170 Ir α decay (0.87 s) 2004GoZZ,2002Ro17,1996Pa01

Type Author Citation Literature Cutoff Date
Full Evaluation Coral M. Baglin NDS 109, 1103 (2008) 1-Mar-2008

Parent: ¹⁷⁰Ir: E=0.0; $J^{\pi}=(3^{-})$; $T_{1/2}=0.87 \text{ s} + 18-12$; $Q(\alpha)=6110 \text{ SY}$; % α decay=5.2 17

¹⁷⁰Ir-%α decay: From %α=5.2 *17* for 5815α In 2002Ro17.

1996Pa01: ¹⁷⁰Ir produced in 354 MeV ⁷⁰Ge bombardment of ¹⁰⁶Cd; measured Eα, α(t), parent-daughter α correlations.
 2002Ro17: ¹⁷⁰Ir produced by α decay of ¹⁷⁴Au; Si strip detector; measured Eα, parent-daughter α correlations, T_{1/2} for ¹⁷⁰Ir.
 2004GoZZ: ¹⁷⁰Ir from α decay of ¹⁷⁴Au produced by ⁹²Mo(⁸⁴Sr,pn) At E=390, 395 MeV; fragment mass analyzer and double-sided Si strip detector (for recoils and decay α particles) surrounded by 4 Ge detectors and a low-energy photon spectrometer; recoil decay tagging technique; measured Eα, Iα, recoil-α-γ coin, α(t), parent-daughter α correlations.
 ¹⁷⁰Ir α decay: please see summary tabulation of data from the two known ¹⁷⁰Ir isomer decays At the beginning of the ¹⁷⁰Ir α decay (811 ms) data set.

ADOPTED low-spin parent $T_{1/2}$: 0.87 s +18-12 from 5815 α (t) (2002Ro17). IT is unclear whether any other observed α from 170 Ir also originates from the low-spin isomer. $E\alpha$ =6045 10 and $E\alpha$ =6030 10 (1978Sc26) each has a compatible $T_{1/2}$, but the 5815 α , the only α from low-spin 170 Ir reported by 2002Ro17 or 2004GoZZ, was absent In the study by 1978Sc26. $E\alpha$ =6027 5 (1982De11) May Be the same line that 1978Sc26 reported, but $T_{1/2}$ was not measured. the evaluator considers the 6045 α , 6030 α and 6027 α to Be of uncertain parentage.

¹⁶⁶Re Levels

E(level) J^{π} Comments

0+x $(3^-$

E(level): this May or May not Be the g.s.; comparison of $E\alpha$ with $Q(\alpha)$ from systematics (2003Au03) suggests that it is not.

 J^{π} : α decay possibly unhindered from low-spin (3⁻) ¹⁷⁰Ir.

α radiations

 $\frac{\text{E}\alpha}{5815 \text{ 4}} \quad \frac{\text{E(level)}}{0+x} \quad \frac{\text{I}\alpha^{\ddagger}}{100} \quad \frac{\text{HF}^{\dagger}}{4.4 \text{ 18}}$

Comments

 $E\alpha$: weighted average of 5815 10 (2002Ro17) and 5815 5 (2004GoZZ). This $E\alpha$ would imply $Q(\alpha)$ =5955 4 were this a g.s. to g.s. transition; this is 150 keV lower than 6110 50 from systematics In 2003Au03.

correlated with α from low-spin isomer of ¹⁷⁴Au (2002Ro17, 2004GoZZ).

 $^{^{\}dagger}$ r₀=1.5602 23, the unweighted average of r₀(166 W)=1.555 9 and r₀(166 Os)=1.565 3 (from this evaluation), and r₀(164 W)=1.563 11 and r₀(168 Os)=1.558 8 from 1998Ak04.

[‡] For absolute intensity per 100 decays, multiply by 0.052 17.