#### $^{166}\mathbf{W}~\varepsilon$ decay 1989Hi04

|                 |                 | History              |                        |
|-----------------|-----------------|----------------------|------------------------|
| Туре            | Author          | Citation             | Literature Cutoff Date |
| Full Evaluation | Coral M. Baglin | NDS 109, 1103 (2008) | 1-Mar-2008             |

Parent: <sup>166</sup>W: E=0.0;  $J^{\pi}=0^+$ ;  $T_{1/2}=19.2$  s 6;  $Q(\varepsilon)=4206$  30;  $\%\varepsilon+\%\beta^+$  decay=99.965 12

## <sup>166</sup>Ta Levels

| E(level)       | $J^{\pi \dagger}$ | Comments                                                                                                                        |  |  |  |  |  |  |  |  |
|----------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 0              | $(2)^{+}$         |                                                                                                                                 |  |  |  |  |  |  |  |  |
| 125.79 18      | $1^{+}$           |                                                                                                                                 |  |  |  |  |  |  |  |  |
| 298.3 <i>3</i> |                   |                                                                                                                                 |  |  |  |  |  |  |  |  |
| 350.34 25      |                   | E(level): relative order of the 45.8 and 224.6 transitions is not established. The reverse order would define a level at 171.6. |  |  |  |  |  |  |  |  |
| 395.93 20      | $1^{+}$           | $J^{\pi}$ : log ft<5.9 from 0 <sup>+</sup> independent of multipolarities assumed for transitions deexciting the 396 level.     |  |  |  |  |  |  |  |  |

<sup>†</sup> From Adopted Levels.

#### $\varepsilon, \beta^+$ radiations

| E(decay)                          | E(level) | $\mathrm{I}\beta^+$ † | $\mathrm{I}\varepsilon^{\dagger}$ | Log ft | $\mathrm{I}(\varepsilon\!+\!\beta^+)^\dagger$ | Comments                                                                                                                            |
|-----------------------------------|----------|-----------------------|-----------------------------------|--------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| $(3.81 \times 10^3 \ 3)$          | 395.93   | 3.4 5                 | 6.6 10                            | 4.87 7 | 10.0 15                                       | av E $\beta$ =1259 <i>14</i> ; $\varepsilon$ K=0.546 <i>6</i> ; $\varepsilon$ L=0.0883 <i>10</i> ; $\varepsilon$ M+=0.0271 <i>3</i> |
| $(3.86 \times 10^{3 \ddagger} 3)$ | 350.34   | < 0.3                 | < 0.5                             | >6.0   | <0.8                                          | av Eβ=1280 14; εK=0.537 6; εL=0.0868 10;<br>εM+=0.0267 3                                                                            |
| $(3.91 \times 10^{3 \ddagger} 3)$ | 298.3    | < 0.3                 | < 0.4                             | >6.1   | <0.7                                          | av Eβ=1304 14; εK=0.527 6; εL=0.0851 10;<br>εM+=0.0262 3                                                                            |
| $(4.08 \times 10^3 \ 3)$          | 125.79   | 36 4                  | 54 7                              | 4.02 6 | 90 11                                         | av Eβ=1382 14; εK=0.493 6; εL=0.0796 10;<br>εM+=0.0245 3                                                                            |

<sup>†</sup> Absolute intensity per 100 decays.
<sup>‡</sup> Existence of this branch is questionable.

## $\gamma(^{166}\text{Ta})$

I $\gamma$  normalization: The basis of the intensity normalization is that negligible  $\varepsilon + \beta^+$  feeding to the ground state is expected ( $\Delta J=(2)$ ,  $\Delta \pi$ =No), so  $\Sigma$  (I( $\gamma$ +ce) to g.s.)=100.

γγ coin (Ta K x ray)(125.8γ, 395.9γ).

| Eγ     | $I_{\gamma}^{\ddagger}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | Mult.                | α <b>#</b> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|-------------------------|---------------|----------------------|--------|----------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45.8 4 | 1.4 4                   | 395.93        | 1+                   | 350.34 | [M1]                 | 7.21 22    | $\begin{aligned} \alpha(L) = 5.59 \ 17; \ \alpha(M) = 1.27 \ 4; \ \alpha(N+) = 0.355 \ 11 \\ \alpha(N) = 0.303 \ 9; \ \alpha(O) = 0.0480 \ 15; \ \alpha(P) = 0.00331 \ 10 \\ \text{Additional information 3.} \\ \text{Mult.: if placement of } 46\gamma \text{ is correct, E2 is ruled out because it} \\ \text{would imply negative } \varepsilon + \beta^+ \text{ feeding of the 350 level; M1} \\ \text{would imply No } \varepsilon + \beta^+ \text{ branch to 350 level.} \end{aligned}$ |
| 97.7 4 | 1.9 2                   | 395.93        | 1+                   | 298.3  | [M1,E2] <sup>†</sup> | 4.4 4      | $\begin{array}{l} \alpha({\rm K}){=}2.4 \ 15; \ \alpha({\rm L}){=}1.5 \ 9; \ \alpha({\rm M}){=}0.37 \ 23; \ \alpha({\rm N}{+}){=}0.10 \ 6 \\ \alpha({\rm N}){=}0.09 \ 6; \ \alpha({\rm O}){=}0.012 \ 7; \ \alpha({\rm P}){=}0.00022 \ 15 \\ \mbox{Additional information 4.} \\ {\rm E}_{\gamma}{:} \ 97.7 \ {\rm from \ fig. 3 \ of \ 1989Hi04, \ consistent \ with \ E(level) \\ \ difference. \ E\gamma{=}97.1 \ {\rm from \ table \ 4 \ appears \ to \ Be \ a \ misprint.} \end{array}$    |

Continued on next page (footnotes at end of table)

|                                          |                         |                        |                      |        | <sup>166</sup>       | $N \varepsilon$ decay | 1989Hi04 (c | ontinued)      |                                                                                                                                                                                                                                                                                               |
|------------------------------------------|-------------------------|------------------------|----------------------|--------|----------------------|-----------------------|-------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\gamma$ <sup>(166</sup> Ta) (continued) |                         |                        |                      |        |                      |                       |             |                |                                                                                                                                                                                                                                                                                               |
| $E_{\gamma}$                             | $I_{\gamma}^{\ddagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | $\mathbf{J}_f^{\pi}$ | Mult.                 | δ           | α <b>#</b>     | Comments                                                                                                                                                                                                                                                                                      |
| 125.8 2                                  | 100                     | 125.79                 | 1+                   | 0      | (2)+                 | M1+E2                 | 0.8 +8-5    | 1.98 24        | $\alpha(K)=1.4 5; \alpha(L)=0.47 15; \alpha(M)=0.11 4; \alpha(N+)=0.031 10 \alpha(N)=0.027 9; \alpha(O)=0.0038 11; \alpha(P)=0.00012 5 Matt Schwarz (K) and 14 4$                                                                                                                             |
| 172.5 3                                  | 5.8 7                   | 298.3                  |                      | 125.79 | 1+                   | [M1,E2] <sup>†</sup>  |             | 0.71 22        | Mult.,o: from $\alpha(K)\exp=1.4.4$ .<br>$\alpha(K)=0.5 \ 3; \ \alpha(L)=0.15 \ 4; \ \alpha(M)=0.037$<br>10; $\alpha(N+)=0.0099 \ 23$<br>$\alpha(N)=0.0086 \ 21; \ \alpha(O)=0.00124 \ 21;$<br>$\alpha(P)=4.E-5 \ 3$<br>Additional                                                            |
| 224.6 2                                  | 7.8 5                   | 350.34                 |                      | 125.79 | 1+                   | [M1,E2]               |             | 0.32 <i>13</i> | information 1.<br>$\alpha(K)=0.25 \ I3; \ \alpha(L)=0.0595 \ 20;$<br>$\alpha(M)=0.0141 \ I1; \ \alpha(N+)=0.00384 \ 20$<br>$\alpha(N)=0.00333 \ 22; \ \alpha(O)=0.000491 \ 9;$<br>$\alpha(P)=2.2\times10^{-5} \ I3$<br>Additional<br>information 2                                            |
| 270.1 2                                  | 2.3 2                   | 395.93                 | 1+                   | 125.79 | 1+                   | [M1,E2]               |             | 0.19 8         | $\begin{array}{l} \text{mformation 2.} \\ \alpha(\text{K})=0.15 \ 8; \ \alpha(\text{L})=0.032 \ 3; \\ \alpha(\text{M})=0.0075 \ 4; \ \alpha(\text{N}+)=0.00207 \ 13 \\ \alpha(\text{N})=0.00179 \ 10; \ \alpha(\text{O})=0.00027 \ 3; \\ \alpha(\text{P})=1 \ 3\times10^{-5} \ 8 \end{array}$ |
| 395.9 <i>3</i>                           | 5.4 14                  | 395.93                 | 1+                   | 0      | (2)+                 | [M1,E2]               |             | 0.07 <i>3</i>  | $\alpha(K) = 0.05 \ 3; \ \alpha(L) = 0.0099 \ 25; \alpha(M) = 0.0023 \ 5; \ \alpha(N+) = 0.00063 \ 15 \alpha(N) = 0.00054 \ 13; \ \alpha(O) = 8.3 \times 10^{-5} \ 23; \alpha(P) = 5.E - 6 \ 3 coincident with K x ray(Ta) only.$                                                             |

<sup>†</sup> From intensity balance assuming no  $\varepsilon + \beta^+$  feeding to 298.3 level. <sup>‡</sup> For absolute intensity per 100 decays, multiply by 0.33 *3*.

<sup>#</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

# <sup>166</sup>W ε decay 1989Hi04

#### Decay Scheme



<sup>166</sup><sub>73</sub>Ta<sub>93</sub>