¹⁰⁶Cd(⁶⁴Zn,2p2nγ) 2002Ap03

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Coral M. Baglin	NDS 109, 1103 (2008)	1-Mar-2008			

2002Ap03: E(⁶⁴Zn)=334 MeV; 80% enriched ¹⁰⁶Cd target; JUROSPHERE detector array (5 NORDBALL (At 79°), 5 TESSA (At 101°) and 15 EUROGAM phase I (At 134° or 158°) Ge detectors); RITU gas-filled separator; recoils implanted into 16-strip position-sensitive Si detector; recoil decay tagging technique; measured Eγ, Iγ, recoil-α-γ-γ coin, γ asymmetry.

¹⁶⁶Os Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0#	0+	
432.0 [#] 3	2^{+}	
1021.0 [#] 5	4+	
1562.3 [@] 7	(3 ⁻)	
1725.0 [#] 7	6+	E(level): an alternative value (E=1647.3) is possible because the order of the 626γ -704 γ cascade is not established.
1931.3 [@] 7	(5 ⁻)	
2351.3 [#] 9	8+	
2426.0? ^{&} 11	(6 ⁻)	
2452.4 [@] 9	(7 ⁻)	
3009.4 [#] 12	(10^{+})	
3025.5? ^{&} 11	(8 ⁻)	
3520.7 [#] 13	(12^{+})	
3910.8? [#] 16	(14 ⁺)	

[†] From least-squares fit to $E\gamma$.

 \ddagger Authors' values, based on deduced band structure, measured transition multipolarities and analogy to structures In 168 Os.

[#] Band(A): yrast sequence. g.s. band crossed At $\hbar\omega$ =0.30 MeV (with 11 \hbar gain In alignment) by ($\nu i_{13/2}^2$) band (2002Ap03).

^(a) Band(B): $K^{\pi}=(3^{-})$, $\alpha=1$ band. Bandhead deexcites to J=2 and 4 members of g.s. band; structure of band appears to Be similar to that of a 3⁻ band In ¹⁶⁸Os. Possible configuration: ν (i_{13/2})(h_{9/2},f_{7/2}).

& Band(C): $\pi = (-)$, $\alpha = 0$ band. Very weak band decaying through the (3⁻) band, analogous to a side band known In ¹⁶⁸Os; on this basis, authors tentatively assign $\pi = -$ and even spin. Possible configuration: ν (i_{13/2})(h_{9/2},f_{7/2}).

 $\gamma(^{166}Os)$

						/ (/	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Comments
^x 171.3 5	73							$I\gamma(158^{\circ})/(I\gamma(79^{\circ})+I\gamma(101^{\circ}))=0.74$ 8. authors suggest that this γ May belong to decay from (3 ⁻) band to yrast band.
x321.5 9	77							
368.8 5	21 6	1931.3	(5 ⁻)	1562.3 ((3 ⁻)	(Q)		$I\gamma(158^{\circ})/(I\gamma(79^{\circ})+I\gamma(101^{\circ}))=0.84$ 5.
390.1 [@] 9	3 22	3910.8?	(14^{+})	3520.7 ((12^{+})			
432.0 <i>3</i>	100 2	432.0	2+	0.0 0)+ ´	E2	0.0330	$I\gamma(158^{\circ})/(I\gamma(79^{\circ})+I\gamma(101^{\circ}))=0.90$ 3.
								Mult.: Q from γ asymmetry; not M2 from intensity balance At 432 level.
^x 443.3 6	14 5					D(+Q)		$I\gamma(158^{\circ})/(I\gamma(79^{\circ})+I\gamma(101^{\circ}))=0.44$ 4.
^x 482.2 9	84							
494.8 [@] 9	65	2426.0?	(6 ⁻)	1931.3 ((5 ⁻)			
511.3 5	18 5	3520.7	(12+)	3009.4 ((10 ⁺)			

Continued on next page (footnotes at end of table)

106 Cd(64 Zn,2p2n γ) 2002Ap03 (continued)

						$\gamma(1000)$	s) (continued)
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
521.1 6	18 6	2452.4	(7 ⁻)	1931.3	(5 ⁻)		
541.6 7	176	1562.3	(3-)	1021.0	4+	D	$I\gamma(158^{\circ})/(I\gamma(79^{\circ})+I\gamma(101^{\circ}))=0.66$ 7.
573.0 [@] 9	25	3025.5?	(8 ⁻)	2452.4	(7^{-})		
589.2 4	78 2	1021.0	4+	432.0	2+	Q	$I\gamma(158^{\circ})/(I\gamma(79^{\circ})+I\gamma(101^{\circ}))=0.92$ 6.
599.6 [@] 9	65	3025.5?	(8 ⁻)	2426.0?	(6 ⁻)		
^x 614.0 5	85						
626.3 5	32 7	2351.3	8+	1725.0	6+	Q	$I\gamma(158^{\circ})/(I\gamma(79^{\circ})+I\gamma(101^{\circ}))=1.20$ 14.
658.1 8	13 5	3009.4	(10^{+})	2351.3	8+		
704.0 5	33 9	1725.0	6+	1021.0	4+	Q	$I\gamma(158^{\circ})/(I\gamma(79^{\circ})+I\gamma(101^{\circ}))=0.88$ 8.
910.9 9	159	1931.3	(5 ⁻)	1021.0	4+	D	$I\gamma(158^{\circ})/(I\gamma(79^{\circ})+I\gamma(101^{\circ}))=0.46$ 9.
1129.2 9	25 6	1562.3	(3-)	432.0	2+		

$(166 \Omega_{\rm S})$ (continued)

[†] From 2002Ap03.

[±] Based on γ asymmetry In recoil- α - γ data, except As noted. Values for ¹⁶⁵W transitions of known multipolarity, also observed In this experiment, served As an asymmetry calibration. Values expected for pure stretched D are 0.55 and, for stretched Q (or D, ΔJ=0), 1.0.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^(a) Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

¹⁶⁶₇₆Os₉₀

¹⁰⁶Cd(⁶⁴Zn,2p2nγ) 2002Ap03

¹⁶⁶₇₆Os₉₀