¹⁰⁶Pd(⁶³Cu,p2nγ) 1992Si12

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 109, 1103 (2008)	1-Mar-2008				

¹⁶⁶W Levels

1992Si12 (supersedes 1990HaZP): $E(^{63}Cu)=285$, 290 MeV; self-supporting foil targets. POLYTESSA array (20 Ge detectors with BGO suppression shields), $\theta=101^{\circ}$, 117° , 143° , recoil separator; measured $E\gamma$, $I\gamma$, $\gamma\gamma$ coin, recoil- γ coin, DCO ratios $(I\gamma(40^{\circ},40^{\circ})/I\gamma(40^{\circ},79^{\circ}))$ and, from recoil-gated spectrum, $I\gamma(40^{\circ})/I\gamma(79^{\circ}))$. TESSA3 array (16 Ge detectors with 50-element inner ball of BGO detectors), $\theta=30^{\circ}$, 60° , 90° , 120° , 150° ; measured $E\gamma$, $I\gamma$, $\gamma\gamma$ coin, feeding transition DCO ratios $I\gamma(30^{\circ},30^{\circ})/I\gamma(30^{\circ},90^{\circ})$. cranked shell model calculations.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0#	0^{+}	2573.0 ^{&} 19	10-	4389 [#] 3	18+	7168? [@] 4	(25 ⁻)
252.0 [#] 10	2^{+}	2743.5 [@] 21	11-	4870 ^{&} 3	18^{-}	7314 [#] 4	26^{+}
675.9 [#] 15	4+	2946.4 <mark>&</mark> 22	12-	5028 [#] 3	20^{+}	7519? <mark>&</mark> 4	(26 ⁻)
1225.9 [#] 17	6+	3030.6 [#] 23	12^{+}	5112 [@] 3	19-	7915? [@] 4	(27 ⁻)
1587.0 [@] 17	5-	3174.1 [@] 23	13-	5579 ^{&} 3	20^{-}	8186 [#] 4	28^{+}
1864.6 [#] 18	8^{+}	3356.1 [#] 25	14^{+}	5729 [#] 4	22^{+}	8290? ^{&} 4	(28 ⁻)
1928.1 [@] 17	7^{-}	3474.1 ^{&} 24	14^{-}	5851 [@] 3	21^{-}	8723? [@] 4	(29 ⁻)
2019.9 <mark>&</mark> 18	6-	3720.3 [@] 25	15-	6169 ^{&} 3	22-	9108 [#] 4	30^{+}
2337.3 [@] 18	9-	3821 [#] 3	16^{+}	6494 [@] 4	(23 ⁻)	10077? [#] 4	(32 ⁺)
2349.2 ^{&} 18	8-	4127 ^{&} 3	16-	6494.1 ^{#} 40	24^{+}		
2550.9 [#] 21	10^{+}	4376 [@] 3	17^{-}	6811? ^{&} 4	(24-)		

[†] From least-squares fit to $E\gamma$, assigning an uncertainty of 1 keV to all data.

[‡] Authors' values, based on measured DCO ratios and deduced band structure.

[#] Band(A): yrast 0⁺ g.s. band. Becomes $(\nu 3/2[651])^2$ band At $\hbar\omega$ =262 keV 4.

^(a) Band(B): $(\nu \ 3/2[651])(\nu \ 3/2[521]), \alpha = +1/2$ band. Crossed by 4 quasineutron $(3/2[651])^2(3/2[521])(1/2[660])$ band At $\hbar\omega = 348$ keV 4. (AE band crossed by AEBC band).

[&] Band(C): $(\nu \ 3/2[651])(\nu \ 3/2[521]), \alpha = -1/2$ band. Crossed by 4 quasineutron $(3/2[651])^2(3/2[521])(1/2[660])$ band At $\hbar\omega = 336$ keV 4. (AF band crossed by AFBC band).

$\gamma(^{166}W)$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.#	Comments
223.8	11.1 11	2573.0	10-	2349.2 8-		DCO1=0.87 10, DCO2=0.89 14, DCO3=0.74 5.
235.7	8.2 8	2573.0	10^{-}	2337.3 9-	D	DC01=0.50 4, DC02=0.69 7, DC03=0.80 5.
252.0	100.0 16	252.0	2+	$0.0 \ 0^{+}$		DCO1=0.76 3, DCO2=0.82 4, DCO3=0.83 2.
325.5	41.3 16	3356.1	14^{+}	3030.6 12+	Q	DC01=1.01 4, DC02=1.01 8, DC03=0.99 3.
329.3	6.8 14	2349.2	8-	2019.9 6-	Q	DC01=0.90 13, DC02=0.95 16, DC03=1.04 9.
341.1	9.7 6	1928.1	7-	1587.0 5-	Q	DCO1=0.96 10, DCO2=0.92 12, DCO3=0.97 6.
373.4	10.9 6	2946.4	12^{-}	2573.0 10-	Q	DCO1=0.89 8, DCO2=1.09 8, DCO3=0.90 5.
406.2	21.7 12	2743.5	11-	2337.3 9-	Q	DCO1=1.05 8, DCO2=0.93 6, DCO3=0.99 4.
409.1	26.7 14	2337.3	9-	1928.1 7-	Q	DC01=0.86 9, DC02=0.92 5, DC03=0.91 3.
421.1	6.2 10	2349.2	8-	1928.1 7-		
423.9	100.0	675.9	4+	252.0 2+	Q	DCO1=0.89 4, DCO2=0.89 4, DCO3=0.89 2.
430.6	19.5 <i>11</i>	3174.1	13-	2743.5 11-	Q	DC01=0.99 7, DC02=0.93 7, DC03=1.17 6.
432.8	3.9 10	2019.9	6-	1587.0 5-		
465.2	37.4 15	3821	16^{+}	3356.1 14+	Q	DCO1=1.02 4, DCO2=1.08 5, DCO3=1.10 3.
472.7	7.1 6	2337.3	9-	1864.6 8+	D	DCO1=0.51 6, DCO2=0.52 5, DCO3=0.57 5.

Continued on next page (footnotes at end of table)

¹⁰⁶Pd(⁶³Cu,p2nγ) **1992Si12** (continued)

$\gamma(^{166}W)$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments
479.7	41.6 16	3030.6	12^{+}	2550.9	10^{+}	0	DC01=0.90 4, DC02=0.97 4, DC03=1.05 3.
527.7	10.7 10	3474.1	14-	2946.4	12-	ò	DCO2=1.09 14, DCO3=1.07 6.
546.2	17.6 18	3720.3	15^{-}	3174.1	13-	Q	DCO1=0.97 9, DCO2=0.94 16, DCO3=0.94 5.
550.0	89.3 20	1225.9	6+	675.9	4+	Q	DCO1=1.03 4, DCO2=1.00 5, DCO3=0.94 2.
568.0	32.0 16	4389	18^{+}	3821	16+	Q	DCO1=0.90 5, DCO2=1.08 5, DCO3=0.99 4.
589.7	5.4 16	6169	22-	5579	20-	Q	DCO2=1.08 14, DCO3=1.24 11.
638.8	53 <i>3</i>	1864.6	8+	1225.9	6+		DCO1=1.06 4, DCO2=1.05 6, DCO3=0.95 3; for doublet.
638.8	24.4 18	5028	20^{+}	4389	18^{+}		DCO1=1.06 4, DCO2=1.05 6, DCO3=0.95 3; for doublet.
641.7 [@]	3.8 16	6811?	(24^{-})	6169	22-		
642.6	8.4 12	6494	(23^{-})	5851	21^{-}		
652.7	10.4 14	4127	16-	3474.1	14-	Q	DCO1=0.95 13, DCO2=1.07 17, DCO3=1.04 9.
655.8	14.2 16	4376	17^{-}	3720.3	15^{-}	Q	DCO1=0.99 14, DCO2=1.09 19, DCO3=1.12 9.
674.2 [@]	5.1 8	7168?	(25^{-})	6494	(23^{-})	Q	DCO2=1.02 14, DCO3=1.18 18.
686.3	43.3 16	2550.9	10+	1864.6	8+	Q	DCO1=1.07 6, DCO2=1.02 5, DCO3=1.08 3.
701.1	14.6 8	5729	22^{+}	5028	20^{+}	Q	DCO1=0.90 8, DCO2=1.06 9.
702.2	22.9 18	1928.1	7-	1225.9	6+	D	DCO1=0.56 7, DCO2=0.60 13.
708.8	9.3 16	5579	20^{-}	4870	18-		DCO1=0.90 8, DCO2=1.16 20, DCO3=0.92 15; for doublet.
708.8 [@]	9.3 16	7519?	(26^{-})	6811?	(24^{-})		DCO1=0.90 8, DCO2=1.16 20, DCO3=0.92 15; for doublet.
736.0	10.5 20	5112	19-	4376	17-	Q	DCO2=1.02 20.
739.3	8.6 20	5851	21^{-}	5112	19-		DCO2=1.2 3.
743.7	8.9 18	4870	18^{-}	4127	16-	Q	DCO2=1.2 3, DCO3=1.01 11.
746.5 [@]	4.4 12	7915?	(27^{-})	7168?	(25^{-})		
765.1	10.3 10	6494.1	24+	5729	22+	Q	DC01=0.92 8, DC02=0.98 8, DC03=1.04 7.
770.5 [@]	1.9 10	8290?	(28 ⁻)	7519?	(26 ⁻)		
808.2 [@]	3.0 12	8723?	(29 ⁻)	7915?	(27^{-})		
819.8	7.4 8	7314	26+	6494.1	24+	Q	DCO2=0.98 13.
871.6	3.9 6	8186	28^{+}	7314	26^{+}	Q	DCO1=1.10 20, DCO2=1.08 13.
911.1	10.2 6	1587.0	5-	675.9	4+	D	DCCO=0.55 7, DCO2=0.61 13, DCO3=0.64 6.
922.6	2.5 5	9108	30^{+}	8186	28^{+}		DCO2=0.97 22.
968.8 [@]	1.8 5	10077?	(32^+)	9108	30+		

[†] Uncertainties unstated by 1992Si12.

[±] Relative photon intensity for E(63 Cu)=285 MeV, normalized so I γ (423.9)=100.

[#] Based on measured DCO1= $I\gamma(30^\circ, 30^\circ)/I\gamma(30^\circ, 90^\circ)$, DCO2= $I\gamma(40^\circ, 40^\circ)/I\gamma(40^\circ, 79^\circ)$ and/or DCO3= $I\gamma(40^\circ)/I\gamma(79^\circ)$ recoil gated. for all three ratios, values of 0.5 and 1.0 are expected for stretched D and stretched Q (or D, ΔJ =0) transitions, respectively.

[@] Placement of transition in the level scheme is uncertain.

 $^{166}_{74}W_{92}$

106Pd(⁶³Cu,p2nγ) 1992Si12

¹⁰⁶Pd(⁶³Cu,p2nγ) 1992Si12

 $^{166}_{\ 74}W_{92}$