¹⁶⁶Lu ε decay (1.41 min) 1974De09

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 109, 1103 (2008)	1-Mar-2008

Parent: ¹⁶⁶Lu: E=34.37 22; $J^{\pi}=3^{(-)}$; $T_{1/2}=1.41 \text{ min } 10$; $Q(\varepsilon)=5570 \ 30$; $\%\varepsilon+\%\beta^+$ decay=58 5

166Yb Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0 102.38 <i>3</i> 330.50 <i>4</i> 932.37 <i>5</i>	0^+ 2^+ 4^+ $(2)^+$	1039.16 5 1162.84 8 1315.32 <i>15</i> 1386.02 <i>11</i>	$(3)^+ (4)^+ (2^+,3,4^+)$	1451.40 20 1503.37 7 1607.93 10 1684.84 15	$(2^{-}) (2^{+},3,4^{+}) (2^{+},3,4^{+})$	1744.25 7 2029.29 7	$(3^+,4^+)$ $(3^-,4^-)$

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

ε, β^+ radiations

I ε , log *ft* The total intensity of γ rays not placed in the decay scheme is 7%; consequently, I ε and log *ft* values are shown for only the strongest branches, and the values for the 2029 level alone can Be considered to Be reliable.

E(decay)	E(level)	$I\beta^+$	Ιε†	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
$(3.58 \times 10^3 \ 3)$	2029.29	7.6 17	15 3	4.99 10	23 5	av Eβ=1154 14; εK=0.556 7; εL=0.0871 11; εM+=0.0262 4
$(3.86 \times 10^3 \ 3)$	1744.25	1.2 4	1.7 7	6.01 17	2.9 11	av E β =1283 14; ε K=0.495 7; ε L=0.0773 10; ε M+=0.0232 3
$(4.15 \times 10^3 \ddagger 3)$	1451.40	0.86 24	0.9 3	6.33 13	1.8 5	av E β =1417 14; ε K=0.435 6; ε L=0.0679 10; ε M+=0.0204 3
$(4.29 \times 10^3 \ 3)$	1315.32	1.8 5	1.8 4	6.09 12	3.6 9	av E β =1479 14; ε K=0.409 6; ε L=0.0637 9; ε M+=0.0192 3
$(4.57 \times 10^3 \ 3)$	1039.16	1.3 6	1.0 5	6.39 21	2.3 11	av $E\beta$ =1606 14; ε K=0.360 5; ε L=0.0560 8; ε M+=0.01683 24
$(4.67 \times 10^3 \ 3)$	932.37	3.1 9	2.2 6	6.07 13	5.3 15	av $E\beta$ =1656 <i>14</i> ; ε K=0.342 <i>5</i> ; ε L=0.0532 <i>8</i> ; ε M+=0.01599 <i>23</i>

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

 $\gamma(^{166}\text{Yb})$

I γ normalization: The basis of the intensity normalization is that no $\varepsilon + \beta^+$ feeding to the ground state of ¹⁶⁶Yb is expected ($\Delta J=3$), so Σ (I(γ +ce) to g.s.) =100.

Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α #	Comments
102.38 3	114 27	102.38	2+	0.0	0+	E2	2.93	$\alpha(K)=0.968 \ 14; \ \alpha(L)=1.501 \ 22; \ \alpha(M)=0.370 \ 6; \ \alpha(N+)=0.0941 \ 14 \ \alpha(N)=0.0844 \ 12; \ \alpha(O)=0.00970 \ 14; \ \alpha(P)=4.10\times10^{-5} \ 6$
152.49 13	13 <i>1</i>	1315.32		1162.84	$(4)^{+}$			

Continued on next page (footnotes at end of table)

			¹⁶⁶ Lu	ιε decay ((1.41 min)	1974De0	9 (continu	ied)	
$\gamma(^{166}$ Yb) (continued)									
Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [†]	δ^{\dagger}	α #	Comments
228.13 3	138 40	330.50	4+	102.38	2+	E2		0.1742	$ \begin{array}{c} \alpha(K)=0.1135 \ I6; \\ \alpha(L)=0.0466 \ 7; \\ \alpha(M)=0.01121 \ I6; \\ \alpha(N+)=0.00290 \ 4 \\ \alpha(N)=0.00258 \ 4; \\ \alpha(O)=0.000314 \ 5; \\ \alpha(P)=5 \ 47 \times 10^{-6} \ 8 \\ \end{array} $
285.07 <i>5</i>	100 5	2029.29	(3 ⁻ ,4 ⁻)	1744.25	(3+,4+)	E1		0.0226	$\alpha(K) = 0.0190 3;$ $\alpha(L) = 0.00281 4;$ $\alpha(M) = 0.000625 9;$ $\alpha(N+) = 0.0001665 24$ $\alpha(N) = 0.0001455 21;$ $\alpha(O) = 2.01 \times 10^{-5} 3;$ $\alpha(P) = 9.57 \times 10^{-7} 14$ Mult.: from $\alpha(K) \exp = 0.026$ 20 (1974 De09).
$345.0^{\textcircled{0}} & 6$ $345.0^{\textcircled{0}} & 6$	4 [@] 1 4 [@] 1	1386.02 2029.29	(2 ⁺ ,3,4 ⁺) (3 ⁻ ,4 ⁻)	1039.16 1684.84	(3) ⁺ (2 ⁺ ,3,4 ⁺)				
407.00 412.20 20 421.26 9 464.29 7 *470 4 5	4 2 11 <i>1</i> 19 <i>1</i> 7 2 5 2	1451.40 2029.29 1503.37	(3 ⁻ ,4 ⁻) (2 ⁻)	1039.16 1607.93 1039.16	$(3)^+$ $(2^+,3,4^+)$ $(3)^+$				
526.01 <i>10</i> 568.5 <i>6</i> 570.93 <i>9</i> ^x 581.0 <i>6</i> ^x 625 3 <i>6</i>	27 3 7 3 29 3 11 3 6 2	2029.29 1607.93 1503.37	$(3^{-},4^{-})$ $(2^{+},3,4^{+})$ (2^{-})	1503.37 1039.16 932.37	(2^{-}) $(3)^{+}$ $(2)^{+}$				
643.20 <i>10</i> ^x 680.9 <i>4</i> ^x 701.9 <i>3</i>	$\begin{array}{c} 32 \ 3 \\ 6 \ 2 \\ 9 \ 1 \end{array}$	2029.29	(3 ⁻ ,4 ⁻)	1386.02	(2+,3,4+)				
705.08 <i>11</i> 708.82 <i>13</i>	40 <i>4</i> 13 <i>4</i>	1744.25 1039.16	(3 ⁺ ,4 ⁺) (3) ⁺	1039.16 330.50	(3) ⁺ 4 ⁺	(E2)		0.00774	$\alpha(K)=0.00631 9; \alpha(L)=0.001113 16; \alpha(M)=0.000253 4; \alpha(N+)=6.75 \times 10^{-5} 10 \alpha(N)=5.91 \times 10^{-5} 9; \alpha(O)=8.08 \times 10^{-6} 12; \alpha(P)=3 53 \times 10^{-7} 5$
^x 747.1 5 811.92 6 830.06 9	4 1 89 5 93 5	1744.25 932.37	(3 ⁺ ,4 ⁺) (2) ⁺	932.37 102.38	(2) ⁺ 2 ⁺	M1		0.01134	$\alpha(\mathbf{K}) = 0.00956 \ 14;$ $\alpha(\mathbf{L}) = 0.001387 \ 20;$ $\alpha(\mathbf{M}) = 0.000309 \ 5;$ $\alpha(\mathbf{N}+) = 8.35 \times 10^{-5} \ 12$
832.49 10	24 8	1162.84	(4)+	330.50	4+	M1+E2	+0.6 2	0.0097 8	$\alpha(N)=7.25\times10^{-17} I,$ $\alpha(O)=1.042\times10^{-5} I5;$ $\alpha(P)=5.67\times10^{-7} 8$ $\alpha(K)=0.0082 7;$ $\alpha(L)=0.00121 9;$ $\alpha(M)=0.000270 I8;$ $\alpha(N+)=7.3\times10^{-5} 5$

			,	¹⁶⁶ Lu ε decay (1.41 min)			1974De09	(continued)
γ ⁽¹⁶⁶ Yb) (continued)								
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α [#]	Comments
								$\alpha(N)=6.3\times10^{-5} 5; \alpha(O)=9.0\times10^{-6} 7;$ $\alpha(P)=4.8\times10^{-7} 4$
866.4 4	11 2	2029.29	$(3^{-}, 4^{-})$	1162.84	$(4)^{+}$			
932.35 7	73 5	932.37	$(2)^{+}$	0.0	0^{+}			
936.79 5	75 5	1039.16	(3)+	102.38	2+	E2	0.00424	$\alpha(K)=0.00352\ 5;\ \alpha(L)=0.000564\ 8;$ $\alpha(M)=0.0001271\ 18;\ \alpha(N+)=3.40\times10^{-5}\ 5$ $\alpha(N)=2.97\times10^{-5}\ 5;\ \alpha(O)=4.14\times10^{-6}\ 6;$
								$\alpha(P) = 1.98 \times 10^{-7} 3$
984.6 <i>6</i>	20 4	1315.32		330.50	4+			
^x 1023.8 6	63							
1054.7 6	84	1386.02	$(2^+, 3, 4^+)$	330.50	4+			
1060.28 11	52	1162.84	$(4)^+$	102.38	2^{+}			
1276.92 22	11 <i>3</i>	1607.93	$(2^+,3,4^+)$	330.50	4^{+}			
1283.45 <i>21</i>	35 7	1386.02	$(2^+, 3, 4^+)$	102.38	2^{+}			
1349.4 6	52	1451.40		102.38	2^{+}			
1354.35 15	99	1684.84	$(2^+, 3, 4^+)$	330.50	4^{+}			
1504.9 6	11 <i>3</i>	1607.93	$(2^+, 3, 4^+)$	102.38	2^{+}			
1582.2 6	22	1684.84	$(2^+, 3, 4^+)$	102.38	2^{+}			
1698.7 <i>4</i>	12 <i>3</i>	2029.29	(3-,4-)	330.50	4+			
^x 1801.3 6	9 <i>3</i>							
^x 1974.0 6	63							

[†] From Adopted Gammas.

[±] For absolute intensity per 100 decays, multiply by 0.110 23.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed with undivided intensity.

[&] Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

¹⁶⁶Lu ε decay (1.41 min) 1974De09

