=0.016 \ 6 \ (1974De09).$                                                                                                                                               |  |  |
| x648.1 6<br>659.93 5                               | 1.0 <i>3</i><br>9.0 <i>6</i>                                              | 1327.81            | (5)+                                  | 667.95             | 6+                                 | (E2)               |                                 | 0.00911    |                     | $\alpha(K)=0.00738 \ 11; \ \alpha(L)=0.001343 \ 19;$<br>$\alpha(M)=0.000307 \ 5; \ \alpha(N+)=8.15\times10^{-5} \ 12$<br>$\alpha(N)=7.14\times10^{-5} \ 10; \ \alpha(O)=9.72\times10^{-6} \ 14;$<br>$\alpha(P)=4 \ 12\times10^{-7} \ 6$                                                                                                                                                                            |  |  |
| (705.08)                                           |                                                                           | 1744.6             | (3+,4+)                               | 1039.20            | (3)+                               |                    |                                 |            | ≈1.0                | $E_{\gamma}, I_{(\gamma+ce)}$ : from Adopted Gammas. $I(\gamma+ce)$ based<br>on adopted branching and $I(\gamma+ce)$ feeding level,<br>assuming No $s+\beta^+$ branch to level                                                                                                                                                                                                                                     |  |  |
| 708.82 7                                           | 2.8 3                                                                     | 1039.20            | (3)+                                  | 330.48             | 4+                                 | (E2)               |                                 | 0.00774    |                     | $\alpha(K)=0.00631 \ 9; \ \alpha(L)=0.001113 \ 16; \ \alpha(M)=0.000253 4; \ \alpha(N+)=6.75\times10^{-5} \ 10 \alpha(N)=5.91\times10^{-5} \ 9; \ \alpha(O)=8.08\times10^{-6} \ 12; \alpha(P)=3 \ 53\times10^{-7} \ 5$                                                                                                                                                                                             |  |  |
| 714.39 <i>1</i><br>735.2 6<br><sup>x</sup> 760.9 6 | 5 1.50 <i>15</i><br>0.9 <i>3</i><br>0.6 <i>3</i>                          | 1812.62<br>1833.2  | (8 <sup>+</sup> )<br>(7) <sup>-</sup> | 1098.24<br>1098.24 | 8+<br>8+                           |                    |                                 |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 794.11 5<br>(811.92)                               | 7.3 5                                                                     | 1957.06<br>1744.6  | $(5,6)^+$<br>$(3^+,4^+)$              | 1162.87<br>932.38? | (4)+                               |                    |                                 |            | ≈2.4                | $E_{\gamma}, I_{(\gamma+ce)}$ : from Adopted Gammas. $I(\gamma+ce)$ based<br>on adopted branching and $I(\gamma+ce)$ feeding level,                                                                                                                                                                                                                                                                                |  |  |
| 814.46 5                                           | 16.5 9                                                                    | 1482.39            | (6)+                                  | 667.95             | 6+                                 | M1                 |                                 | 0.01189    |                     | assuming No $\varepsilon + \beta^+$ branch to level.<br>$\alpha(K)=0.01002 \ 14; \ \alpha(L)=0.001454 \ 21;$<br>$\alpha(M)=0.000324 \ 5; \ \alpha(N+)=8.76\times10^{-5} \ 13$<br>$\alpha(N)=7.61\times10^{-5} \ 11; \ \alpha(O)=1.093\times10^{-5} \ 16;$                                                                                                                                                          |  |  |
| 832.20 8                                           | 8 14.7 <i>11</i>                                                          | 1162.87            | (4) <sup>+</sup>                      | 330.48             | 4+                                 | M1+E2              | +0.6 2                          | 0.0097 8   |                     | $\alpha(\mathbf{r}) = 5.94 \times 10^{-7} \text{ g}$<br>$\alpha(\mathbf{K}) = 0.0082 \ 7; \ \alpha(\mathbf{L}) = 0.00121 \ 9; \ \alpha(\mathbf{M}) = 0.000270 \ 18;$<br>$\alpha(\mathbf{N}+) = 7.3 \times 10^{-5} \ 5$<br>$\alpha(\mathbf{N}) = 6.3 \times 10^{-5} \ 5; \ \alpha(\mathbf{O}) = 9.1 \times 10^{-6} \ 7; \ \alpha(\mathbf{P}) = 4.8 \times 10^{-7} \ 4$                                              |  |  |
| 837.57 8                                           | 6.7 4                                                                     | 1505.38            | (5)-                                  | 667.95             | 6+                                 | E1+M2              | 0.31 +3-4                       | 0.0044 6   |                     | δ: from A <sub>2</sub> =+0.019 15, A <sub>4</sub> =+0.075 25 for<br>832γ-228γ(θ) (2007Mc08). (evaluator's analysis<br>gives δ=+0.50 +8−7 or −2.6 +5−7; second solution is<br>rejected because α(K)exp from (α,xnγ) implies<br>pure M1).<br>α(K)=0.0037 5; α(L)=0.00056 8; α(M)=0.000126 17;<br>α(N+)=3.4×10 <sup>-5</sup> 5<br>α(N)=3.0×10 <sup>-5</sup> 4; α(O)=4.2×10 <sup>-6</sup> 6; α(P)=2.2×10 <sup>-7</sup> |  |  |

6

From ENSDF

 $^{166}_{70}{
m Yb}_{96}{
m -6}$ 

 $^{166}_{70}{
m Yb}_{96}$ -6

|                                                                                                                                      |                                                                                                                    |                                                                                     |                                                                                                  | $^{166}$ Lu $arepsilon$                                                                                                                                          | decay (2.65 n      | nin) 1974De                  | 09,2007Mc08           | (continued)                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                      |                                                                                                                    |                                                                                     |                                                                                                  |                                                                                                                                                                  | ŝ                  | γ( <sup>166</sup> Yb) (conti | nued)                 |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $E_{\gamma}$                                                                                                                         | $I_{\gamma}^{\ddagger}$                                                                                            | E <sub>i</sub> (level)                                                              | $\mathbf{J}_i^\pi$                                                                               | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$                                                                                                                              | Mult. <sup>†</sup> | δ                            | α <b>#</b>            | Comments                                                                                                                                                                                                                                                                                                                                                                                                             |
| 860.56 11                                                                                                                            | 8.0 5                                                                                                              | 1958.89                                                                             | 7-                                                                                               | 1098.24 8+                                                                                                                                                       | E1(+M2)            |                              | 0.014 13              | $\begin{aligned} &\alpha(\text{K}) = 0.012 \ 11; \ \alpha(\text{L}) = 0.0019 \ 17; \ \alpha(\text{M}) = 0.0004 \ 4; \\ &\alpha(\text{N}+) = 0.00012 \ 11 \\ &\alpha(\text{N}) = 0.00010 \ 9; \ \alpha(\text{O}) = 1.4 \times 10^{-5} \ 13; \ \alpha(\text{P}) = 8.\text{E}{-7} \ 7 \end{aligned}$                                                                                                                    |
| 901.5 6<br>936.79 7                                                                                                                  | 1.0 <i>4</i><br>14.0 <i>6</i>                                                                                      | 1570.55<br>1039.20                                                                  | $(5)^{-}$<br>$(3)^{+}$                                                                           | 667.95 6 <sup>+</sup><br>102.38 2 <sup>+</sup>                                                                                                                   | E2                 |                              | 0.00424               | $\begin{aligned} &\alpha(\mathrm{K}) = 0.00352 \ 5; \ \alpha(\mathrm{L}) = 0.000564 \ 8; \ \alpha(\mathrm{M}) = 0.0001271 \\ &I8 \ \alpha(\mathrm{N}+) = 3.40 \times 10^{-5} \ 5 \\ &\alpha(\mathrm{N}) = 2.97 \times 10^{-5} \ 5; \ \alpha(\mathrm{O}) = 4.14 \times 10^{-6} \ 6; \\ &\alpha(\mathrm{P}) = 1.98 \times 10^{-7} \ 3 \end{aligned}$                                                                   |
| ×1021.2.5                                                                                                                            | 0.8 <i>3</i><br>43.9 <i>18</i>                                                                                     | 1327.81                                                                             | (5)+                                                                                             | 330.48 4+                                                                                                                                                        | M1+E2              | -10 +3-13                    | 0.00376 7             | α(K)=0.00313 6; α(L)=0.000493 8; α(M)=0.0001108<br>$ I8; α(N+)=2.97\times10^{-5} 5 $<br>$ α(N)=2.59\times10^{-5} 5; α(O)=3.62\times10^{-6} 6; $<br>$ α(P)=1.76\times10^{-7} 3 $<br>Mult.: from Adopted Gammas. consistent with<br>$ α(K)\exp=0.006 4 (1974De09). $<br>δ: from Adopted Gammas. $δ=-0.2 I$ or $-10 + 3 - 13from authors' analysis of A_2=-0.21 2, A_4=-0.03 I for997\gamma-228γ(θ) (2007Mc08).$        |
| 1021.2 3<br>1056.3 6<br>1060.28 11<br>1067.34 20<br>1122.38 8<br>1144.5 5<br>1151.1 @ 4<br>1151.1 @ 4<br>1165.2 6                    | $\begin{array}{c} 1.35 \ 26\\ 5.1 \ 11\\ 3.2 \ 2\\ 6.2 \ 8\\ 9.9 \ 5\\ 1.2 \ 3\\ 1.1^{@} \ 3\\ 1.0 \ 4\end{array}$ | 1724.81<br>1162.87<br>2165.73<br>1790.31<br>1812.62<br>1482.39<br>1818.01<br>1833.2 | $(6^+,7^+)$<br>$(4)^+$<br>$(6,7)^+$<br>$(5^-)$<br>$(8^+)$<br>$(6)^+$<br>$(4^+,5,6^+)$<br>$(7)^-$ | 667.95       6+         102.38       2+         1098.24       8+         667.95       6+         330.48       4+         667.95       6+         667.95       6+ | E1                 |                              | 1.14×10 <sup>-3</sup> | $\alpha(K)=0.000965 \ 14; \ \alpha(L)=0.0001315 \ 19; \\ \alpha(M)=2.90\times10^{-5} \ 4; \ \alpha(N+)=1.82\times10^{-5} \ 3 \\ \alpha(N)=6.79\times10^{-6} \ 10; \ \alpha(O)=9.70\times10^{-7} \ 14; \\ \alpha(P)=5.22\times10^{-8} \ 8; \ \alpha(PF)=1.038\times10^{-5} \ 21$                                                                                                                                      |
| 1174.80 <i>13</i><br><sup>x</sup> 1185.2 <i>6</i><br><sup>x</sup> 1186.9 <i>6</i><br>1197.2 <i>3</i><br><sup>x</sup> 1201 5 <i>4</i> | 10.8 <i>10</i><br>2.0 6<br>1.0 4<br>1.4 2<br>1.0 2                                                                 | 1505.38<br>1865.39                                                                  | (5) <sup>-</sup><br>(6) <sup>-</sup>                                                             | 330.48 4 <sup>+</sup><br>667.95 6 <sup>+</sup>                                                                                                                   |                    |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| x1201.5 4<br>x1234.2 3<br>1240.05 25<br>x1261.7 6                                                                                    | 2.1 <i>4</i><br>3.3 <i>4</i><br>0.8 <i>4</i>                                                                       | 1570.55                                                                             | (5) <sup>-</sup>                                                                                 | 330.48 4+                                                                                                                                                        |                    |                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1290.71 20                                                                                                                           | 23.9 17                                                                                                            | 1958.89                                                                             | 7-                                                                                               | 667.95 6+                                                                                                                                                        | E1                 |                              | 1.01×10 <sup>-3</sup> | $\begin{aligned} &\alpha(\mathrm{K}) = 0.000806 \ 12; \ \alpha(\mathrm{L}) = 0.0001093 \ 16; \\ &\alpha(\mathrm{M}) = 2.41 \times 10^{-5} \ 4; \ \alpha(\mathrm{N}+) = 6.70 \times 10^{-5} \ 10 \\ &\alpha(\mathrm{N}) = 5.65 \times 10^{-6} \ 8; \ \alpha(\mathrm{O}) = 8.07 \times 10^{-7} \ 12; \\ &\alpha(\mathrm{P}) = 4.36 \times 10^{-8} \ 7; \ \alpha(\mathrm{IPF}) = 6.05 \times 10^{-5} \ 9 \end{aligned}$ |

 $\neg$ 

From ENSDF

|                                                |                                |                        |                                | 1                | <sup>66</sup> Lu a                       | e decay (2.65 m                                                 | in) <mark>19</mark> 7          | ) 1974De09,2007Mc08 (continued) |                            |                  |                        |  |  |  |  |
|------------------------------------------------|--------------------------------|------------------------|--------------------------------|------------------|------------------------------------------|-----------------------------------------------------------------|--------------------------------|---------------------------------|----------------------------|------------------|------------------------|--|--|--|--|
|                                                |                                |                        |                                |                  | $\gamma$ <sup>(166</sup> Yb) (continued) |                                                                 |                                |                                 |                            |                  |                        |  |  |  |  |
| Eγ                                             | $I_{\gamma}^{\ddagger}$        | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$           | $\mathbf{E}_{f}$ | $\mathbf{J}_{f}^{\pi}$                   | Eγ                                                              | $I_{\gamma}^{\ddagger}$        | E <sub>i</sub> (level)          | $\mathbf{J}_i^{\pi}$       | $E_f$            | $\mathbf{J}_{f}^{\pi}$ |  |  |  |  |
| <sup>x</sup> 1301.9 4<br><sup>x</sup> 1306.0 5 | 1.6 <i>3</i><br>1.2 <i>3</i>   |                        |                                |                  |                                          | 1497.33 <i>23</i><br>x1505.1 <i>4</i>                           | 1.8 <i>4</i><br>1.8 <i>4</i>   | 2165.73                         | (6,7)+                     | 667.95           | 6+                     |  |  |  |  |
| <sup>x</sup> 1310.8 7<br><sup>x</sup> 1349.4 6 | 1.3 2<br>0.8 4                 |                        |                                |                  |                                          | 1582.2 <i>6</i><br>1626.63 <i>25</i>                            | 0.6 <i>3</i><br>2.3 <i>4</i>   | 1684.82<br>1957.06              | $(2^+,3,4^+)$<br>$(5,6)^+$ | 102.38<br>330.48 | $2^+$<br>$4^+$         |  |  |  |  |
| 1354.35 <i>15</i><br><sup>x</sup> 1398.0 9     | 4.2 9<br>1.8 5                 | 1684.82                | (2+,3,4+)                      | 330.48           | 8 4+                                     | <sup>x</sup> 1640.3 6<br><sup>x</sup> 1645.4 6                  | 0.9 <i>3</i><br>0.7 <i>3</i>   |                                 |                            |                  |                        |  |  |  |  |
| 1459.63 <i>10</i><br>1487.3 <i>4</i>           | 19.2 <i>10</i><br>2.6 <i>5</i> | 1790.31<br>1818.01     | $(5^{-})$<br>$(4^{+},5,6^{+})$ | 330.48<br>330.48 | 8 4 <sup>+</sup><br>8 4 <sup>+</sup>     | $ \begin{array}{c} 1685.85 \ 25 \\ ^{x}1720.3 \ 6 \end{array} $ | 1.20 <i>20</i><br>0.6 <i>3</i> | 2016.34                         | (4+,5,6+)                  | 330.48           | 4+                     |  |  |  |  |

<sup>†</sup> From Adopted Gammas, unless otherwise noted.
<sup>‡</sup> For absolute intensity per 100 decays, multiply by 0.414 23.
<sup>#</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. <sup>(a)</sup> Multiply placed with undivided intensity. <sup>(b)</sup> Placement of transition in the level scheme is uncertain. <sup>x</sup>  $\gamma$  ray not placed in level scheme.

### <sup>166</sup>Lu ε decay (2.65 min) 1974De09,2007Mc08



# <sup>166</sup>Lu ε decay (2.65 min) 1974De09,2007Mc08

