Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 109,1103 (2008)	1-Mar-2008

 $Q(\beta^{-}) = -6.46 \times 10^{3} \ 8; \ S(n) = 9.32 \times 10^{3} \ 8; \ S(p) = 3.2 \times 10^{2} \ 8; \ Q(\alpha) = 5.46 \times 10^{3} \ 5$ 2012Wa38

Note: Current evaluation has used the following Q record -6410 syst 9260 syst 280 syst 5510 syst 2003Au03.

Uncertainty in $Q(\beta^{-})$, S(n), S(p) and $Q(\alpha)$ is 90, 90, 90 and 70, respectively (2003Au03).

 $Q(\alpha)$: 2003Au03 deduce $Q(\alpha)$ from E α in ¹⁶⁶Re α -decay (1992Me10 and 1996Pa01) assuming an E(level)=150 50 to g.s. transition. If, instead, it were a g.s. to g.s. transition, those two measurements would imply $Q(\alpha)=5657$ 16. Assignment: ⁹³Nb(⁸⁴Kr, α 7n), ⁸⁹Y(⁸⁴Kr,7n), E=5.1 to 5.5 MeV/u and 5.8 to 6.4 MeV/u, excit (1978Sc26); ¹⁴¹Pr(³²S,pxn), E=204

MeV, excit (1992Me10).

¹⁶⁶Re Levels

Cross Reference (XREF) Flags

 170 Ir α decay (0.87 s) A

 170 Ir α decay (811 ms) В

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0	+	2.25 [#] s 21	A	$%\alpha < 24$; %ε+%β ⁺ >76 %α: Both α decay and ε decay have been observed, but the branching has not been measured. Based on a comparison of excitation function data for the various nuclides they studied, 1978Sc26 estimate $30 \le %\alpha$ (¹⁶⁶ Re)≤100. However, based on T _{1/2} and assuming r ₀ (¹⁶² Ta)=1.562 <i>3</i> (unweighted average of r ₀ =1.567 24 (¹⁶⁰ Hf), 1.556 <i>16</i> (¹⁶² W), 1.563 <i>11</i> (¹⁶⁴ W) from 1998Ak04), %α<24 for HF>1 if a g.s. to g.s. transition is assumed and %α<6 if Q(α)=5510 70 from 2003Au03; further, if this is an unhindered decay, HF<4 would imply %α>6 or >1.35 respectively, for these two Q(α) possibilities. The evaluator adopts an upper limit of 24 for %α, implying %ε+%β ⁺ >76 since p decay is not expected (S(p)>0 from 2003Au03). The much higher estimate of %α in 1978Sc26 might Be unreliable due to the similarity of both Eα and T _{1/2} for the ¹⁶⁶ Re and ¹⁶⁵ Re decays.
0.0+x			В	E(level): it is not known whether this is the g.s. or an excited state.
0.0+y	(3 ⁻)		A	E(level): this may or may not Be the g.s.; if it is, y=0. However, a comparison of E α from low-spin ¹⁷⁰ Ir α decay with Q(α) from systematics (2003Au03) suggests that it is not.
53+x			В	<i>E</i> (level): an alternative value of $69+x$ is possible because the order of the 53γ and the 69γ has not been established. π probably opposite to $\pi(0+x)$ level based on (E1) 53 γ to 0.0+x level.
65+x			В	π probably same as $\pi(0+x)$ level based on (E1) 110 ν from 175+x level.
75+x			В	E(level): 70+x 14 from energy difference between possible α group feeding this level and the 6121 α feeding the 0+x level. π probably same as $\pi(0+x)$ level based on (M1) 75 α to 0.0+x level
122+x			В	E(level): 117+x 12 from energy difference between possible α group feeding this level and the 6121α feeding the 0+x level. π probably opposite to $\pi(0+x)$ level based on (E1) 122γ to 0.0+x level.
175+x			В	E(level): $174+x$ 14 from energy difference between possible α group feeding this level and the 6121 α feeding the 0+x level. π probably opposite to π (0+x) level based on (E1) 175 γ to 0.0+x level.

[†] From $E\gamma$, except as noted.

Adopted Levels, Gammas (continued)

¹⁶⁶Re Levels (continued)

- [‡] The lowest-energy orbitals available for the 75th proton are probably 1/2[411] (d_{3/2}) and 9/2[514] (h_{11/2}) based on possible J^{π} =(1/2⁺) and (9/2⁻) for the g.s. of ¹⁶⁵Re and ¹⁶⁷Re, respectively; the lowest-energy neutron orbital available to the 91st neutron is probably 5/2[523] (f_{7/2}) based on J^{π} =(5/2⁻) for the g.s. of the isotone ¹⁶⁵W (1995Hi02). If the deformation is large enough for the Gallagher-Moszkowski rule to Be valid, low-lying 3⁻ and 7⁺ states might Be expected, but no low-lying isomeric excited state has been identified in ¹⁶⁶Re as yet. ε decay to ¹⁶⁶W indicates an intensity imbalance at each of the 2⁺, 4⁺ and 6⁺ levels observed so far; this is probably the result of a very incomplete decay scheme, so this provides no useful indication of J^{π} (g.s.) for ¹⁶⁶Re. The possibility that the 0+x or the 0+y level is, in fact, the g.s. cannot Be ruled out.
- [#] Weighted average of 2.23 s 27 from $252\gamma(t)$ and 2.28 s 34 from $424\gamma(t)$ in ε decay (1992Me10). Other data: 2.2 s 4 (1978Sc26, for E α =5495 10); 1.9 s 11 (1992Me10, for E α =5501 13; however, A=165 contribution cannot Be ruled out); the E α =5506 10, 2.4 s 6 line assigned by 1981Ho10 to ¹⁶⁵Re has T_{1/2} and E α consistent with those for ¹⁶⁶Re (to which 1978Sc26 assign their 5495 10 line and 1982De11 assign their 5527 4 line) but 1996Pa01 confirm its assignment to ¹⁶⁵Re. T_{1/2}=2.8 s 3 (1984Sc06, for E α =5372 10) was assigned by those authors to ¹⁶⁶Re, but neither 1992Me10 nor 1996Pa01 see this line so the evaluator presumes it to have been misassigned. Note that the assignment of this T_{1/2} to the ¹⁶⁶Re g.s. here is at variance with the assumption in 2003Wa32 that the observed ¹⁶⁶Re α decay takes place from an excited state, unless both states have comparable T_{1/2}.

 $\gamma(^{166}\underline{\text{Re}})$

E _i (level)	E_{γ}^{\dagger}	E_f	Mult. [‡]	α #	Comments
53+x	53 [@]	0.0+x	(E1)	0.410	See comments on 53γ from $175+x$ level.
65+x	(65)	0.0+x	[M1]	3.12	E_{γ} ,Mult.: γ expected to form a cascade with 110 γ to 0+x level in ¹⁷⁰ Ir α decay (811 ms); may Be a highly-converted transition because transition is not evident in relevant α - γ coin spectrum, so 2007Ha45 suggest M1 multipolarity, consistent with level scheme.
75+x	75	0.0+x	(M1)	11.75	Mult.: suggested in ¹⁷⁰ Ir α decay (811 ms) based on 6053 α - γ coin spectrum which includes significant I(K x ray) attributed to internal conversion of the 75 γ ; analogous to authors' observations for known M1 92 γ from ¹⁷¹ Re α decay.
122+x	(47)	75+x			E_{γ} : highly tentative; however, observation of 2007α-75γ coin (2007Ha45) suggests the existence of a transition connecting the 122+x and 75+x levels and such a transition may Be too highly converted to Be seen in α-γ coincidence spectrum. Level scheme implies $\Delta \pi$ =(yes), suggesting a multipolarity of M2 or higher.
	69	53+x	[M1]	2.62	
	122	0.0+x	(E1)	0.229	Mult.: since $I(75\gamma)/I(K\alpha x ray)$ in ¹⁷⁰ Ir α decay (811 ms) is approximately the same in spectra gated by the 6053 α and by the 6007 α , 2007Ha45 conclude that the 122 γ is probably E1 since it provides no significant contribution to K x ray peak's intensity via internal conversion.
175+x	53 [@] &	122+x	[M1,E2]	40 40	This second placement of 53 γ is suggested by energy difference between 175 γ and 122 γ that deexcite the same level. Mult.: assumed, based on level scheme; however, I(53 γ)/I(122 γ) in ¹⁷⁰ Ir α decay (811 ms) is approximately the same in the spectra gated by 5951 α or by the 6007 α (2007Ha45). Authors favor M1 multipolarity for
					this component and E1 for the other.
	110	65+x	(E1)	0.300	Mult.: based on an argument similar to that used by 2007Ha45 to assign multipolarity to 122γ .
	175	0.0+x	(E1)	0.0906	Mult.: based on an argument similar to that used by 2007Ha45 to assign multipolarity to 122γ .

[†] From ¹⁷⁰Ir α decay (811 ms); uncertainties unstated by authors.

[±] Very tentative values from arguments based on γ and K x ray intensities in α - γ coin spectra in ¹⁷⁰Ir α decay (811 ms), except

Adopted Levels, Gammas (continued)

$\gamma(^{166}\text{Re})$ (continued)

as noted.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed.

[&] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Level Scheme

Legend

 γ Decay (Uncertain)

¹⁶⁶₇₅Re₉₁