¹⁶⁸Yb(p,t) **1973Oo01**

History					
Type	Author	Citation	Literature Cutoff Date		
Full Evaluation	Coral M. Baglin	NDS 109, 1103 (2008)	1-Mar-2008		

1973Oo01: E=19 MeV; 18.25% 168 Yb target; magnetic spectrometer with nuclear emulsions and position sensitive detectors In focal plane (FWHM=10-12 keV); measured $Q(\beta^-)$ value, $d\sigma/d\Omega(E(t),\theta)$.(4 angles).

¹⁶⁶Yb Levels

E(level) [†]	$J^{\pi \ddagger}$	L	$\Sigma \sigma$ (c.m.) μ b/sr [#]
0@	0+	0	647 22
101 [@] <i>10</i>	2+		267 16
329 [@] 10	4+		55 8
931 10	(2^{+})		58 8
1043 <mark>&</mark> <i>10</i>	(0^+)	(0)	76 11
1581 <i>10</i>			30 16

 $^{^{\}dagger}$ A search At 27.5° (near the L=0 maximum) revealed No additional states stronger than 10% of the g.s. between 2200 and 3300 keV.

 $^{^{\}ddagger}$ Authors' assignments are based on comparison of the (p,t) angular distributions with those for levels with previously known J^{π} .

[#] Center of mass cross section summed over θ =12.5°, 27.5°, 42.5°, 55° (In μ b/sr).

[@] Band(A): $K^{\pi}=0^+$ g.s. band.

[&]amp; Band(B): $K=0^+$ β -vibrational band.

¹⁶⁸Yb(p,t) 1973Oo01

Band(B): K= 0^+ β -vibrational band

(0+) 1043

Band(A): $K^{\pi}=0^{+}$ g.s. band

4+ 329

2+ 101

 0^{+} 0

 $^{166}_{\,70}\mathrm{Yb}_{96}$