		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 109, 1103 (2008)	1-Mar-2008

Other measurements: 1958Sk59, 1959Dr75, 1959Jo33, 1960Al27, 1961Es02, 1961Kr01, 1963Gi03, 1963Or02, 1973He15, 1973PrZI, 1979Bo08, 1988Ba79, 1989Du03, 2003ChZS, 2007ChZX.

Includes (pol n, γ) E=0.065 eV.

 $J^{\pi}(target) = 7/2^{-}$.

 σ_n =61.2 11 (2006MuZX). abundance(¹⁶⁵Ho)=100%.

2007ChZX: provides an evaluation of experimental data including new $E\gamma$ and elemental cross section measurements using Ge(Li) detector for 148 primary and 73 secondary transitions (herein referred to As 'Budapest data', and taken from the EGAF section of the CD that is part of this publication). supersedes 2003ChZS.

2000Pr03: three-crystal pair spectrometer, FWHM \approx 5.5 keV At 6.5 MeV; calibration based on S(n) and pattern of primary transitions to several well-established low-lying levels; measured E γ , $\gamma\gamma$ coin; deduced band structure.

1984Ke15: >99.9% Ho target; Ge detector inside quadrisected NaI(Tl) annulus (FWHM=3.1-4.5 keV for E γ =4000-6200); measured E γ , I γ for 270 transitions with E γ >4050; ¹⁴N(n, γ) reaction used for calibration.

1979Bo08: (pol n, γ); polarized E=0.065 eV neutrons and polarized single-crystal ¹⁶⁵Ho target; measured $\gamma(\theta)$ for 15 primary gammas; deduced J.

1967Mo05: 99.8% Ho target; measured primary E γ , I γ using Ge(Li) detector As two-escape pair spectrometer (FWHM=8.0 keV; E γ =5000-6200); measured secondary E γ , I γ using Riso curved-crystal spectrometer (E γ =30-750) or I γ using Ge(Li) detector (E γ =70-550); measured conversion electrons (E=29-500) using Elephant spectrometer At Munich (FWHM=0.6% At 100 keV, 0.3% At 200 keV; thick source) and the Studsvik β^- spectrometer (FWHM=0.2%; thin source).

The level scheme includes refinements made by 2000Pr03 to the schemes proposed by 1967Mo05 and others, In which γ placements were based on the Ritz principle (somewhat unreliable At this level density); $\gamma\gamma$ coin data from 2000Pr03 led to the placement or relocation of many transitions and the elucidation of a number of additional bands.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	E(level) [†]	Jπ‡	T _{1/2}
0.0 ^b	0 ^{-y}	26.824 ^z h <i>12</i>	430.031 ^k 4	2 ⁺¹	≤0.2 [#] ns
5.969 ^c 12	7^{-}	1.20×10 ³ ² y 18	431.239 ^s 6	5-	
54.2391 ^b 7	2^{-}		453.771 ^d 4	6+	
82.4707 ^b 20	1-		464.501 ¹ 6	2^{+}	
137.729 [°] 13	8-		470.841 ⁸ 3	5+	
171.0738 ^b 12	3-		475.680 <mark>9</mark> 7	3-	≤0.2 [#] ns
180.467 ^b 3	4-		481.846 ^k 4	3 ⁺²	≤0.2 [#] ns
190.9021 ^d 20	3+ @		514.362 ^e 7	7+	
260.6625 ^d 23	4+ @	≤0.5 [#] ns	521.982 ¹ 6	3+	
263.7876 ^e 24	5+	≤0.5 [#] ns	529.816 ^{\$} 8	6-	
286.96 ^c 13	9-		543.672 ^j 4	2-	
295.085 f 9	6+	1.10 [#] ns 15	547.934 ^k 5	4+	
329.774 ^b 4	5-		557.65 ^b 7	7-	
348.257 ^d 3	5+		558.571 ⁰ 4	4+ @	
371.985 ⁸ 3	4+ [@]	≤0.2 [#] ns	562.890 ⁹ 7	4-	
373.092 9 8	1-	≤0.2 [#] ns	567.624 ⁱ 7	1^{+}	
377.806 ^b 4	6-		577.208 ^d 7	7+	
379.547 ^e 4	6+		588.083 <mark>8</mark> 7	6+	
416.086 ⁹ 6	2^{-}	$\leq 0.2^{\#}$ ns	592.501 ^m 9	3+	
423.651 ^f 10	7+		595.726 ^h 15	1-	
426.025 ^{<i>l</i>} 6	1+		597.015 ^j 4	3-	

¹⁶⁶Ho Levels

¹⁶⁶Ho Levels (continued)

E(level) [†]	Jπ‡	Comments
598.448 ¹ 6	4+	
605.047^{i} 7	2+	
$628 418^{h}$ 13	2-	
$634\ 314^k\ 6$	- 5+	
638.235^r 9	4-	
644.29 ^s 6	7-	
654.818 ⁰ 14	5+	
657.995 9 11	5-	
659.01 ¹ 4	0^{-}	
662.169 ¹ 8	3+	
668.005 ¹ 6	4-	
671.746 ^m 12	4+	
683.805 ^{<i>n</i>} 5 693.388 <i>17</i>	3^{-} (2 ⁺)	Additional information 1.
693.638 ¹ 7	5+	
704.962 ^r 14	3-	
719.370 ⁿ 11	4+3	
721.98 ^V 15	6^+	
725.2398 19	2-	
$723.08^{\circ} 4$	2	
732.513 10	0 ·	
736.430° 9	4	
742.02" 3	4	
757.7075 18	5-	
760.345^{m} /	3 5+	
709.78 4 771 94 ⁰ 8	5 6 ⁺	
774.522^{t} 16	1-	
788.618 ⁹ 11	6-	
792.789 ^r 12	4-	
806.56 ⁿ 5	5+	
807.011 ¹ 8	6+	
815.139 ^p 10	3+@	
824.62 4	3-	Additional information 2.
832.197 ¹ 9	5+	
837.7174 8	4 7+	
$868 24^{t} 14$	/ /-	
870.13.5	4 (⁻)	Additional information 3
876.37 22		Additional information 4.
$881.040^t 20$ $883.94^m 5$	3^{-}	
885.345 20	(3^+)	Additional information 5.
891.124 ^{<i>p</i>} 12	4 ⁺	
905.544 ^w 10	2+ @	
910.49? ⁿ 4	(6 ⁺)	
925.0 ^x 5	5+ 	
935.12" 4	5	
942.524 ¹ 5	6^+	Additional information 6
743.00 3		

165 Ho(n, γ) E=thermal	1967Mo05,1984Ke15,2000Pr03 (continued)

¹⁶⁶Ho Levels (continued)

E(level) [†]	Jπ‡	E(level) [†]	E(level) [†]	E(level) [†]	J#‡
95113		1355 02 5	1657 5 3	1972 9 8	
961.08 ^W 6	3+	1362 73 11	1661 57 21	1975 5 4	
077.2.7	5	1267 21 16	1666 15 0	1079 22 19	
977.27		1271 4 10	1671 64 9	19/0.33 10	
979.8 10	- +	1371.4 10	10/1.04 8	1985.98 12	
985.20 ^P 8	5'	13/6.81 6	16/6.69 12	1995.37 16	
1004.84 5		1380.15 19	1681.2.5	1998.94 20	
1010.68 18		1387.75 5	1683.5 4	2004.89 10	
1016.23 15		1391.93 11	1687.3 5	2010.77 13	
1019.2 5		1396.77 7	1695.01 7	2015.07 21	
1023.4 23		1401.77 <i>11</i>	1704.31 8	2017.6 4	
1026.1 5		1405.8 <i>3</i>	1710.6 <i>3</i>	2023.0 <i>3</i>	
1030.38 ^w 3	4+	1415.80 4	1713.24 23	2025.63 19	
1054.87 22		1421.48 <i>13</i>	1716.65 20	2029.8 <i>3</i>	
1061.788 22	2,4 [@]	1429.80 7	1723.8 6	2032.05 23	
1087.91 4	3 <mark>@</mark>	1433.64 12	1731.10 11	2037.44 17	
1097.45P 5	6 ⁺	1448 92 5	1742 26 12	2040 4 3	
1114 (7.2	2(5)	1450.0.5	1752.4.2	2010.1 3	
1114.0/ 3	5,(5)	1458.8 5	1/52.4 3	2051.3 4	
1121.41 7		1461.6 4	1756.8 6	2054.4 3	
1131.0 3		1463.91 14	1759.6 3	2056.7 5	
1134.97 11		1467.3 5	1763.59 9	2058.7 3	
1137.79 12		1471.7 <i>4</i>	1769.46 <i>18</i>	2062.1 5	
1141.3 <i>3</i>		1474.4 6	1776.76 7	2065.20 15	
1146.7 4		1478.49 <i>13</i>	1785.5 <i>3</i>	2072.60 20	
1154.84 4		1487.15 <i>13</i>	1794.18 <i>15</i>	2075.3 5	
1161 35 3	4 [@]	1494 59 18	1798 8 4	2077 77 21	
1174 9 5	·	1498 1 4	1805 5 3	2087 76 18	
1190 13 4		1505 5 3	1816 98 9	2090 96 20	
1100 / 13		1510.60.7	1823.86.10	2000.00 20	
1199.715 1202.11.14		1521.2 4	1820 53 24	2094.4 4	
1202.11 17		1526.86.17	1825.60.16	2090.3713	
1206.01 9		1520.00 17	1033.00 10	2105.74	
1214.95 25		1552.12.0	1030.0 11	2105.7 0	
1217.2.3		1557.02 11	1842.99 9	2109.2 0	
1221.01 13		1540.9 5	1851.1.3	2111.7 4	
1230.04 4		1544.4 10	1854.98 13	2115.82 23	
1234.86 12		1547.49 12	1859.34 11	2118.7.5	
1240.70 6		1552.95 <i>13</i>	1864.8 6	2122.5 3	
1244.24 7		1558.90 <i>17</i>	1870.3 4	2127.47 18	
1248.19 10		1561.0 4	1876.86 9	2131.19 16	
1252.69 14		1566.5 5	1882.99 <i>18</i>	2137.2 4	
1256.87 12		1570.75 7	1890.85 <i>11</i>	2139.3 5	
1263.84 4		1576.89 12	1895.28 <i>11</i>	2145.43 17	
1271.44 19		1588.79 <i>13</i>	1898.96 <i>15</i>	2148.5 3	
1289.29 11		1592.47 18	1907.67 11	2151.68 16	
1293.79 7		1599.98 9	1914.0 <i>4</i>	2157.34 14	
1298.45 7		1603.81 15	1916.3 6	2161.1.3	
1301.07.9		1606.25.24	1919.32.15	2163.80.24	
1304.81 73		1614.0 4	1928.17 10	2167.7.4	
1310 54 15		1616.0.3	1933 09 16	2169.8.4	
1318 0 3		1620 3 3	1938 88 10	2172 1 5	
1322 0 3		1628.1 1	10/5 07 16	2172.1 5	
1322.0 5		1620.1 4	1050 87 10	2180.0 5	
1327.33 21		1625 51 0	1950.07 12	2102.92.22	
1332.10		1033.31 9	1754.5 /	2195.20 IJ	$a = \frac{a}{a}$
1338.75 6		1638.97 16	1957.52 21	(6243.714 ^{cc} 8)	3 ,4 ⁻⁴
1343.06 8		1644.49 15	1960.67 14		
1349.93 5		1655.0 5	1969.8 <i>3</i>		

Continued on next page (footnotes at end of table)

¹⁶⁶Ho Levels (continued)

[†] From least-squares fit to Ey, excluding data for multiply placed transitions and for the 48.303y and 232.286y, both of which fit their placements particularly poorly. However, it should Be noted that 28 of the remaining 570 Ey data deviate by At least 3σ from the least-squares prediction and, of those, 12 deviate by At least 5σ . The latter are noted In comments on the relevant G. [‡] Recommended value from 2000Pr03, unless otherwise noted; based on transition multipolarity and deduced band structure. [#] From 1978Sc10. [@] Spin from the angular distribution measurements of the primary γ feeding level (1979Bo08). [&] From least-squares fit to $E\gamma$ (cf. S(n)=6243.64 2 In 2003Au03). ^{*a*} s-wave capture on $J^{\pi}=7/2^{-}$ target. ^b Band(A): $K^{\pi}=0^{-}$, $(\pi 7/2[523])-(\nu 7/2[633])$ band. ^{*c*} Band(B): $K^{\pi}=7^{-}$, (π 7/2[523])+(ν 7/2[633]) band. ^d Band(C): $K^{\pi}=3^+$, (π 7/2[523])-(ν 1/2[521]) band. ^e Band(D): $K^{\pi}=5^+$ band. Configuration: $(\pi 3/2[411]+\nu 7/2[633])+(\pi 7/2[523]+\nu 3/2[521])$. ^f Band(E): $K^{\pi}=6^+$, $(\pi 7/2[523])+(\nu 5/2[512])$ band. ^g Band(F): $K^{\pi}=4^+$, $(\pi 7/2[523])+(\nu 1/2[521])$ band. ^h Band(G): $K^{\pi}=1^{-}$, $(\pi 1/2[411])+(\nu 1/2[521])$ band. ^{*i*} Band(H): $K^{\pi}=1^+$, (π 7/2[523])-(ν 5/2[523]) band. ^j Band(I): $K^{\pi}=2^{-}$, $(\pi 7/2[523])-(\nu 7/2[633])+Q_{22}$ band. ^k Band(J): $K^{\pi}=2^{+}$ band. Configuration: $(\pi 3/2[411]-\nu 7/2[633])+(\pi 7/2[523]-\nu 3/2[521])$. ^{*l*} Band(K): $K^{\pi}=1^+$, $(\pi 7/2[523])-(\nu 5/2[512])$ band. ^{*m*} Band(L): $K^{\pi}=3^+$, $(\pi \ 1/2[411])-(\nu \ 7/2[633])$ band. ^{*n*} Band(M): $K^{\pi} = 4^+$, $(\pi \ 1/2[411]) + (\nu \ 7/2[633])$ band. ^o Band(N): $K^{\pi}=4^+$, $(\pi 7/2[523])+(\nu 1/2[510])$ band. ^{*p*} Band(O): $K^{\pi}=3^+$, $(\pi 7/2[523])-(\nu 1/2[510])$ band. ^q Band(P): $K^{\pi}=1^{-}$, $(\pi \ 3/2[411]) \cdot (\nu \ 1/2[521])$ band. ^{*r*} Band(Q): $K^{\pi}=2^{-}$, (π 3/2[411])+(ν 1/2[521]) band. ^s Band(R): $K^{\pi}=5^{-}$, $(\pi 7/2[523])+(\nu 7/2[633])-Q_{22}$ band. ^t Band(S): $K^{\pi}=0^{-}$, $(\pi \ 1/2[411])-(\nu \ 1/2[521])$ band. ^{*u*} Band(T): $K^{\pi}=3^{-}$ band. Configuration ($\pi 1/2[541]$)-($\nu 7/2[633]$) or ($\pi 1/2[411]$)+($\nu 5/2[512]$). ^v Band(U): $K^{\pi}=6^+$, $(\pi 7/2[523])+(v 5/2[523])$ band. ^w Band(V): $K^{\pi}=2^+$, $(\pi 7/2[523])-(\nu 3/2[521])$ band. ^x Band(W): $K^{\pi}=5^+$, $(\pi 7/2[523])+(\nu 3/2[521])$ band. ^y From Adopted Levels. ^z From Adopted Levels. ¹ 2 or possibly 4 from $5812\gamma(\theta)$, not 4 from 5812γ circular polarization (1979Bo08). ² J=3.4 from 5761 $\gamma(\theta)$ (1979Bo08). ³ 4 or possibly 3 from $5523\gamma(\theta)$ (1979Bo08).

 $\gamma(^{166}\text{Ho})$

I γ normalization: from 1967Mo05. If, instead, one obtained I γ normalization by requiring that Σ (I(γ +ce) to g.s.)=100, a value of 1.02 9 would be obtained, in excellent agreement with the normalization recommended by 1967Mo05. The ratio R=I γ (2007ChZX, 'Budapest data')/I γ (1967Mo05) varies widely but, if cases where the intensities differ by At least a factor of 3 are removed from consideration, the average value of R is 0.93 for secondary lines and 1.10 for primary transitions. Some, but not all, of the inconsistencies May stem from the poorer energy resolution of the 2007ChZX measurement or from the presence of unidentified impurities. For the strong 116.8 γ , 136.7 γ , 5181 γ , 5212 γ and 5813 γ , I γ (2007ChZX)/I γ (1967Mo05) is 0.83 9, 0.85 10, 0.95 9, 1.04 11 and 0.93 8, respectively. with the adopted normalization, the total observed primary γ intensity is 16%.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{e}	$I_{(\gamma+ce)}^{d}$	Comments
(3.1)		263.7876	5+	260.6625	4+			4.1 7	E_{γ} : from level energy difference; transition expected but not observed (see 1978Ba78).
(9.393)		180.467	4-	171.0738	3-			12.3 10	$I_{(\gamma+ce)}$: from $I(\gamma+ce)$ imbalance At 264 level. E_{γ} : from level energy difference; transition expected but not observed (see 1978Ba78). $I_{(\gamma+ce)}$: from $I(\gamma+ce)$ imbalance At 180 level.
10.43 ^{&} 2	0.052 ^{<i>a</i>} 9	190.9021	3+	180.467	4-	[E1]	27.2		$\alpha(L)=21.0 4; \alpha(M)=5.02 8; \alpha(N+)=1.158 18$ $\alpha(N)=1.059 16; \alpha(O)=0.0972 15; \alpha(P)=0.00186 3$
(16.97)		671.746	4^{+}	654.818	5+				
(18.483)		348.257	5+	329.774	5-				E_{γ} : from level energy difference; γ expected but not observed.
19.840 ^{&} 6	1.09 ^{<i>a</i>} 9	190.9021	3+	171.0738	3-	E1	4.79		α (L)=3.74 6; α (M)=0.847 12; α (N+)=0.206 3 α (N)=0.185 3; α (O)=0.0204 3; α (P)=0.000514 8 Mult.: from Adopted Gammas.
28.242 ^{&} 9	0.040 ^{<i>a</i>} 3	82.4707	1-	54.2391	2-	M1	16.99		α (L)=13.27 <i>19</i> ; α (M)=2.93 <i>5</i> ; α (N+)=0.785 <i>11</i> α (N)=0.681 <i>10</i> ; α (O)=0.0987 <i>14</i> ; α (P)=0.00551 <i>8</i> Mult.: from Adopted Gammas.
^x 37.42 ^{&} 4	0.014 ^a 3								placement from 605 and 672 levels rejected In 2000Pr03.
38.493 6	0.34 2	464.501	2+	426.025	1+	M1(+E2)	9.×10 ¹ 8		
(42.994)		416.086	2^{-}	373.092	1-				E_{γ} : from level energy difference; γ expected but not observed.
46.232 ^c 4	0.12 2	634.314	5+	588.083	6^{+}				I_{γ} : from 1989Du03. Other: 0.02 (1967Mo05).
48.0315 7	0.17 3	377.806	6-	329.774	5-				
48.303 ^{c#b} 4	0.03	464.501	2^{+}	416.086	2^{-}				
51.8155 7	0.23 3	481.846	3+	430.031	2^{+}	[M1]	2.83		
53.3434 7	0.090 14	597.015	3-	543.672	2^{-}				
54.2392 7	2.50 25	54.2391	2-	0.0	0-	E2	31.3		α (L)=24.0 4; α (M)=5.81 9; α (N+)=1.457 21 α (N)=1.305 19; α (O)=0.1519 22; α (P)=0.0001670 24 Mult.: from L12:L3:M:N=20:20:14:2 (1973PrZI); α (L12)exp=7.8

S

				¹⁶⁵ Ho(n, γ) E=thermal				1967Mo05,1984Ke15,2000Pr03 (continued)				
							$\gamma(^{166})$	Ho) (continued)				
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{e}	Comments				
			_		_			31, α (L3)exp=7.8 31, α (M)exp=5.9 29, α (N)exp=0.8 5 (1973PrZI). α (L3)exp=14 5, L2:L3:M:N=125 38:138 41:54 16:16 5 (1967Mo05).				
57.190 [@] 10 *57.469 10	0.16	719.370	4+	662.169	3+			placement from 725 level rejected In 2000Pr03				
57.517 8	0.32 6	521.982	3+	464.501	2+							
(59, 594)	0.02	475 680	3-	416 086	2-			E : from level energy difference: v expected but not observed				
66 103 7	0 20 4	547 934	4+	481 846	3+			other: $F_{\gamma}=66$ 31.8 $I_{\gamma}=0.18$ 3 ('Budanest data' 2007Cb7X)				
69.7604 14	2.8.3	260.6625	4+	190.9021	3+	M1	7.37	$\alpha(K) = 6.19.9; \alpha(L) = 0.926.13; \alpha(M) = 0.205.3; \alpha(N+) = 0.0548.8$				
			-					$\alpha(N)=0.0475$ 7; $\alpha(O)=0.00690$ 10; $\alpha(P)=0.000386$ 6				
								L12:M:N=5:<1:<1 (1973PrZI); α (L12)exp=1.9 10 (1973PrZI); α (L1)exp=0.47 20				
								from 1967Mo05 and 0.80 15 quoted by 1967Mo05 from other work.				
								Additional information 10.				
								other: $E\gamma = 69.79 \ 4$, $I\gamma = 1.76 \ 10 \ ('Budapest data', 2007 ChZX)$.				
70.988 10	0.18 4	668.005	4-	597.015	3-							
72.8859 15	0.20 4	263.7876	5+	190.9021	3+	E2	9.62	$\alpha(K)=2.05 3; \ \alpha(L)=5.81 9; \ \alpha(M)=1.405 20; \ \alpha(N+)=0.353 5$				
								$\alpha(N)=0.3165; \alpha(O)=0.03716; \alpha(P)=9.27\times10^{-5}13$				
								Mult.: from $\alpha(L2)\exp=2.8$ 15, $\alpha(L3)\exp=4.5$ 24 (196/Mo05) one obtains				
								mult=E2(+M1), δ >1.6. The level scheme requires ΔJ =2. E1+M2 would require				
								0 > 1.2 and thus is excluded by KUL.				
74.261 ^C 16	0.00.3	736 430	<u></u> 4+	662 160	3+			olici. $E_{Y} = 72.097$, $F_{Y} = 0.273$ (Budapest data, 2007CHZA).				
74.201 10	0.09 5	750.450	7	002.109	5			other: $F_{\nu}=74.93.6$ $I_{\nu}=0.50.5$ ('Budapest data' 2007Cb7X): discrepant data suggest				
								presence of an impurity and/or a multiplet In that study.				
75.753 16	0.070 21	634.314	5+	558.571	4^{+}			F				
75.985 8	0.070 21	891.124	4+	815.139	3+							
76.4663 ^c 14	0.34 3	598.448	4^{+}	521.982	3+			placement from 947 level rejected In 2000Pr03.				
76.7258 ^c 14	0.19 <i>3</i>	558.571	4+	481.846	3+			other: $E\gamma = 76.69 \ 6$, $I\gamma = 0.53 \ 5$ ('Budapest data', 2007ChZX); possibly an unresolved				
								doublet.				
								placement from 1023 level rejected In 2000Pr03.				
x78.871 12	0.05				<u> </u>							
82.470 2	0.97 10	82.4707	1	0.0	0	MI	4.55	$\alpha(\mathbf{K})=3.82$ 6; $\alpha(\mathbf{L})=0.569$ 8; $\alpha(\mathbf{M})=0.1257$ 18; $\alpha(\mathbf{N}+)=0.0337$ 5				
								$\alpha(N)=0.02924; \alpha(O)=0.004240; \alpha(P)=0.0002374$				
								Additional information 7. Mult : from $\alpha(I_1) \exp[-1.0.5](1073 \Pr[T]); \alpha(K) \exp[-2.8.14] \alpha(I_1) \exp[-0.5.3]$				
								$(1967M_005)$				
								other: $E_{\gamma}=82.49$ 5, $I_{\gamma}=0.68$ 5 ('Budapest data', 2007ChZX).				
83.049 ^{fc} 14	0.050^{f} 15	558,571	4^{+}	475.680	3-			placement from 1087 level rejected In 2000Pr03.				
83.049 fc 1/	0.050f 15	605.047	2+	521 982	3+			placement from 1087 level rejected In 2000Pr03				
84 468 ^C 10	0.13.3	370 5/7	$\frac{2}{6^{+}}$	205 085	6+			other Fay 84.68 7 Ju-0.229.26 ('Budanest data' 2007Ch7X), possibly for				
10 007.70	0.15 5	517.571	0	275.005	0			unresolved doublet				
								placement from 348 level rejected In 2000Pr03				
								1 J				

γ ⁽¹⁶⁶Ho) (continued)</sup>

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α ^e	Comments
84.742 14 86.359 11 86.765 ^c 11 87.193 15 87.5946 16	0.040 <i>12</i> 0.100 <i>25</i> 0.100 <i>25</i> 0.040 <i>12</i> 1.24 <i>12</i>	628.418 634.314 683.805 562.890 348.257	2^{-} 5^{+} 3^{-} 4^{-} 5^{+}	543.672 547.934 597.015 475.680 260.6625	2 ⁻ 4 ⁺ 3 ⁻ 3 ⁻ 4 ⁺	M1(+E2)	4.2.5	placement from 1097 level rejected In 2000Pr03. $\alpha(K)=2.3.9; \ \alpha(L)=1.5.10; \ \alpha(M)=0.35.25; \ \alpha(N+)=0.09.6$
			-			()		$\alpha(N)=0.08 6; \alpha(O)=0.010 6; \alpha(P)=0.00013 7$ K:L1:M=100 30:21 10:9 5 and $\alpha(K)\exp=3.0$ 10 (1967Mo05). other: Ey=87.47 4, Iy=1.14 6 ('Budapest data', 2007ChZX).
88.60 <i>3</i>	0.03	171.0738	3-	82.4707	1-	[E2]	4.466	······································
89.599 13	0.100 15	260.6625	4+	171.0738	3-	[E1]	0.424	$\alpha(K)=0.352\ 5;\ \alpha(L)=0.0564\ 8;\ \alpha(M)=0.01245\ 18;\ \alpha(N+)=0.00323\ 5$ $\alpha(N)=0.00283\ 4;\ \alpha(O)=0.000380\ 6;\ \alpha(P)=1.580\times10^{-5}\ 23$
90.720 ^c 15	0.04	774.522	1-	683.805	3-			other: $E_{\gamma}=90.8$ 7, $I_{\gamma}=0.026$ 23 ('Budapest data', 2007ChZX).
91.286 ^c 13	0.070 18	470.841	5+	379.547	6+			placement from 1115 level rejected In 2000Pr03.
91.407 13	0.090 18	464.501	2^{+}	373.092	1-			
92.355 ^c 13	0.050 10	760.345	3-	668.005	4-			
^x 92.819 [#] 15	0.05							
94.529 11	0.040 12	662.169	3+	567.624	1^{+}			
94.643 ^b 11	0.20 3	638.235	4-	543.672	2^{-}			other: Ey=94.87 9, Iy=0.25 4 ('Budapest data', 2007ChZX).
95.190 ^c 3	0.25 4	693.638	5+	598.448	4+			
95.767 <i>3</i>	0.090 10	832.197	5+	736.430	4+			
95.953 ^c 2	0.120 12	521.982	3+	426.025	1^{+}			other: $E\gamma = 95.78 \ 11$, $I\gamma = 0.18 \ 3$ ('Budapest data', 2007ChZX).
96.265 20	0.020 6	654.818	5+	558.571	4+			
96.381 20	0.020 6	693.388	(2^{+})	597.015	3-			
97.253 ^{fc} 20	0.015 ⁵	725.68	2^{-}	628.418	2^{-}			
97.253 ^{fc} 20	0.015 ^f	935.12	5-	837.717	4-			
98.200 ^C 15	0.030 8	732.513	6^{+}	634.314	5+			placement from 1023 level rejected In 2000Pr03.
98.572 [°] 16	0.040 8	529.816	6-	431.239	5-			placement from 905 level rejected In 2000Pr03.
98.8572 <i>15</i>	0.56 6	470.841	5+	371.985	4+	M1,E2	2.82 13	$\alpha(K)=1.7 6$; $\alpha(L)=0.9 6$; $\alpha(M)=0.21 14$; $\alpha(N+)=0.05 4$
								$\alpha(N)=0.05 \ 3; \ \alpha(O)=0.006 \ 4; \ \alpha(P)=9.E-5 \ 5$
								α (L12)exp<2 (19/3PrZ1); α (L12)exp=0.6 4 (196/Mo05). other: E γ =98.86 5, I γ =0.43 3 ('Budapest data', 2007ChZX).
^x 99.293 [#] 14	0.015							
99.584 ^{fc} 16	0.020^{f} 5	704.962	3-	605.047	2^{+}			
99.584 ^f 16	0.020^{f} 5	757.707	5^{-}	657.995	5^{-}			
102.55 4	0.016	475.680	3-	373.092	1^{-}	[E2]	2.57	
103.116 15	0.052 8	567.624	1^{+}	464.501	2^{+}			
^x 104.295 15	0.049 7							
105.517 4	0.52 5	453.771	6+	348.257	5+	M1(+E2)	2.27 5	$\alpha(K)=1.4 5; \alpha(L)=0.7 4; \alpha(M)=0.16 10; \alpha(N+)=0.040 24$ $\alpha(N)=0.035 21; \alpha(O)=0.0044 23; \alpha(P)=8.E-5 4$ K/L12=9 6 and $\alpha(K)\exp=2.6 10$ (1967Mo05). other: Ey=105.54 5, Iy=0.377 26 ('Budapest data', 2007ChZX).

7

				¹⁶⁵ Ho(n,	¹⁶⁵ Ho (\mathbf{n},γ) E=thermal		1967Mo05,1984Ke15,2000Pr03 (continued)			
						<u>)</u>	v(¹⁶⁶ Ho) ((continued)		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{e}	Comments		
^x 106.869 4	0.160 24		_					placement from 655 level rejected In 2000Pr03.		
^x 107.181 16	0.040 8							other. $E_{\gamma} = 107.07 T_{\gamma}, T_{\gamma} = 0.106 27$ (Dudapest data , 2007 ChEA).		
107.71 ^b 3	0.030 8	704.962	3-	597.015	3-					
108.199 2	0.85 9	371.985	4+	263.7876	5+	M1(+E2)	2.09 4	α (K)=1.3 5; α (L)=0.6 4; α (M)=0.14 9; α (N+)=0.036 21 α (N)=0.032 19; α (O)=0.0040 21; α (P)=7.E-5 4 α (L12)exp=0.26 14 (1967Mo05). other: E γ =108.22 5, I γ =0.64 5 ('Budapest data', 2007ChZX).		
109.241 ^c 12	0.030 6	704.962	3-	595.726	1^{-}					
109.887 18	0.020 5	481.846	3+	371.985	4+	[M1]	1.99			
110.327 ^{<i>c</i>} <i>12</i> 111.324 2	0.040 8 0.63 6	942.524 371.985	6+ 4+	832.197 260.6625	5+ 4+	M1(+E2)	1.91	placement from 658 level rejected In 2000Pr03. $\alpha(K)=1.2 \ 4; \ \alpha(L)=0.5 \ 3; \ \alpha(M)=0.12 \ 8; \ \alpha(N+)=0.032 \ 18 \ \alpha(N)=0.028 \ 16; \ \alpha(O)=0.0035 \ 18; \ \alpha(P)=7.E-5 \ 4 \ Mult.: \ \alpha(K)exp=1.8 \ 8, \ K:L12=178 \ 71:36 \ 18 \ (1967Mo05).$ other: $E_{Y}=111.30 \ 4, \ I_{Y}=0.47 \ 3 \ ('Budapest \ data', \ 2007ChZX).$		
x112.869 12	0.020 6							placement from 832 level rejected In 2000Pr03.		
113.17 ^{c#} 2	0.02	671.746	4^{+}	558.571	4+					
113.373 ^c 3	0.120 18	807.011	6^{+}	693.638	5^{+}					
113.644 <i>f</i> 4	0.150 ^f 23	543.672	2-	430.031	2^{+}			other: Ey=113.63 6, Iy=0.198 23 ('Budapest data', 2007ChZX).		
113.644 fc 4	$0.15^{f} 2$	742.02	4-	628.418	2^{-}					
114.50 ^{fc} 3	0.01^{f}	644.29	7-	529.816	6-					
114.50 ^{fc} 3	0.01^{f}	883.94	6^{+}	769.78	5^{+}					
115.167 4	0.090 14	597.015	3-	481.846	3+					
115.51 ^c 3	0.01	774.522	1-	659.01	0^{-}			placement from 885 level rejected In 2000Pr03.		
115.759 [°] 3	0.34 5	379.547	6+	263.7876	5+					
116.197° <i>13</i>	0.060 15	638.235	4-	521.982	3+	N/1	1 (72			
116.835 7	15.8 10	1/1.0/38	3	54.2391	2	MI	1.673	$\alpha(K)=1.406\ 20;\ \alpha(L)=0.209\ 3;\ \alpha(M)=0.0460\ 7;\ \alpha(N+)=0.01253\ 78$ $\alpha(N)=0.01069\ 15;\ \alpha(O)=0.001555\ 22;\ \alpha(P)=8.71\times10^{-5}\ 13$ K:L1:M:N=100\ 15:15\ 2:4.7\ 14:1.6\ 5\ (1967Mo05);\ K:L1:L2:L3=100\ 15:13 2:1.7\ 5:<0.9\ (1967Mo05, thin source);\ K:L12:M:N=24:5:2:<1\ (1973PrZI). $\alpha(K)exp=1.5\ 4,\ \alpha(L12)exp=0.29\ 15,\ \alpha(M)exp=0.13\ 6,\ \alpha(N)exp<0.06$ (1973PrZI). Additional information 8. other: Fa=116\ 84\ 4,\ Ia=13\ 0.6\ ('Budapest\ data',\ 2007ChZX)		
117.264 f 3	$0.20f_{2}$	588 083	6+	470 841	5+			$(10.01, 2_1, 10.01, 1_1 - 15.00)$ (Budupost data, 2007 (12A).		
117.204° J 117.264 fc 2	0.20° 2 0.200 f 20	771 0/	6 ⁺	654 818	5 5+					
x118.41 3	0.02	//1.74	0	004.010	5			placement from 925 level rejected In 2000Pr03.		
118.49 2	0.03	662.169	3+	543.672	2^{-}			L		
^x 118.78 5	0.02									
120.06 ^C 2	0.020 6	595.726	1-	475.680	3-			placement from 668 level rejected In 2000Pr03.		
120.36 ^{C#D} 3	0.01	668.005	4-	547.934	4+					

 ∞

From ENSDF

¹⁶⁶₆₇Ho₉₉-8

				¹⁶⁵ Ho	(n ,γ)	E=thermal	1967M	005,1984Ke15,2000Pr03 (continued)
							<u>γ(¹⁶⁶Ho)</u>	(continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α ^e	Comments
$121.48^{c} 3$ $122.577^{c} 4$ $x_{122} 89 2$	0.01 0.090 <i>18</i> 0.01	597.015 470.841	3- 5+	475.680 348.257	3- 5+			placement from 598 level rejected In 2000Pr03.
122.09 2 123.437 5 123.81 2 124.350 15	0.100 <i>15</i> 0.01 0.040 8	577.208 671.746	7^+ 4^+ 4^-	453.771 547.934 543.672				other: $E\gamma = 123.25 \ I9$, $I\gamma = 0.11 \ 3$ ('Budapest data', 2007ChZX).
124.330 <i>13</i> 126.228 <i>3</i>	1.06 <i>11</i>	180.467	4 4 ⁻	54.2391	2 2-	E2	1.200	$\alpha(K)=0.601 \ 9; \ \alpha(L)=0.460 \ 7; \ \alpha(M)=0.1105 \ 16; \ \alpha(N+)=0.0280 \ 4$ $\alpha(N)=0.0249 \ 4; \ \alpha(O)=0.00300 \ 5; \ \alpha(P)=2.56\times10^{-5} \ 4$ K:L2:L3=100 $30:29 \ 14:29 \ 14; \ \alpha(K)exp=0.74 \ 24 \ (1967Mo05).$ other: Ex=126.21 5. Lx=0.89 6 ('Budapest data', 2007ChZX).
128.566 ^C 5 129.353 7 130.641 ^C 16	0.140 <i>21</i> 0.080 <i>16</i> 0.01	423.651 605.047 788.618	7^+ 2^+ 6^-	295.085 475.680 657.005	6^+ 3^- 5^-			other: $E\gamma = 129.19$ <i>16</i> ; $I\gamma = 0.15$ <i>3</i> ('Budapest data', 2007ChZX).
131.41 3	0.01	736.430	4+	605.047	2+			other: E γ =131.27 4, I γ =0.15 4 ('Budapest data', 2007ChZX); discrepancy suggests presence of an impurity In this study.
131.759 5 132.472 [°] 17	0.140 <i>21</i> 0.03	137.729 597.015	8 3-	5.969 464.501	2^{+}			other: $E\gamma=132.35$ 18, $I\gamma=0.17$ 3 ('Budapest data', 2007ChZX); May not have resolved a close doublet.
134.00 ^{<i>c</i>#} 3	0.01	598.448	4+	464.501	2 ⁺			other: $E\gamma=133.89$ 15; $I\gamma=0.19$ 3 ('Budapest data', 2007ChZX); May Be a multiplet, but I γ suggests the presence of an impurity As well In this study.
134.34 <i>3</i> 134.815 ^c 6	$0.020\ 6$ $0.060\ 15$	588.083 514.362	6+ 7+	453.771 379.547	6+ 6+			see comment on 134.0γ . placement from 693 level rejected In 2000Pr03. see comment on 134.0γ .
135.15 ^c 2 135.883 4	0.040 <i>12</i> 0.100 <i>15</i>	723.239 683.805	7 ⁺ 3 ⁻	588.083 547.934	6+ 4+			
136.662 2	27.5 28	190.9021	3+	54.2391	2-	E1	0.1378	$\begin{aligned} \alpha(K) = 0.1155 \ 17; \ \alpha(L) = 0.01749 \ 25; \ \alpha(M) = 0.00385 \ 6; \ \alpha(N+) = 0.001007 \ 14 \\ \alpha(N) = 0.000880 \ 13; \ \alpha(O) = 0.0001210 \ 17; \ \alpha(P) = 5.50 \times 10^{-6} \ 8 \\ K:L12:M:N=4:1:<1:<1 \ (1973PrZI); \ K:L12=9.8 \ 12:1.1 \ 2 \ (1967Mo05); \\ \alpha(K) \exp = 0.16 \ 6, \ \alpha(L12) \exp = 0.039 \ 23 \ (1973PrZI). \\ Additional information \ 9. \\ other: \ E_{\gamma} = 136.67 \ 4, \ I_{\gamma} = 23.3 \ 11 \ ('Budapest \ data', \ 2007ChZX). \end{aligned}$
^x 137.09 [#] 3	0.01							
137.51 ^{ch} 2 137.99 ^c 4	0.020 <i>6</i> 0.007	567.624 736.430	1+ 4+	430.031 598.448	2+ 4+			placement from 558 level rejected In 2000Pr03. other: $E\gamma$ =138.85 22, $I\gamma$ =0.11 4 ('Budapest data', 2007ChZX); discrepancy suggests presence of an impurity In this study
140.117 ^C 5	0.35 4	683.805	3-	543.672	2-	M1+(E2)	0.91 9	$\alpha(K) \exp = 0.86 \ 28 \ (1967Mo05)$ $\alpha(K) = 0.64 \ 20; \ \alpha(L) = 0.21 \ 9; \ \alpha(M) = 0.048 \ 21; \ \alpha(N+) = 0.012 \ 6$ $\alpha(N) = 0.011 \ 5; \ \alpha(O) = 0.0014 \ 5; \ \alpha(P) = 3.6 \times 10^{-5} \ 17$ placement from 662 level rejected In 2000Pr03.
140.544 10	0.090 10	605.047	2+	464.501	2+			otner: $E\gamma = 140.14 /$, $I\gamma = 0.43 3$ ('Budapest data', 200/ChZX).

	¹⁶⁵ Ho(n,γ) E=thermal 1967Mo05,1984Ke15,2000Pr03 (continued)												
							$\gamma(^1$	⁶⁶ Ho) (continued)					
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α ^e	Comments					
141.599 7	0.130 13	567.624	1^{+}	426.025	1^{+}			other: Ey=141.55 14; Iy=0.15 3 ('Budapest data', 2007ChZX).					
x143.41 2	0.015 5	T 10 00	4-	505 015	2-			placement from 815 level rejected In 2000Pr03.					
145.00 3	0.02	742.02	4	597.015	3								
145.228 /	0.140 10	905.544	2	/60.345	3			other: $E_{\gamma} = 145.27 \ 12$; $I_{\gamma} = 0.093 \ 18$ ('Budapest data', 200/ChZX).					
140.808 8	0.095 14	362.890	4	416.086	2 4-	(M1)	0.925	other: $E\gamma = 140.01 \ I0, \ I\gamma = 0.001 \ I0$ ("Budapest data", $200/CnZX$).					
149.307 3	4.2 4	529.114	3	180.407	4	$(\mathbf{W}\mathbf{I}\mathbf{I})$	0.855	$\alpha(\mathbf{N})=0.70270; \alpha(\mathbf{L})=0.105773; \alpha(\mathbf{N})=0.02294; \alpha(\mathbf{N}+)=0.000149$					
								$u(\mathbf{N})=0.00352$ 6; $u(\mathbf{O})=0.0007/4$ 11; $u(\mathbf{P})=4.34\times10^{-5}$ 0 $V_{1}I_{2}\cdot\mathbf{M}\cdot\mathbf{N}=5\cdot1\cdot<1\cdot<1\cdot<1\cdot(1072\mathbf{D}\cdot\mathbf{T})\cdot\mathbf{V}\cdot\mathbf{I}=1-66$ 10:0 5 24 (1067Mo05): $u(\mathbf{V})$ over 1 2 5					
								K.L12.M.N=5.1.<1.(1973F1ZI), K.L1=00 10.9.3 24 (1907M003), $u(K)exp=1.2 3$, u(I 12)exp=0.2 I (1073Dr7I) u(K)exp=0.68 I0 and 0.66 I2 (thin source)					
								$(1967M_005)$					
								other: $E_{\nu}=149$ 32 4 $I_{\nu}=3$ 62 19 ('Budapest data' 2007ChZX)					
								Additional information 11.					
150.268 ^c 8	0.110 17	529.816	6-	379.547	6+								
151.533 9	0.080 12	567.624	1+	416.086	2-			other: $E_{\gamma}=151.19 \ I_{\gamma}=0.053 \ I_{4}$ ('Budapest data', 2007ChZX).					
152.45 3	0.016 5	634.314	5+	481.846	3+								
152.71 <i>3</i>	0.025 5	628.418	2-	475.680	3-								
^x 153.32 4	0.006												
154.71 ^{cb} 3	0.025 5	792.789	4-	638.235	4-			placement from 891 level rejected In 2000Pr03.					
155.42 <i>fc</i> 3	0.025 f 5	732.513	6+	577.208	7+			placement from 925 level rejected In 2000Pr03.					
155.42 <i>fc</i> 3	0.025^{f} 5	881.040	3-	725.68	2-			placement from 925 level rejected In 2000Pr03.					
x156.20 3	0.014	001.010	5	/20.00	2								
x156.45 3	0.014							placement from 634 level rejected In 2000Pr03.					
157.344 8	0.21 3	348.257	5^{+}	190.9021	3+			other: $E_{\gamma}=157.38$ 7, $I_{\gamma}=0.167$ 18 ('Budapest data', 2007ChZX).					
^x 157.95 5	0.014							placement from 725 level rejected In 2000Pr03.					
158.702 9	0.060 12	329.774	5-	171.0738	3-								
x159.38 2	0.050 10												
159.89 ^C 3	0.010 3	423.651	7+	263.7876	5^{+}			placement from 885 level rejected In 2000Pr03.					
160.63 2	0.040 8	757.707	5-	597.015	3-								
161.42 ^{<i>cb</i>} 2	0.030 6	704.962	3-	543.672	2-			other: $E\gamma = 161.14 \ IO$, $I\gamma = 0.114 \ IA$ ('Budapest data', 2007ChZX); inconsistent data					
								May indicate presence of an impurity.					
162.452 10	0.065 13	592.501	3+	430.031	2+								
163.352° 7	0.51 5	760.345	3-	597.015	3-			placement from 791 level rejected In 2000Pr03.					
164 576 4	0.000	002.04	C^{\perp}	710.250	4.±			other: $E\gamma = 163.305$, $I\gamma = 0.35924$ ('Budapest data', 2007ChZX).					
164.57 4	0.020 6	883.94	6 ⁺	719.370	4^+								
166.983 5	0.170 17	397.015	5 5-	430.031	2	F 1		$(\mathbf{W})_{\text{rest}} = (0, 10, (10, 7), (-0.5))$					
167.450° 5	0.95 10	431.239	5	263.7876	2,	EI		α (K)exp<0.19 (196/M005).					
								pracement from 058 level rejected in 2000PTU5. other: $F_{0}=167/40/4$, $I_{0}=0.80.5$ ('Budgnest data' 2007Cb7X)					
x168.40.3	0 040 12							outer. $D_{\gamma} = 107.404$, $T_{\gamma} = 0.095$ (budapest data , 200/CHZA).					
160.49 J	0.040 12	430 031	2^{+}	260 6625	Δ^+								
169.712° 5	0.02	837 717	4-	668 005	4-			placement from 825 level rejected In 2000Pr03					
107.112 5	0.210 21	5577717	•	500.005	•			other: $E\gamma = 169.70$ 7, $I\gamma = 0.242$ 23 ('Budapest data', 2007ChZX).					

¹⁶⁶₆₇Ho₉₉-10

From ENSDF

γ (¹⁶⁶Ho) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	α^{e}	Comments
$170.09 f_{3}$	0.01^{f}	832 197	5+	662 169	3+			
170.09^{fc} 3	0.01	985.20	5+	815 139	3+			
170.584 15	0.050 10	543.672	2^{-}	373.092	1^{-}			
171.67 [°] 3	0.030 6	693.638	5+	521.982	3+			placement from 947 level rejected In 2000Pr03.
								other: $E\gamma = 171.2 \ 4$, $I\gamma = 0.042 \ 15 \ ('Budapest data', 2007 ChZX)$.
173.47 ^c 12	0.02	638.235	4-	464.501	2^{+}			placement from 736 level rejected In 2000Pr03.
174.77 [°] 4	0.02	935.12	5-	760.345	3-			
175.73 4	0.030 9	470.841	5 ⁺	295.085	6 ⁺			see comment on $\Gamma/6.0\gamma$.
1/5.98 2	0.070 14	547.934	4'	3/1.985	4'			other: $E\gamma = 1/5.75$ 14; $I\gamma = 0.085$ 18 (Budapest data', 200/ChZX); May include the 175.7 γ .
^177.71 4	0.01	605 047	2+	126 025	1+	(M1 E2)	0 /3 8	$\alpha(\mathbf{K}) = 0.32$ 10: $\alpha(\mathbf{L}) = 0.082$ 20: $\alpha(\mathbf{M}) = 0.010$ 6: $\alpha(\mathbf{N} + \mathbf{L}) = 0.0040$ 13
179.032.0	0.23 4	005.047	2	420.023	1	(1v11, L2)	0.45 8	$a(\mathbf{K}) = 0.02 \ 10, \ a(\mathbf{L}) = 0.002 \ 20, \ a(\mathbf{M}) = 0.019 \ 0, \ a(\mathbf{M} +) = 0.0049 \ 13$
								$\alpha(K) = 0.0043 \ 12, \ \alpha(O) = 0.00037 \ 11, \ \alpha(I) = 1.8 \times 10^{-6} \ 8$ $\alpha(K) = 0.32 \ 21 \ 0.60 \ 20 \ (1967 Mo05)$
								other data: $E\gamma = 179.28$ 7, $I\gamma = 0.354$ 26 ('Budapest data', 2007ChZX).
179.882 ⁸ 4	0.15 ⁸ 5	557.65	7^{-}	377.806	6-			α (K)exp=0.32 21, 0.60 20 (1967Mo05), mult=M1,E2 for doublet.
								I_{γ} : from $\gamma\gamma$ coin (2000Pr03); $I\gamma$ =0.25 4 for doublet.
179.882 ^{gc} 4	0.10 ^g 3	595.726	1-	416.086	2^{-}			α (K)exp=0.32 21, 0.60 20 (1967Mo05), mult=M1,E2 for doublet.
100 545 5	0.00.0	(24.21.4	~+	450 551	< ±		0.40.0	I_{γ} : from $\gamma\gamma$ coin (2000Pr03); $I\gamma$ =0.25 4 for doublet.
180.545 5	0.20 3	634.314	5'	453.771	6'	(M1,E2)	0.42 8	$\alpha(K) \exp = 0.40 I/(196/Mo05)$ $\alpha(K) = 0.21 I/0; \alpha(L) = 0.070 I/0; \alpha(M) = 0.018 5; \alpha(N+1) = 0.0048 I/2$
								$u(\mathbf{K})=0.01110$; $u(\mathbf{L})=0.07919$; $u(\mathbf{M})=0.0183$; $u(\mathbf{M}+)=0.004812$
181 0868 5	1 178 13	371 985	Δ^+	190 9021	3+	(M1)	0.487	$\alpha(\mathbf{N}) = 0.0042 \ 11, \ \alpha(\mathbf{O}) = 0.00000 \ 10, \ \alpha(\mathbf{P}) = 1.8 \times 10^{-6} \ 8$ $\alpha(\mathbf{K}) = 0.409 \ 6; \ \alpha(\mathbf{I}) = 0.0603 \ 9; \ \alpha(\mathbf{M}) = 0.01330 \ 10; \ \alpha(\mathbf{N} \pm -) = 0.00357 \ 5$
101.000- 5	1.17- 15	571.705	т	170.7021	5	(1411)	0.407	$\alpha(\mathbf{N})=0.00309 \ 5. \ \alpha(\Omega)=0.000450 \ 7. \ \alpha(\mathbf{P})=2.53\times 10^{-5} \ 4$
								$\alpha(\mathbf{K}) = 0.83$ (1973PrZI), 0.42 14 and 0.43 10 (thin source) (1967Mo05) for
								doublet dominated by this transition.
								I_{γ} : 1.27 13 for doublet minus I_{γ} =0.10 3 ($\gamma\gamma$ coin, 2000Pr03) from 597 level.
								Additional information 12.
								other: $E\gamma = 180.96 5$; $I\gamma = 1.51 8$ ('Budapest data', 2007ChZX); probably includes 180.5 γ .
181.086 ^{gc} 5	0.10 ^g 3	597.015	3-	416.086	2^{-}			I_{γ} : from $\gamma\gamma$ coin (2000Pr03).
182.04° 4	0.02	725.68	2-	543.672	2-		0.0000	
182.302 16	0.100 15	657.995	5-	475.680	3-	[E2]	0.3329	
^x 183.11 [#] 6	0.01	654.010	~+	170.011	~+			
183.96 4	0.050 15	654.818	5'	470.841	5'			(104.04.21, 10.056.10)
186 147 6	0.130 13	668 005	Δ^{-}	481 846	3+			other: $E\gamma = 164.04 \ 21$; $I\gamma = 0.030 \ I9$ (Budapest data , 2007ChZA).
186.582.6	0.28.3	558.571	4+	371.985	4^{+}	E2.M1	0.38.7	$\alpha(K) \exp[0.24, 18, (1967 Mo05)]$
		2001071	•	2 / 11/ 00			5.007	$\alpha(K)=0.29$ 9; $\alpha(L)=0.071$ 15; $\alpha(M)=0.016$ 4; $\alpha(N+)=0.0042$ 10
								$\alpha(N)=0.0037 \ 9; \ \alpha(O)=0.00049 \ 8; \ \alpha(P)=1.6\times 10^{-5} \ 7$
								other: Ey=186.53 6 Iy=0.32 4 ('Budapest data', 2007ChZX).
187.93 5	0.01	945.86		757.707	5-			

11

From ENSDF

				¹⁶⁵ Ho(n,	γ) E=tl	nermal 19	967Mo05,	1984Ke15,2000Pr03 (continued)
						$\gamma(^{16}$	⁵⁶ Ho) (coi	ntinued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{e}	Comments
188.98 <i>3</i>	0.070 14	605.047	2+	416.086	2-			other: Ey=189.02 18 Iy=0.071 26 ('Budapest data', 2007ChZX).
189.89 5	0.01	671.746	4+	481.846	3+			
191.12 ^{ch} 3	0.030 6	910.49?	(6^{+})	719.370	4+			
191.961 <i>11</i>	0.130 20	885.345	(3+)	693.388	(2^{+})			
192.33 2	0.070 14	668.005	4 ⁻	4/5.680	3-			
193.107 0	0.190 19	453.771	0.	260.6625	4			other: $E\gamma = 192.62$ 8, $I\gamma = 0.23$ 3 (Budapest data', 200/ChZX); probably unresolved doublet (193.1 γ +192.3 γ).
194.529 10	0.130 20	567.624	1+	373.092	1-			other: $E\gamma = 194.51 \ I3$, $I\gamma = 0.13 \ 3$ ('Budapest data', 2007ChZX).
195.687 ^{CD} 14	0.080 12	792.789	4-	597.015	3-			
197.11 5	0.03	668.005	4-	470.841	5+			
197.339 8	0.32 5	377.806	6-	180.467	4-	(E2)	0.255	α (K)exp=0.26 <i>17</i> (1967Mo05) α (K)=0.1669 <i>24</i> ; α (L)=0.0679 <i>10</i> ; α (M)=0.01606 <i>23</i> ; α (N+)=0.00410 <i>6</i> α (N)=0.00364 <i>6</i> ; α (O)=0.000454 <i>7</i> ; α (P)=7.88×10 ⁻⁶ <i>11</i> other: E γ =197.58 <i>5</i> , I γ =0.55 <i>5</i> ('Budapest data', 2007ChZX); probably a 197.7 γ +197.3 γ +197.1 γ unresolved multiplet.
197.677 ^C 10	0.20 3	662.169	3+	464.501	2^{+}			
198.31 ^{fc} 5	0.03^{f}	628.418	2-	430.031	2^{+}			
198.31 fc 5	0.03^{f}	742.02	2 4-	543 672	2-			
^x 199.12.5	0.040 12	742.02	-	545.072	2			placement from 757 level rejected In 2000Pr03.
199.710 8	0.80 8	547.934	4 ⁺	348.257	5+	(M1)	0.371	$\begin{aligned} \alpha(\text{K}) = 0.312 \ 5; \ \alpha(\text{L}) = 0.0459 \ 7; \ \alpha(\text{M}) = 0.01012 \ 15; \ \alpha(\text{N}+) = 0.00271 \ 4 \\ \alpha(\text{N}) = 0.00235 \ 4; \ \alpha(\text{O}) = 0.000342 \ 5; \ \alpha(\text{P}) = 1.93 \times 10^{-5} \ 3 \\ \alpha(\text{K}) \exp = 1.3 \ 8 \ (1973 \text{PrZI}); \ \alpha(\text{K}) \exp = 0.26 \ 11 \ (1967 \text{Mo05}). \\ \text{other: } \text{E}\gamma = 199.66 \ 5, \ 1\gamma = 0.77 \ 5 \ ('\text{Budapest data'}, \ 2007 \text{ChZX}). \end{aligned}$
201.08 3	0.040 8	654.818	5'	453.771	6.			
201.95	0.050 10	373.092	1-	171.0738	3-			other: $E\gamma = 201.93\ 22$, $I\gamma = 0.060\ 24$ ('Budapest data', 2007ChZX).
201.95 ^{fc} 3 ^x 205.03 8	0.050^{J} 10 0.02	683.805	3-	481.846	3+			
206.15 ^{fc} 2	0.050 ^f 8	925.0	5+	719.370	4+			other data: Ey=206.52 24, Iy=0.071 16 ('Budapest data', 2007ChZX).
206.15 ^{fc} 2	0.050 ^f 8	942.524	6+	736.430	4+			see comment on 206γ from 925 level.
207.04 2	0.040 6	470.841	5+	263.7876	5+			
208.34 ^c 4	0.065 10	638.235	4-	430.031	2+			placement from 876 level rejected In 2000Pr03. other: $E\gamma=208.48$ 12, $I\gamma=0.129$ 18 ('Budapest data', 2007ChZX); probably for unresolved 208.3 γ +208.9 γ doublet.
208.90 [°] 4	0.030 6	723.239	7+	514.362	7+			indicated As multiply-placed (2000Pr03), but No other placement was identified.
209.69 4	0.020 6	757.707	5-	547.934	4+			
210.300 6	0.30 5	558.571	4+	348.257	5+	M1(+E2)	0.26 6	α (K)exp=0.40 23 (1967Mo05) α (K)=0.20 7; α (L)=0.046 7; α (M)=0.0106 18; α (N+)=0.0028 4 α (N)=0.0024 4; α (O)=0.00032 3; α (P)=1.2×10 ⁻⁵ 5 other: Ey=210.36 6, Jy=0.290 24 ('Budapest data', 2007ChZX)
x211.06 6	0.030 6							

From ENSDF

				¹⁶⁵ Ho(n	,γ) E:	=thermal	1967Mo	05,1984Ke15,2000Pr03 (continued)
						2	/(¹⁶⁶ Ho)	(continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α ^e	Comments
211.53 6	0.01	693.388	(2^{+})	481.846	3+			
212.30 ^{<i>f</i>} 6	0.040 ^f 8	628.418	2-	416.086	2-			other: $E_{\gamma}=212.4 \ 3$, $I_{\gamma}=0.029 \ 15$ ('Budapest data', 2007ChZX).
212.30 ^{fc} 6	$0.040^{f} 8$	883.94	6+	671.746	4+			
213.04 [°] 6	0.01	644.29	7^{-}	431.239	5^{-}			placement from 683 level rejected In 2000Pr03.
214.442 9	0.22 3	736.430	4+	521.982	3+	M1(+E2)		Mult.: α (K)exp=0.40 25 (1967Mo05). other: Ey=214.46 8, Iy=0.171 19 ('Budapest data', 2007ChZX).
215.44 ^{c#} 9	0.01	985.20	5+	769.78	5+			
216.16 5	0.020 6	588.083	6+	371.985	4^{+}			
216.85 [°] 6	0.04	760.345	3-	543.672	2-			placement from 815 level rejected In 2000Pr03. other: Eγ=216.79 25, Iγ=0.045 14 ('Budapest data', 2007ChZX). May include 216.1γ
217.23 6	0.04	885.345	(3^{+})	668.005	4-			210.17.
218.00 6	0.04	671.746	4+	453.771	6+			
^x 219.02 6	0.060 18							placement from 961 level rejected In 2000Pr03. other: $E_{\gamma}=218.95$ 14, $I_{\gamma}=0.084$ 16 ('Budapest data', 2007ChZX).
219.44 ^c 6	0.080 20	683.805	3-	464.501	2^{+}			
221.174 9	3.9 4	481.846	3+	260.6625	4+	(M1)	0.280	$\alpha(K)=0.236\ 4;\ \alpha(L)=0.0346\ 5;\ \alpha(M)=0.00763\ 11;\ \alpha(N+)=0.00204\ 3$ $\alpha(N)=0.001772\ 25;\ \alpha(O)=0.000258\ 4;\ \alpha(P)=1.454\times10^{-5}\ 21$ Additional information 14.
								α (K)exp=0.21 3, K:L12=21.0 25:3.6 7 (1967Mo05, thin source). other: Ey=221.18 4, Iy=3.30 18 ('Budapest data', 2007ChZX).
222.634 7	0.220 22	815.139	3+	592.501	3+			other: E _γ =222.66 10, I _γ =0.201 23 ('Budapest data', 2007ChZX).
224.01 15	0.01	597.015	3-	373.092	1-			
225.722 ^c 9	0.070 14	788.618	6-	562.890	4-			placement from 951 level rejected In 2000Pr03. other: $E\gamma=225.81$ 22, $I\gamma=0.050$ 18 ('Budapest data', 2007ChZX).
227.88 7 ^x 228.53 7	0.02 0.050 <i>15</i>	557.65	7-	329.774	5-			
229.00 ^f 7	0.050 ^f 15	577.208	7+	348.257	5+			
229.00 ^{fc} 7	0.050 ^f 15	704.962	3-	475.680	3-			
230.11 ^c 5	0.030 6	792.789	4-	562.890	4^{-}			placement from 807 level rejected In 2000Pr03.
^x 230.89 8	0.030 6							
231.957 14	0.24 5	605.047	2+	373.092	1-			$E\gamma$ =232.02 <i>15</i> , $I\gamma$ =0.37 8 ('Budapest data', 2007ChZX); possibly for a 232.0 γ +232.3 γ doublet.
232.286 ^{cb} 9	0.27 5	662.169	3+	430.031	2+			placement from 658 level rejected In 2000Pr03. see comment on 232.0γ .
233.112 14	0.63 6	562.890	4-	329.774	5-	M1	0.243	$\alpha(K)=0.204\ 3;\ \alpha(L)=0.0299\ 5;\ \alpha(M)=0.00660\ 10;\ \alpha(N+)=0.001769\ 25$ $\alpha(N)=0.001533\ 22;\ \alpha(O)=0.000223\ 4;\ \alpha(P)=1.259\times10^{-5}\ 18$ Mult.: from $\alpha(K)\exp=0.30\ 5\ (1988Ba79)$. Other: 0.26 9 (1967Mo05). other: Ey=233.15\ 14. Iy=0.61 6 ('Budapest data', 2007ChZX).
233.79 ^c 5	0.120 24	832.197	5+	598.448	4+			,, , ,, ,, ,, ,
234.79 ^c 5	0.05	529.816	6-	295.085	6+			

				¹⁶⁵ Ho	(n, γ)	E=thermal	1967 1	Mo05,1984Ke15,2000Pr03 (continued)
							<u>γ(¹⁶⁶Η</u>	o) (continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α ^e	Comments
235.80 5	0.060 18	870.13	(-)	634.314	5+			
236.31 ^{<i>f</i>} 8	0.030^{f} 9	662,169	3+	426.025	1+			
$236 31 \frac{fc}{8}$	0.030fg	891 124	<u>4</u> +	654 818	5+			
239.140 <i>11</i>	4.2 4	430.031	2+	190.9021	3 ⁺	M1	0.226	$\begin{aligned} &\alpha(\text{K})=0.191 \; 3; \; \alpha(\text{L})=0.0279 \; 4; \; \alpha(\text{M})=0.00615 \; 9; \; \alpha(\text{N}+)=0.001649 \; 23 \\ &\alpha(\text{N})=0.001429 \; 20; \; \alpha(\text{O})=0.000208 \; 3; \; \alpha(\text{P})=1.174\times10^{-5} \; 17 \\ &\alpha(\text{K})\text{exp}=0.18 \; 3 \; (1967\text{Mo05}, \; \text{thin source}); \; \alpha(\text{K})\text{exp}=0.33 \; 13 \; (1973\text{PrZI}); \\ &\text{K}:(\text{L}1+\text{L}2)= \; 17 \; 6:3.0 \; 15 \; (1967\text{Mo05}). \end{aligned}$
								other: $E\gamma = 239.13 \ 4$, $I\gamma = 3.62 \ 19$ ('Budapest data', 2007ChZX).
241.76 5	0.050 10	671.746	4+	430.031	2+			Additional information 13. other: $E\gamma=242.8 \ 3$, $I\gamma=0.060 \ 28$ ('Budapest data', 2007ChZX); May Be a 242.9 γ +241.8 γ doublet, but I γ is consistent with that for the 241.8 γ alone whereas $E\gamma$ matches that for the stronger 242.9 γ .
242.90 [°] 2	0.17 3	881.040	3-	638.235	4-			other: $E_{\gamma}=242.8 \ 3$, $I_{\gamma}=0.060 \ 28$ ('Budapest data', 2007ChZX); May Be a 242.9 γ +241.8 γ doublet, but I γ is closer to that from 1967Mo05 for the weaker 241.8 γ alone
245.007 7	1.04 10	416.086	2-	171.0738	3-	M1	0.212	$\alpha(K)=0.1785\ 25;\ \alpha(L)=0.0261\ 4;\ \alpha(M)=0.00576\ 8;\ \alpha(N+)=0.001543\ 22$ $\alpha(N)=0.001337\ 19;\ \alpha(O)=0.000195\ 3;\ \alpha(P)=1.099\times10^{-5}\ 16$ $\alpha(K)\exp=0.17\ 7\ (1967Mo05);\ 0.18\ 3\ (1988Ba79).$ other: Ey=245.00 7, Iy=0.76 8 ('Budapest data', 2007ChZX).
246.07 2	0.20 4	662.169	3+	416.086	2^{-}			
247.68 [°] 9	0.030 9	769.78	5+	521.982	3+			
248.77 ^C 9	0.060 12	719.370	4+	470.841	5+			placement from 420 level rejected In 2000Pr03.
250.49 9	0.070 14	514.362	7+	263.7876	5+			placement from 905 level rejected In 2000Pr03.
253.78 [°] 3	0.120 24	683.805	3-	430.031	2^{+}			other: $E\gamma = 253.87 \ 18$, $I\gamma = 0.090 \ 26$ ('Budapest data', 2007ChZX).
255.37 3	0.090 18	628.418	2-	373.092	1-			
256.60 2	0.26 4	815.139	3+	558.571	4+	M1(+E2)		Mult.: α (K)exp=0.24 <i>17</i> (1967Mo05).
257.81 2	0.26 4	263.7876	5+	5.969	7-	M2	0.844	other: $E\gamma = 256.23\ 24, \ I\gamma = 0.148\ 18$ ('Budapest data', 200/ChZX). $\alpha(K) = 0.5\ 3\ (1967Mo05)$ $\alpha(K) = 0.674\ 10; \ \alpha(L) = 0.1313\ 19; \ \alpha(M) = 0.0300\ 5; \ \alpha(N+) = 0.00805\ 12$ $\alpha(N) = 0.00699\ 10; \ \alpha(O) = 0.001001\ 14; \ \alpha(P) = 5.22 \times 10^{-5}\ 8$ other: $E\gamma = 257\ 54\ 12\ I\gamma = 0\ 29\ 6\ ('Budapest data'\ 2007ChZX)$
260.75 2	0.160 24	736.430	4+	475.680	3-			other: $E_{y}=260.81$ 12, $I_{y}=0.124$ 23 ('Budapest data', 2007ChZX).
261.31 7 x261.96 7	0.040 <i>12</i> 0.05	521.982	3+	260.6625	4 ⁺			Caller 27 200101 12, 17 0112 120 (2 adaptor caller , 2007 Caller).
^x 262.93 [#] 9 263.36 ^c 5	0.3 0.120 <i>18</i>	558.571	4+	295.085	6+			placement from 693 level rejected In 2000Pr03. other: $E\gamma=263.14\ 20$, $I\gamma=0.077\ 21$ ('Budapest data', 2007ChZX).
265.12 ^C 5	0.18 4	638.235	4-	373.092	1^{-}			placement from 870 level rejected In 2000Pr03.
266.03 5	0.28 6	824.62	3-	558.571	4+			other: Ey=265.76 13, Iy=0.274 23 ('Budapest data', 2007ChZX).
266.53 ^{fc} 5	0.24 ^{<i>f</i>} 5	529.816	6-	263.7876	5+			
266.53 fc 5	0.24 ^{<i>f</i>} 5	742.02	4-	475.680	3-			

				¹⁶⁵ Ho	(n ,γ)	E=thermal	1967 N	Io05,1984Ke15,2000Pr03 (continued)
							<u>γ(¹⁶⁶Ho</u>) (continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{e}	Comments
267.19 ^c 5	0.28 6	815.139	3+	547.934	4+			placement from 597 level rejected In 2000Pr03. other: $F_{Y}=267.14.13$ $I_{Y}=0.320.24$ ('Budapest data' 2007CbZX)
267.82 9	0.110 22	683.805	3-	416.086	2-			ouldi. 17 20711 15, 17 0.520 27 (Dudupost data , 2007 Ch211).
268.15 ^{cb} 9 ^x 269.38 9	0.070 <i>21</i> 0.070 <i>21</i>	598.448	4+	329.774	5-			placement from 832 level rejected In 2000Pr03.
273 64 7	0.16.3	464 501	2+	190 9021	3+			other: $E_{y}=203.99.22$, $I_{y}=0.087.10$ (Budapest data', 2007ChZX).
274.77 7	0.130 26	704.962	3-	430.031	2+			ouldi, 17 270.00 10, 17 0.100 (Dudupost dudi ; 2007 Ch1217).
^x 276.83 2	0.03							placement from 906 level rejected In 2000Pr03.
278.69 ^C 10	0.060 18	732.513	6+	453.771	6+			placement from 705 level rejected In 2000Pr03.
279.79 10	0.030 9	470.841	5+	190.9021	3+			
280.99 10	0.030 9	286.96	9-	5.969	7-			placement from 825 level rejected In 2000Pr03.
282.80 8	0.060 18	654.818	5'	3/1.985	4'			
284.20 I2	$0.080\ 24$	832.197	Э·	547.934	4.			
285.81 6	$0.060 \int_{f} 18$	423.651	7+	137.729	8-			
285.81 8	0.060/ 18	659.01	0-	373.092	1-			
287.24 3	0.170 26	547.934	4+	260.6625	4 ⁺			other: $E\gamma = 287.11 \ I5$, $I\gamma = 0.090 \ I3$ ('Budapest data', 2007ChZX).
288.60 /	0.12	704.962	3	416.086	2	E 1	0.0106	$(K)_{rm} = (0.02)(10(7))(-05)$
289.120 15	2.30 23	295.085	0	5.969	/	EI	0.0196	$\alpha(\mathbf{K}) \exp\{-0.05(190/W005)\}$ $\alpha(\mathbf{K}) = 0.01655(24), \alpha(\mathbf{L}) = 0.00237(4), \alpha(\mathbf{M}) = 0.000520(8), \alpha(\mathbf{M}_{\perp}) = 0.0001375(20)$
								$a(\mathbf{K}) = 0.0103524, a(\mathbf{L}) = 0.002574, a(\mathbf{M}) = 0.0005206, a(\mathbf{M} +) = 0.000157520$
								u(1)=0.0001197 17, u(0)=1.095 10 24, u(r)=0.01110 12 other: Ey=289.04 4 Iy=1.87 10 ('Budapest data' 2007ChZX)
290.61.3	1 70 17	373 092	1-	82 4707	1-	M1	0 1337	$\alpha(K) = 0.1127.16; \alpha(L) = 0.01640.23; \alpha(M) = 0.00361.5; \alpha(N+) = 0.000969.14$
290.01 5	1.70 17	373.072	1	02.1707	1		0.1227	$\alpha(\mathbf{N}) = 0.000839 \ 12; \ \alpha(\mathbf{O}) = 0.0001223 \ 18; \ \alpha(\mathbf{P}) = 6.91 \times 10^{-6} \ 10$
								$\alpha(\mathbf{K}) = 0.10 \ 4 \ (1967\text{Mo05}); \ 0.11 \ 2 \ (1988\text{Ba79}).$
								other: $E_{\gamma}=290.61 \ 4$, $I_{\gamma}=1.55 \ 8$ ('Budapest data', 2007ChZX).
291.04 8	0.12	481.846	3+	190.9021	3+			
293.42 8	0.070 14	464.501	2^{+}	171.0738	3-			
295.99 8	0.040 12	668.005	4-	371.985	4+			
297.90 <i>3</i>	0.39 8	558.571	4+	260.6625	4+	M1(+E2)	0.10 3	α (K)exp=0.15 9 (1967Mo05)
								$\alpha(K)=0.08 \ 3; \ \alpha(L)=0.0145 \ 9; \ \alpha(M)=0.00328 \ 11; \ \alpha(N+)=0.00087 \ 5$
								α (N)=0.00076 3; α (O)=0.000104 10; α (P)=4.5×10 ⁻⁶ 20
200 88 17	0.02	(71 746	4+	271 095	4+			other: $E\gamma = 297.94$ 6, $I\gamma = 0.303$ 23 ('Budapest data', 200/ChZX).
299.88 17	0.03	0/1./40	4' 3-	5/1.985 171.0729	4 · 2-	M1	0 1170	$\alpha(\mathbf{K}) = 0.0004.14$; $\alpha(\mathbf{I}) = 0.01444.21$; $\alpha(\mathbf{M}) = 0.00218.5$; $\alpha(\mathbf{N}_{\perp}) = 0.000852.12$
304.00 2	2.00 20	475.080	5	1/1.0/38	5	1111	0.1179	$\alpha(\mathbf{N}) = 0.00730 \ 11, \ \alpha(\mathbf{O}) = 0.001077 \ 15, \ \alpha(\mathbf{D}) = 6.00\times10^{-6} \ 0$
								$\alpha(K) = 0.00775711, \alpha(G) = 0.000107715, \alpha(G) = 0.07810 - 7$ $\alpha(K) = 0.0781721, \alpha(G) = 0.000107715, \alpha(G) = 0.07810 - 7$
								$\alpha(L_{12}) \exp(-(19751121), 0.093 (19070003), 0.112 (1906007)).$
								other: $E_{\gamma}=304.63$ 4, $I_{\gamma}=2.16$ 11 ('Budapest data', 2007ChZX).
305.36 ^c 15	0.14 4	868.24	4-	562.890	4-			E_{γ}, I_{γ} : from low-energy $\gamma\gamma$ coin (2000Pr03).
306.49 [°] 3	0.24 5	654.818	5+	348.257	5+			placement from 736 level rejected In 2000Pr03.
								other: $E\gamma = 306.55 \ 9$, $I\gamma = 0.177 \ 16$ ('Budapest data', 2007ChZX).

From ENSDF

¹⁶⁶₆₇Ho₉₉-15

Т

				¹⁶⁵ H	0(n, γ]) E=therm	nal 1967	Mo05,1984Ke15,2000Pr03 (continued)
							γ(¹⁶⁶ Η	lo) (continued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{e}	Comments
^x 307.65 [#] 15 309.59 ^c 6 ^x 310.89.3	0.03 0.10 2 0.30 5	725.68	2-	416.086	2-			placement from 867 level rejected In 2000Pr03. other: $E_{2}=310.78$ // $I_{2}=0.21.3$ ('Budapest data' 2007Cb7X)
312.90 8	0.124	905.544	2 ⁺	592.501	3 ⁺			placement from 951 level rejected In 2000Pr03.
313.48^{f} 6 $313.48^{\text{f}c}$ 6	$0.12^{f} 4$ $0.12^{f} 4$	577.208 985.20	7+ 5+	263.7876 671.746	5⊤ 4+			other: $E\gamma = 313.35$ 9, $1\gamma = 0.114$ 16 ('Budapest data', 200/ChZX).
316.10 9	0.09	769.78	5+	453.771	6+			other: Ey=315.96 15, Iy=0.110 23 ('Budapest data', 2007ChZX).
317.28 ^{CD} 3	0.22 3	792.789	4-	475.680	3-			placement from 1011 level rejected In 2000Pr03. other: $E\gamma$ =317.18 <i>12</i> , $I\gamma$ =0.143 <i>22</i> ('Budapest data', 2007ChZX).
x321.62# 10 323.42 7 324.74 7 328.245 15 331.88 3 333.62 2	0.09 0.120 24 0.110 22 0.73 7 0.27 4 1.60 24	671.746 806.56 657.995 592.501 416.086	4 ⁺ 5 ⁺ 3 ⁺ 2 ⁻	348.257 481.846 329.774 260.6625 82.4707	5^+ 3^+ 5^- 4^+ 1^- 5^+	M1	0.0925	other: Ey=323.19 13, Iy=0.103 16 ('Budapest data', 2007ChZX). other: Ey=324.69 17, Iy=0.071 14 ('Budapest data', 2007ChZX). other: Ey=328.19 4, Iy=0.63 4 ('Budapest data', 2007ChZX). other: Ey=331.77 9, Iy=0.193 19 ('Budapest data', 2007ChZX). $\alpha(K)=0.0780$ 11; $\alpha(L)=0.01131$ 16; $\alpha(M)=0.00249$ 4; $\alpha(N+)=0.000668$ 10 $\alpha(N)=0.000579$ 9; $\alpha(O)=8.43\times10^{-5}$ 12; $\alpha(P)=4.78\times10^{-6}$ 7 $\alpha(K)\exp=0.08$ 4 (1967Mo05); 0.11 3 (1988Ba79). $\alpha(L12)\exp=0.019$ 6 (1988Ba79). other: Ey=333.61 4, Iy=1.67 10 ('Budapest data', 2007ChZX).
555.01 8	0.02 12	800.30	5	470.841	5			I_{γ} : I_{γ} =0.052 <i>18</i> for E_{γ} =335.89 <i>19</i> line ('Budapest data', 2007ChZX) but I_{γ} =0.62 <i>13</i> (crystal data) and 0.32 <i>8</i> (Ge(Li) data) In 1967Mo05. Unless there is a typographical error In I_{γ} from 2007ChZX, it seems likely that the 336 γ branching adopted here is much too high.
338.20 <i>4</i> 341.57 <i>3</i>	0.150 <i>23</i> 0.064 <i>13</i>	668.005 521.982	4- 3+	329.774 180.467	5- 4-			other: $E\gamma$ =338.31 <i>10</i> , $I\gamma$ =0.106 <i>21</i> ('Budapest data', 2007ChZX). I _{γ} : 0.064 <i>13</i> ('Budapest data' for $E\gamma$ =341.54 <i>19</i> , 2007ChZX) but 0.28 <i>6</i> (1967Mo05) suggests presence of contaminant In 1967Mo05 datum, so evaluator adopts the former datum.
343.51 3	0.39 8	426.025	1+	82.4707	1-	(E1)	0.01281	α (K)exp<0.038 α (K)=0.01085 <i>16</i> ; α (L)=0.001538 <i>22</i> ; α (M)=0.000337 <i>5</i> ; α (N+)=8.93×10 ⁻⁵ <i>13</i> α (N)=7.77×10 ⁻⁵ <i>11</i> ; α (O)=1.104×10 ⁻⁵ <i>16</i> ; α (P)=5.72×10 ⁻⁷ <i>8</i> other: E γ =343.49 <i>5</i> ; I γ =0.327 <i>21</i> ('Budapest data', 2007ChZX).
x346.3 3 347.24 8 350.61 12 352.28 12 357.04 4 358.4 ^c 3 359.7 2 363.1 3 367.54 16 368.45 ^f 16	$\begin{array}{c} 0.04 \\ 0.20 \ 4 \\ 0.070 \ 14 \\ 0.130 \ 26 \\ 0.29 \ 6 \\ 0.05 \\ 0.080 \ 24 \\ 0.05 \\ 0.07 \\ 0.12^{f} \ 3 \end{array}$	719.370 815.139 725.68 547.934 774.522 654.818 543.672 558.571 1061.788	4 ⁺ 3 ⁺ 2 ⁻ 4 ⁺ 1 ⁻ 5 ⁺ 2 ⁻ 4 ⁺ 2,4	371.985 464.501 373.092 190.9021 416.086 295.085 180.467 190.9021 693.638	$\begin{array}{c} 4^+ \\ 2^+ \\ 1^- \\ 3^+ \\ 2^- \\ 6^+ \\ 4^- \\ 3^+ \\ 5^+ \end{array}$			other: $E\gamma=347.42$ 7, $I\gamma=0.132$ 16 ('Budapest data', 2007ChZX). other: $E\gamma=351.1$ 3, $I\gamma=0.048$ 18 ('Budapest data', 2007ChZX). other: $E\gamma=352.46$ 12, $I\gamma=0.119$ 21 ('Budapest data', 2007ChZX). other: $E\gamma=357.11$ 5, $I\gamma=0.261$ 19 ('Budapest data', 2007ChZX). placement from 881 level rejected In 2000Pr03. other: $E\gamma=359.64$ 17, $I\gamma=0.060$ 15 ('Budapest data', 2007ChZX). other: $E\gamma=362.4$ 3, $I\gamma=0.047$ 14 ('Budapest data', 2007ChZX). other: $E\gamma=368.26$ 11, $I\gamma=0.118$ 19 ('Budapest data', 2007ChZX).

¹⁶⁶Ho₉₉-16

				¹⁶⁵ Ho (1	n,γ) Ε	E=thermal	1967Mo0	5,1984Ke15,2000Pr03 (continued)
							γ(¹⁶⁶ Ho) (α	continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{e}	Comments
368.45 ^{<i>f</i>} 16	0.12^{f} 3	1087.91	3	719.370	4+			
371.75 [@] 3	3.0 3	426.025	1^{+}	54.2391	2-	E1	0.01060	α (K)exp<0.016 (1967Mo05)
								$\alpha(K)=0.00898 \ 13; \ \alpha(L)=0.001267 \ 18; \ \alpha(M)=0.000278 \ 4; \ \alpha(N+)=7.36\times10^{-5}$
								$\alpha(N)=6.40\times10^{-5}$ 9; $\alpha(O)=9.12\times10^{-6}$ 13; $\alpha(P)=4.77\times10^{-7}$ 7 other: E ₂ =371 74 4: I ₂ =2.51 13 ('Budgnest data' 2007Cb7X)
373.47 [°] 7	0.45 7	379.547	6^{+}	5,969	7-			$U_{1} = \frac{1}{2} - \frac{1}{2} - \frac{1}{4} + \frac{1}{4} - \frac{1}{2} - \frac{1}{2} - \frac{1}{4} = \frac{1}{4} - \frac{1}{4$
376.91 ^{<i>f</i>} 14	$0.120^{f} 24$	547.934	4+	171.0738	3-			other: $E_{\gamma}=376.89$ 17, $I_{\gamma}=0.063$ 18 ('Budapest data', 2007ChZX).
376.91 ^{fc} 14	$0.120^{f} 24$	792.789	4-	416.086	2-			
380.1 2	0.050 15	757.707	5-	377.806	6-			
382.8 [°] 2	0.05	562.890	4-	180.467	4-			
385.02	0.04	815.139	3+ 5-	430.031	2^+			E. L. from 2000D-02 Ex-286.2.2 Ly-0.04 In 1067Ma05
388.8 [°] 3	0.048 8	815.139	3^{+}	426.025	4 1 ⁺			$E_{\gamma,1\gamma}$. from 2000 r103. E_{γ} = 580.5 5, r_{γ} = 0.04 fit 1907 widds. $E_{\gamma,1\gamma}$: from $\gamma\gamma$ coin (2000 r03).
390.0 [°] 2	0.18 4	769.78	5+	379.547	6+			placement from 1062 level rejected In 2000Pr03.
2 01 00 1							0.050.5	other: $E\gamma = 389.72$ 16; $I\gamma = 0.12$ 3 ('Budapest data', 2007ChZX).
391.89 4	1.13 11	562.890	4-	171.0738	3-	M1	0.0605	$\alpha(K)=0.0511 \ 8; \ \alpha(L)=0.00/37 \ 11; \ \alpha(M)=0.001622 \ 23; \ \alpha(N+)=0.000435 \ 6$
								$\alpha(N)=0.0003770; \alpha(O)=5.50\times10^{-8}8; \alpha(P)=5.12\times10^{-8}5$ Mult : from $\alpha(K)=0.082$ (1988Ba79).
								other: $E_{\gamma}=391.86 4$; $I_{\gamma}=0.82 8$ ('Budapest data', 2007ChZX).
392.2 [°] 5	0.11 3	868.24	4-	475.680	3-			E_{γ}, I_{γ} : from low-energy $\gamma\gamma$ coin (2000Pr03).
394.5 ^{ch} 2	0.10	654.818	5+	260.6625	4+			placement from 870 level rejected In 2000Pr03.
								absent In 'Budapest data' In 200/ChZX so placement is shown here As
x398.6 2	0.09 3							placement from 881 level rejected In 2000Pr03.
								other: $E\gamma = 398.83 \ 21$; $I\gamma = 0.06 \ 5$ ('Budapest data', 2007ChZX).
401.31° 10	0.11 3	774.522	1^{-}	373.092	1^{-}		0.042.15	E_{γ} , I_{γ} : from $\gamma\gamma$ coin (2000Pr03).
401.56 0	2.1 3	592.501	3	190.9021	3	(M1,E2)	0.043 15	$\alpha(K) \exp = 0.050 \ 22 \ (196 / M005)$ $\alpha(K) = 0.035 \ 13 \ \alpha(L) = 0.0059 \ 11 \ \alpha(M) = 0.00132 \ 21 \ \alpha(N+) = 0.00035 \ 6$
								$\alpha(N) = 0.000305; \alpha(O) = 4.3 \times 10^{-5} 9; \alpha(P) = 2.1 \times 10^{-6} 9$
								other: Ey=401.57 4; Iy=1.72 14 ('Budapest data', 2007ChZX).
404.7 [°] 6	0.05 2	881.040	3-	475.680	3-			E_{γ}, I_{γ} : from low-energy $\gamma\gamma$ coin (2000Pr03).
406.83° 16	0.130/20	/36.430	4'	529.774	3			placement from 1002 level rejected in 2000Pr03. other: $F_{V}=406$ 53 14: $I_{V}=0.17$ 3 ('Budapest data' 2007Cb7X)
410.27 2	1.36 27	464.501	2^{+}	54.2391	2^{-}			other: $E_{\gamma}=410.45 4$, $I_{\gamma}=1.98 11$ ('Budapest data', 2007ChZX); probably an
								unresolved doublet $(410.3\gamma + 411.1\gamma)$.
411.09 3	0.75 23	671.746	4+	260.6625	4+			
412.1 ^J 2	0.60^{J} 12	592.501	3+	180.467	4 ⁻			other: $E\gamma = 412.27 \ 9$; $I\gamma = 0.48 \ 5$ ('Budapest data', 2007ChZX).
$412.1^{J} 2$	0.60/ 12	742.02	4-	329.774	5-			placement from 420 lavel rejected In 2000Pr02
413.09 13	0.15							pracement from 420 level rejected in 2000F103.

¹⁶⁶H0₉₉-17

From ENSDF

				¹⁶⁵ H	o(n,	γ) E=therma	d 1967N	1005,1984Ke15,2000Pr03 (continued)
							<u>γ(¹⁶⁶Ho</u>	b) (continued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α ^e	Comments
416.47 5	0.80 16	597.015	3-	180.467	<u> </u>			other: E γ =414.24 <i>19</i> , I γ =0.14 <i>3</i> ('Budapest data', 2007ChZX); it is unclear whether this is the γ reported In 1967Mo05. other: E γ =416.52 <i>6</i> ; I γ =0.68 <i>6</i> ('Budapest data', 2007ChZX).
418.08 ^C 18	0.20 6	598.448	4+	180.467	4-			
420.7 6	0.16 5	475.680	3-	54.2391	2-			E_{γ}, I_{γ} : from $\gamma\gamma$ coin (2000Pr03).
421.13 ^{ch} 5	0.70 11	769.78	5+	348.257	5+			absent In 'Budapest data' In 2007ChZX and far too strong to have been overlooked there if this were a ¹⁶⁶ Ho line; not included In Adopted Gammas.
423.39 ^{fc} 18	0.16 ^f	683.805	3-	260.6625	4+			placement from 905 level rejected In 2000Pr03. other: $E\gamma=423.52$ 16; $I\gamma=0.23$ 5 ('Budapest data', 2007ChZX).
423.39 ^{fc} 18	0.16 ^f	771.94	6^{+}	348.257	5+			placement from 905 level rejected In 2000Pr03.
425.30 ^c 3	1.30 26	431.239	5-	5.969	7-			placement from 638 level rejected In 2000Pr03.
425.99 <i>3</i>	3.7 6	426.025	1^{+}	0.0	0-	E1	0.00770	α (K)exp=0.0065 18
								α (K)=0.00653 10; α (L)=0.000914 13; α (M)=0.000200 3; α (N+)=5.32×10 ⁻⁵ 8
								$\alpha(N) = 4.62 \times 10^{-5} 7$; $\alpha(O) = 6.61 \times 10^{-6} 10$; $\alpha(P) = 3.50 \times 10^{-7} 5$
								other: $E\gamma = 425.90 4$; $I\gamma = 4.64 24$ ('Budapest data', 2007ChZX).
425.99° 3	0.24 7	597.015	3-	171.0738	3-			E_{γ}, I_{γ} : doublet; from $\gamma\gamma$ coin (2000Pr03).
426.89° 15	0.13 4	721.98	6+	295.085	6^+			E_{γ}, I_{γ} : from $\gamma\gamma$ coin (2000Pr03).
427.02	0.4	598.448	4 ⁺	171.0738	3-			
430.31° 18	0.13	/60.345	3	329.774	5			also was from 757 local minetal In 2000D-02
*432.14 18	0.13							placement from /5/ level rejected in 2000Pr03.
422 0 ^C 0	0.015.5	206 56	5+	271 095	<u>1</u> +			Other: $E\gamma = 452.19$ 16; $I\gamma = 0.095$ 10 (Budapest data , 200/CHZA).
433.9 9	0.015 5	605.047	2+	3/1.963	4 2-			$E_{\gamma,1\gamma}$: IIOIII 2000F105. other: $E_{\gamma,-1/2} = 0.5 \ \text{S}$ $E_{\gamma,-0} = 1.40 \ 10 \ ('Budgerest data' 2007Cb7X')$
433.92 10	0.17	628 418	$\frac{2}{2^{-}}$	100 0021	3 3+			other: $E_{\gamma} = 435.05$ 0, $1\gamma = 0.140$ 19 (Budapest data' 2007ChZX).
x439.6.3	0.00	020.410	2	170.7021	5			placement from 577 level rejected In 2000Pr03
15910 5	0.01							other: $E_{\gamma}=439.39$ 7, $I_{\gamma}=0.195$ 19 ('Budapest data', 2007ChZX); suggests presence
								of a contaminant.
^x 442.0 3	0.40 12							placement from 1031 level rejected In 2000Pr03.
								other: $E\gamma = 442.05 \ 9$, $I\gamma = 0.35 \ 5$ ('Budapest data', 2007ChZX); possibly a
								$442.0\gamma + 442.2\gamma$ doublet.
442.17 8	0.25 7	771.94	6+	329.774	5-			E_{γ}, I_{γ} : from $\gamma\gamma$ coin (2000Pr03).
								other: $E\gamma = 442.05 \ 9$, $I\gamma = 0.35 \ 5$ ('Budapest data', 2007ChZX); possibly a
								$442.0\gamma + 442.2\gamma$ doublet.
442.9 3	0.40 12	815.139	3+	371.985	4 ⁺			other: $E\gamma = 443.22 \ I0$, $I\gamma = 0.264 \ I9$ ('Budapest data', 2007ChZX).
450.3 <i>3</i>	0.05	876.37		426.025	1			
~454.96 20	0.5	710.270	4+	762 7076	5+	MICEO		Mult $r_{0}(K) = 0.020 \ 10 \ (1067 M_{\odot} 05)$
455.00 0	1.70.20	/19.3/0	4'	203./8/0	3.	MI(+E2)		Mull.: $\alpha(\mathbf{K}) \exp = 0.050 \ 19 \ (190 / M005).$
457 37 7	0.60.12	628 /18	2-	171 0738	3-			other: $E_{Y} = -75.55$ 9, $I_{Y} = 1.200$ (Dudapest data', 2007ChZX).
458 74 ^C 22	0.00 12	788 618	6-	329 774	5-			F. I : from vv coin (2000Pr03)
463.9.3	0.60 12	654.818	5+	190.9021	3+			other: $E_{\nu}=463.88.6$, $I_{\nu}=0.39.3$ ('Budapest data', 2007ChZX).
467.3 3	0.30 9	638.235	4-	171.0738	3-			other: $E_{\gamma}=467.36$ 8, $I_{\gamma}=0.26$ 3 ('Budapest data', 2007ChZX).

From ENSDF

¹⁶⁶Ho₉₉-18

Т

				¹⁶⁵ H	Ho(n,	γ) E=thern	nal 1967	7Mo05,1984Ke15,2000Pr03 (continued)
							γ(¹⁶⁶ Η	Ho) (continued)
E~ [†]	$L_{\nu}^{\dagger d}$	E;(level)	Jπ	Ēf	J ^π .	Mult. [‡]	a ^e	Comments
172.20 5	-y				$\frac{f}{2+}$			
472.2° 5	0.14	662.169	3-	190.9021	3-			placement from 736 level rejected in 2000Pr03. other: $E\gamma=471.53$ 15, $I\gamma=0.068$ 16 ('Budapest data', 2007ChZX).
475.8 ^{<i>f</i>} 3	0.15 [†]	736.430	4+	260.6625	4+			other: Ey=475.98 17, Iy=0.081 18 ('Budapest data', 2007ChZX).
475.8 ^{fc} 3	0.15^{f}	905.544	2^{+}	430.031	2^{+}			
477.4 3	0.2	657.995	5-	180.467	4-			other: $E\gamma = 477.70 \ I2$, $I\gamma = 0.116 \ I8$ ('Budapest data', 2007ChZX).
481.31 [@] 8	0.85 17	742.02	4-	260.6625	4+			
487.58 6	1.30 20	668.005	4-	180.467	4-	M1	0.0343	$\alpha(K)=0.0290 4; \alpha(L)=0.00416 6; \alpha(M)=0.000914 13; \alpha(N+)=0.000245 4$ $\alpha(N)=0.000212 3; \alpha(O)=3.10\times10^{-5} 5; \alpha(P)=1.765\times10^{-6} 25$ Mult.: from $\alpha(K)\exp=0.03 1$ (1988Ba79). other: Ey=487.45 5. Jy=0.63 4 ('Budapest data', 2007CbZX).
489.39 5	3.2 3	543.672	2-	54.2391	2-	E2+M1	0.025 9	$\alpha(K) = 0.021 \ 8; \ \alpha(L) = 0.0034 \ 8; \ \alpha(M) = 0.00075 \ 16; \ \alpha(N+) = 0.00020 \ 5$ $\alpha(N) = 0.00017 \ 4; \ \alpha(O) = 2.5 \times 10^{-5} \ 6; \ \alpha(P) = 1.2 \times 10^{-6} \ 5$ Mult.: from $\alpha(K) \exp = 0.019 \ 4 \ (1988 Ba79)$. Other $\alpha(K) \exp : \ 0.020 \ 13 \ (1967 Mo05)$. other: Ey=489.45 4, Iy=1.85 10 ('Budapest data', 2007 ChZX).
496.9 2	0.3	668.005	4-	171.0738	3-			other: Ey=497.14 8, Iy=0.180 19 ('Budapest data', 2007ChZX).
499.5 ^{<i>c</i> @} 4 <i>x</i> 504.3 2	0.1 0.2	760.345	3-	260.6625	4+			
506.8 ^{c#} 3	0.2	644.29	7^{-}	137.729	8-			
508.4 8	0.28 8	562.890	4-	54.2391	2-			E_{γ} , I_{γ} : from $\gamma\gamma$ coin (2000Pr03). other: $E\gamma$ =508.83 7, $I\gamma$ =0.53 4 ('Budapest data', 2007ChZX); possibly γ is complex In this study.
509.0 2	0.7	769.78	5+	260.6625	4+			placement from 905 level rejected In 2000Pr03.
512.7 ^{gc} 3	0.80 ^g 16	595.726	1-	82.4707	1-			I γ =0.80 <i>16</i> for doublet; I γ =0.03 from $\gamma\gamma$ coin (2000Pr03) for other placement. other: E γ =512.76 <i>8</i> , I γ =0.52 <i>4</i> ('Budapest data', 2007ChZX); presumably this also is for a doublet.
512.7 <mark>8</mark> 3	0.03 <mark>8</mark>	693.638	5+	180.467	4-			I_{γ} : from $\gamma\gamma$ coin (2000Pr03). $I\gamma$ =0.80 16 for doublet (1967Mo05).
524.2 ^c 3	0.50 10	529.816	6-	5.969	7-			other: E_{γ} =524.35 6, I_{γ} =0.42 3 ('Budapest data', 2007ChZX). placement from 705 level rejected In 2000Pr03.
^x 530.1 3	0.4		-		-			
533.5 3	0.60 18	704.962	3-	1/1.0/38	3-			other: $E\gamma = 533.55$ 6, $I\gamma = 0.49$ 3 ('Budapest data', 2007ChZX).
534.9° 4	0.3	961.08	3-	426.025	1 ⁺			placement from 725 level rejected in 2000Pr03. other: E_{γ} =535.89 <i>16</i> , I γ =0.137 <i>23</i> ('Budapest data', 2007ChZX).
x538.4 3	0.3							placement from 593 level rejected In 2000Pr03. other: Ey=538.32 9, Iy=0.24 3 ('Budapest data', 2007ChZX).
538.6 [°] 4	0.20 6	868.24	4-	329.774	5^{-}			E_{γ}, I_{γ} : from low-energy $\gamma\gamma$ coin (2000Pr03).
542.8 [°] 8	0.006 2	961.08	3+	416.086	2^{-}			E_{γ} , I_{γ} : from high-energy $\gamma\gamma$ coin (2000Pr03).
542.86 20	3.5 9	597.015	3-	54.2391	2-	E2+M1	0.019 7	$\alpha(K)=0.016\ 6;\ \alpha(L)=0.0025\ 7;\ \alpha(M)=0.00056\ 13;\ \alpha(N+)=0.00015\ 4$ $\alpha(N)=0.00013\ 3;\ \alpha(O)=1.9\times10^{-5}\ 5;\ \alpha(P)=1.0\times10^{-6}\ 4$ Mult.: from $\alpha(K)$ exp=0.011 3 (1988Ba79).
543.66 20	2.4 6	543.672	2^{-}	0.0	0^{-}	E2	0.01275	$\alpha(K) = 0.01030 \ 15; \ \alpha(L) = 0.00191 \ 3; \ \alpha(M) = 0.000432 \ 6; \ \alpha(N+) = 0.0001135 \ 16$

From ENSDF

¹⁶⁶Ho₉₉-19

				¹⁶⁵ H	ο(n,γ) E=thermal 1967Mo05,1984Ke15,2000Pr03 (continued)
						γ ⁽¹⁶⁶ Ho) (continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^{π}	Comments
						α (N)=9.93×10 ⁻⁵ 14; α (O)=1.366×10 ⁻⁵ 20; α (P)=5.77×10 ⁻⁷ 8 Mult.: from α (K)exp=0.012 3 (1988Ba79). other: Ey=543.69 4, Iy=1.61 8 ('Budapest data', 2007ChZX).
546.0 ^c 5 ^x 550.5 3	0.020 <i>6</i> 0.3	806.56	5+	260.6625	4+	E_{γ}, I_{γ} : from 2000Pr03.
553.37 [°] 21	0.07 2	848.46	7+	295.085	6+	$E_{\gamma} I_{\gamma}$: from $\gamma \gamma$ coin (2000Pr03).
554.3 ⁸ 4	0.45 ⁸ 14	725.68	2^{-}	171.0738	3-	I_{γ} : from $\gamma\gamma$ coin. $I\gamma$ =0.60 for doublet (1967Mo05). see comment on 554 γ from 815 level.
554.3 ⁸ 4	0.15 ^g 5	815.139	3+	260.6625	4+	I_{γ} : from $\gamma\gamma$ coin; $I\gamma$ =0.60 for doublet (1967Mo05). the 'Budapest data' In 2007ChZX include two 555 keV transitions from the 815 level: $E\gamma$ =554.00 <i>16</i> , I_{γ} =0.31.5 and E_{γ} =555.30 <i>20</i> , I_{γ} =0.21.5, but the latter energy does not fit placement.
564.8 ^c 3 570.0 ^c 3	0.2 0.2	736.430 760.345	4^+ 3^-	171.0738 190.9021	3- 3+	
577.0f.3	0.70f 14	757 707	5-	180.467	4-	other: Ex-577.06.6 Ju-0.327.27 ('Budapest data' 2007Ch7X)
577.0° 5	0.70^{f} 14	007.717	J 4-	100.407		$\frac{1}{2} = \frac{1}{2} = \frac{1}$
577.05 3	0.70° 14	837.717	4	260.6625	4	
579.9°7 ×585.67	0.5 <i>3</i> 0.40 <i>12</i>	760.345	3-	180.467	4-	E_{γ} , I_{γ} : from 2000Pr03. placement from 757 level rejected In 2000Pr03. other: E_{γ} =585.93 <i>12</i> , I_{γ} =0.148 <i>21</i> ('Budapest data', 2007ChZX).
^x 589.4 7	0.30 9					
593.8 [°] 7	0.08	595.726	1-	0.0	0^{-}	
600.8 ^C 7	0.024 6	1030.38	4^{+}	430.031	2+	L.: from $\gamma\gamma$ coin (2000Pr03), $I\gamma=0.3$ In 1967Mo05.
607.7.7	0.11	662,169	3+	54 2391	2-	other: $E_{Y}=608.61.25.14 = 0.055.19$ ('Budanest data' 2007ChZX)
612.0° 5	0.3	792 789	4-	180 467	$\overline{\Delta}^{-}$	Charles 27, 17 Close 17 (Dudupert data, 2007 Charles).
613.8.4	0.70.21	668 005	4-	54 2391	2-	other: $F_{Y}=613.70.5$ $I_{Y}=0.53.4$ ('Budapest data' 2007ChZX)
^x 618 5 7	0.70 21	000.005	•	51.2591	2	
624.0.4	0.60.18	815 139	3+	190 9021	3+	other: Ey=624 13 6 Jy=0 341 26 ('Budapest data' 2007ChZX)
633 5 4	0.80 24	824 62	3-	190.9021	3+	other: $F_{y} = 63.62, 51, y = 0.58, 51'$ Budapest data', 2007(hZX)
643.1.8	0.40 12	725.68	2-	82 4707	1-	other: $E_{Y} = 643.0.3$, $I_{Y} = 0.164$, $I_{Y} = 0.16$
x653.4.8	0.1012	725.00	2	02.1707	1	oner. Dy-015.05 10, 17-0.101 25 (Dudupest data, 2007ChEAT).
^x 658.9.6	0.60.18					
661.0 ^C 6	0.60 18	925.0	5+	263 7876	5+	
x681 7 5	0.40 12	125.0	5	205.7070	5	
x689 7 9	0.40 12					placement from 881 level rejected In 2000Pr03
x600 / 0	0.50 15					other: $E\gamma=689.51$ 6, $I\gamma=0.71$ 5 ('Budapest data', 2007ChZX).
700 8 ^C 3	0.06 2	061.08	2+	260 6625	<u></u> 4+	E I : from high apergy any goin (2000Pr03)
701.1 ^C 5	0.00 2	1030 38		320 771	5-	$E_{\gamma,i\gamma}$. from ingreenergy $\gamma \gamma$ coin (2000 r05). E. J.: from 200 coin (2000 r03).
x708.0 6	0.010 5	1030.38	4	529.114	5	$L_{\gamma}L_{\gamma}$. Hom $\gamma\gamma$ com (2000F103).
700.90	0.5	881 040	3-	171 0720	3-	\mathbf{F}_{i} I : from any coin (2000 \mathbf{P}_{i} (2)
709.00	0.14 4	005 544	2+	100 0021	3+	Ey, $i\gamma$. from $\gamma\gamma$ coin (2000 fros). E. J.: from $\gamma\gamma$ coin (2000 Fros).
x71536	0.20 0	705.544	2	170.7021	5	Σ_{γ} , Γ_{γ} , Γ
733.94 [°] 21	0.0018	905.544	2^{+}	171.0738	3-	E_{γ} , I_{γ} : from $\gamma\gamma$ coin (2000Pr03).

 $^{166}_{67}\mathrm{Ho}_{99}$ -20

¹⁶⁶H0₉₉-20

γ (¹⁶⁶Ho) (continued)

	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^x 734.4 10	0.3				_	placement from 925 level rejected In 2000Pr03. other: $F_{Y}=734.45.6$ $I_{Y}=0.41.3$ ('Budapest data' 2007ChZX)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	770.5 [°] 4	0.06 2	1030.38	4+	260.6625	4+	E_{rev} J ₂ : from high-energy $\gamma\gamma$ coin (2000Pr03).
	798.6 4	0.26 8	881.040	3-	82.4707	1-	$E_{\rm vL}$; from high-energy $\gamma\gamma$ coin (2000Pt03).
839,9 7 0.13 1030.38 4* 190.021 3* E., I;: from high-energy yry coin (2000Pr03). 839,0 7 0.015 1030.38 4* 171.0738 3* E., I;: from yry coin (2000Pr03). 050.44 15 0.037 66243.714 3* 2183.29 other Ey=4049.45, 1y=0.193.23 (*Budnest data', 2007Ch/2X). 0403.66 0.019 66243.714 3* 2110.8 ether Ey=4049.45, 1y=0.193.23 (*Budnest data', 2007Ch/2X). 0403.66 0.012 06243.714 3* 2110.8 ether Ey=4049.45, 1y=0.193.23 (*Budnest data', 2007Ch/2X). 0403.66 0.012 06243.714 3* 2108.8 ether Ey=4049.45, 1y=0.193.23 (*Budnest data', 2007Ch/2X). 0403.66 0.012 06243.714 3* 2108.8 ether Ey=4049.45, 1y=0.193.23 (*Budnest data', 2007Ch/2X). 0403.66 0.012 06243.714 3* 2108.8 ether Ey=4049.45, 1y=0.193.23 (*Budnest data', 2007Ch/2X). 0403.66 0.0128 0.0243.714 3* 2108.8 ether Ey=4049.45, 1y=0.193.23 (*Budnest data', 2007Ch/2X). 0403.66 0.0128 0.0243.714 3* 2167.4 2167.4 ether Ey=4049.45,	827.1 3	0.19 6	881.040	3-	54.2391	2^{-}	$E_{y,ly}$: from high-energy $\gamma\gamma$ coin (2000Pr03).
849.5 7 0.015 1030.38 4* 180.467 4 E.,L; from high-energy fry coin (2000P03). 0405.46 15 0.097.6 6234.714) 3*4 2182.92 0405.46 25 0.029.3 6243.714) 3*4 2182.92 0405.46.25 0.029.3 6243.714) 3*4 2182.92 0471.45 0.019.4 (6243.714) 3*4 2162.9 0471.45 0.019.4 (6243.714) 3*4 2162.0 0471.45 0.019.4 (6243.714) 3*4 2167.7 04703.86 0.0443 (0243.714) 3*4 2167.7 0486.32 0.030.3 (6243.714) 3*4 2167.7 0495.2.3 0.030.3 (6243.714) 3*4 2167.7 0405.2.4 0.030.3 (6243.714) 3*4 215.84 0405.2.3 0.030.3 (6243.714) 3*4 2145.3 112.47 <i>16</i> 0.045 3 (6243.714) 3*4 2137.2 112.47 <i>16</i> 0.045 3 (6243.714) 3*4 2137.2 112.47 <i>16</i> 0.045	839.9 [°] 7	0.13 4	1030.38	4+	190.9021	3+	$E_{\gamma}I_{\gamma}$: from high-energy $\gamma\gamma$ coin (2000Pr03).
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	849.5 [°] 7	0.015 5	1030.38	4^{+}	180.467	4-	$E_{y,l_{y'}}$: from high-energy $\gamma\gamma$ coin (2000Pr03).
4050.46 /50.007 6(6243.714)3".4"2193.20other: Ey=4049.4 5, İy=0.193 23 ('Budapest data', 2007Ch2X).4063.66 250.029 3(6243.714)3".4"2182.924071.6 50.019 4(6243.714)3".4"2172.1.4071.6 50.019 4(6243.714)3".4"2160.7.4079.8 6 20.003 3(6243.714)3".4"2167.7.4079.8 6 20.003 3(6243.714)3".4"2161.1.4086 32 / A0.003 3(6243.714)3".4"2151.684095.2 30.003 3(6243.714)3".4"2145.434106.5 40.028 5(6243.714)3".4"2145.434104.4 50.024 5(6243.714)3".4"2145.434104.5 40.028 5(6243.714)3".4"2145.434116.19 / R0.032 3(6243.714)3".4"2145.434126.5 40.012 2(6243.714)3".4"2145.434126.5 40.028 5(6243.714)3".4"2145.434126.5 40.028 5(6243.714)3".4"215.44125.0 50.012 2(6243.714)3".4"215.44125.0 50.012 2(6243.714)3".4"2105.74138.0 60.020 5(6243.714)3".4"2105.74143.2 70.043 3(6243.714)3".4"2105.74158.0 70.051 3(6243.714)3".4"2105.74158.0 70.051 5(6243.714)3".4"2015.74158.0 70.051 5(6243.714) </td <td>858.0^c 5</td> <td>0.04 1</td> <td>1030.38</td> <td>4+</td> <td>171.0738</td> <td>3-</td> <td>$E_{\gamma}I_{\gamma}$: from $\gamma\gamma$ coin (2000Pr03).</td>	858.0 ^c 5	0.04 1	1030.38	4+	171.0738	3-	$E_{\gamma}I_{\gamma}$: from $\gamma\gamma$ coin (2000Pr03).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4050.46 15	0.097 6	(6243.714)	3-,4-	2193.20		other: Ey=4049.4 5, Iy=0.193 23 ('Budapest data', 2007ChZX).
4063.66 25 0.019 4 (6243.714) 3 ⁻ .4 ⁻ 2180.0 4071.6 5 0.019 4 (6243.714) 3 ⁻ .4 ⁻ 2172.1 4076.0 4 0.028 5 (6243.714) 3 ⁻ .4 ⁻ 2167.7 4076.0 4 0.038 5 (6243.714) 3 ⁻ .4 ⁻ 2163.80 4086.3 21 4 0.003 3 (6243.714) 3 ⁻ .4 ⁻ 2151.68 4086.3 21 4 0.003 3 (6243.714) 3 ⁻ .4 ⁻ 2157.34 4095 2 3 0.030 3 (6243.714) 3 ⁻ .4 ⁻ 2157.34 4095 2 3 0.030 3 (6243.714) 3 ⁻ .4 ⁻ 2157.34 4095 2 3 0.030 3 (6243.714) 3 ⁻ .4 ⁻ 2157.2 4104 4 5 0.028 5 (6243.714) 3 ⁻ .4 ⁻ 2137.2 4116.19 18 0.052 5 (6243.714) 3 ⁻ .4 ⁻ 2127.47 4112.47 16 0.040 3 (6243.714) 3 ⁻ .4 ⁻ 2127.47 4125.0 5 0.012 3 (6243.714) 3 ⁻ .4 ⁻ 2127.47 4125.0 4 0.012 3 (6243.714)	4060.74 22	0.037 <i>3</i>	(6243.714)	3-,4-	2182.92		
4071.6.5 0.102 9 (6243.714) 3 ⁺ .4 2167.1 4075.9.4 0.028 5 (6243.714) 3 ⁺ .4 2167.7 4079.86 24 0.044 3 (6243.714) 3 ⁺ .4 2167.7 4079.86 24 0.044 3 (6243.714) 3 ⁺ .4 2161.1 4082.6.3 0.030 3 (6243.714) 3 ⁺ .4 2157.34 4091.88 16 0.088 5 (6243.714) 3 ⁺ .4 2145.5 4095.2.3 0.003 3 (6243.714) 3 ⁺ .4 2145.4 4104.4 5 0.024 5 (6243.714) 3 ⁺ .4 2131.19 4112.47.16 0.046 3 (6243.714) 3 ⁺ .4 2131.19 4112.47.16 0.046 3 (6243.714) 3 ⁺ .4 2131.19 4112.47.16 0.046 3 (6243.714) 3 ⁺ .4 2131.19 4112.47.16 0.041 3 (6243.714) 3 ⁺ .4 2131.19 4112.47.16 0.041 3 (6243.714) 3 ⁺ .4 2131.19 412.12.3 0.011 3 (6243.714) 3 ⁺ .4 2105.7 412.12.4 0.017 3 (6243.714) 3 ⁺ .4	4063.66 25	0.029 3	(6243.714)	3-,4-	2180.0		
4073.9 4 0.102 9 6243.714) 3".4" 2160.8 4076.0 4 0.028 5 6243.714) 3".4" 2161.7 4086.3 21 4 0.030 3 66243.714) 3".4" 2161.8 4086.3 21 4 0.090 5 66243.714) 3".4" 2157.34 4091.98 16 0.088 5 66243.714) 3".4" 2151.68 4095.2 3 0.030 3 66243.714) 3".4" 2145.43 4088.32 17 0.024 4 66243.714) 3".4" 2139.3 4106.5 4 0.028 5 66243.714) 3".4" 2137.2 4116.19 16 0.064 3 66243.714) 3".4" 2137.2 4116.19 16 0.052 2 66243.714) 3".4" 2137.2 4116.19 16 0.052 2 66243.714) 3".4" 2137.2 4125.0 5 0.012 2 66243.714) 3".4" 2158.2 4125.0 5 0.012 2 66243.714) 3".4" 2105.7 4138.0 6 0.020 5 66243.714) 3".4" 2105.7 4148.5 0 0.012 3 66243.714) 3".4" 2105.7	4071.6 5	0.019 4	(6243.714)	3-,4-	2172.1		
4076.0 0.028 5 6(243.714) 3".4" 2163.70 4079.86 24 0.034 3 (6243.714) 3".4" 2163.80 4086.6.3 0.030 3 (6243.714) 3".4" 2157.34 4091.98 16 0.088 5 (6243.714) 3".4" 2151.68 4095.2 3 0.030 3 (6243.714) 3".4" 2145.43 4104.4 5 0.024 5 (6243.714) 3".4" 2139.3 4105.4 4 0.028 5 (6243.714) 3".4" 2137.2 4112.47 16 0.046 3 (6243.714) 3".4" 2137.2 4112.47 16 0.046 3 (6243.714) 3".4" 2137.2 412.12 3 0.015 2 (6243.714) 3".4" 2137.2 412.12 43 0.015 2 (6243.714) 3".4" 2137.4 412.12 3 0.015 2 (6243.714) 3".4" 2137.4 412.12 3 0.017 3 (6243.714) 3".4" 2118.7 412.0 4 0.017 3 (6243.714) 3".4" 2118.7 4132.0 4 0.017 3 (6243.714) 3".4" 2105.7 <td>4073.9 4</td> <td>0.102 9</td> <td>(6243.714)</td> <td>3-,4-</td> <td>2169.8</td> <td></td> <td></td>	4073.9 4	0.102 9	(6243.714)	3-,4-	2169.8		
4079.86 24 0.044 3 (6243.714) 3".4" 2161.1 4086.32 14 0.090 5 (6243.714) 3".4" 2157.34 40919.8 16 0.088 5 (6243.714) 3".4" 2151.68 4095.2 3 0.002 4 (6243.714) 3".4" 2148.5 4098.23 17 0.072 4 (6243.714) 3".4" 2137.2 4104.4 5 0.024 5 (6243.714) 3".4" 2137.2 4116.5 14 0.024 5 (6243.714) 3".4" 2137.2 4112.47 16 0.046 3 (6243.714) 3".4" 2127.47 4112.47 16 0.046 3 (6243.714) 3".4" 2128.7 4121.2 3 0.015 2 (6243.714) 3".4" 2127.47 4121.2 4 0.017 3 (6243.714) 3".4" 2128.7 4127.84 23 0.014 3 (6243.714) 3".4" 2118.7 4128.40 0.017 3 (6243.714) 3".4" 2118.7 4138.06 0.022 5 (6243.714) 3".4" 2109.2 4138.06 0.025 1 (6243.714) 3".4" 2007.7	4076.0 4	0.028 5	(6243.714)	3-,4-	2167.7		
4082.6.3 0.030.3 (6243.714) 3 ⁻ .4 ⁻ 2161.1 4086.632 14 0.090.5 (6243.714) 3 ⁻ .4 ⁻ 2157.34 4091.98 16 0.088.5 (6243.714) 3 ⁻ .4 ⁻ 2151.68 4095.2.3 0.030.3 (6243.714) 3 ⁻ .4 ⁻ 2148.5 4095.2.3 0.028.5 (6243.714) 3 ⁻ .4 ⁻ 2139.3 4106.5.4 0.028.5 (6243.714) 3 ⁻ .4 ⁻ 2131.19 4112.47 10.045.2 (6243.714) 3 ⁻ .4 ⁻ 2127.47 4112.47 10.052 (6243.714) 3 ⁻ .4 ⁻ 218.7 4125.0 0.012.2 (6243.714) 3 ⁻ .4 ⁻ 2118.7 4125.0 0.012.3 (6243.714) 3 ⁻ .4 ⁻ 2118.7 4132.46 0.012.3 (6243.714) 3 ⁻ .4 ⁻ 2119.2 4138.0.6 0.020.5 (6243.714) 3 ⁻ .4 ⁻ 2109.2 4138.0.6 0.012.3 (6243.714) 3 ⁻ .4 ⁻ 2109.2 4138.0.5 0.015.2 (6243.714) 3 ⁻ .4 ⁻ 2109.2 4145.29 15 <	4079.86 24	0.044 3	(6243.714)	3-,4-	2163.80		
4086.32 <i>I</i> 4 0.090 5 (6243.714) 3 ⁻ .4 ⁻ 2157.34 4091.98 <i>I</i> 6 0.088 5 (6243.714) 3 ⁻ .4 ⁻ 2151.68 4095.2 3 0.030 3 (6243.714) 3 ⁻ .4 ⁻ 2148.5 4098.23 <i>I</i> 7 0.072 <i>4</i> (6243.714) 3 ⁻ .4 ⁻ 2139.3 4106.4 5 0.028 5 (6243.714) 3 ⁻ .4 ⁻ 2137.2 4112.47 <i>I</i> 6 0.064 3 (6243.714) 3 ⁻ .4 ⁻ 2127.47 4116.19 <i>I</i> 8 0.035 2 (6243.714) 3 ⁻ .4 ⁻ 2127.47 4122.3 0.015 2 (6243.714) 3 ⁻ .4 ⁻ 2128.5 4125.0 5 0.012 2 (6243.714) 3 ⁻ .4 ⁻ 2128.5 4132.0 4 0.017 3 (6243.714) 3 ⁻ .4 ⁻ 2108.7 4138.0 6 0.002 5 (6243.714) 3 ⁻ .4 ⁻ 2109.2 4148.0 4 0.027 5 (6243.714) 3 ⁻ .4 ⁻ 2108.7 4145.29 <i>I</i> 5 0.048 3 (6243.714) 3 ⁻ .4 ⁻ 2108.7 4145.29 <i>I</i> 5 0.048 3 (6243.714) 3 ⁻ .4 ⁻ 2108.7 4145.29 <i>I</i> 5 0.048 3 </td <td>4082.6 <i>3</i></td> <td>0.030 3</td> <td>(6243.714)</td> <td>3-,4-</td> <td>2161.1</td> <td></td> <td></td>	4082.6 <i>3</i>	0.030 3	(6243.714)	3-,4-	2161.1		
4091.98.16 0.088 5 (6243.714) 3 ⁻ 4 2151.68 4095.23 0.030 3 (6243.714) 3 ⁻ 4 2148.5 4104.45 0.024 5 (6243.714) 3 ⁻ 4 2139.3 4106.54 0.028 5 (6243.714) 3 ⁻ 4 2137.2 4112.47 16 0.046 3 (6243.714) 3 ⁻ 4 2137.2 4112.47 16 0.046 3 (6243.714) 3 ⁻ 4 2127.47 4112.50 5 0.012 2 (6243.714) 3 ⁻ 4 2122.5 4125.0 5 0.012 2 (6243.714) 3 ⁻ 4 211.7 4138.46 0.0017 3 (6243.714) 3 ⁻ 4 2109.2 4138.06 0.0025 (6243.714) 3 ⁻ 4 2109.2 4138.06 0.0025 (6243.714) 3 ⁻ 4 2109.2 4138.06 0.0255 (6243.714) 3 ⁻ 4 2109.2 4149.34 0.0152 (6243.714) 3 ⁻ 4 2109.7 4149.34 0.0152 (6243.714) 3 ⁻ 4 2008.37 4149.34 0.0152 (6243.714) 3 ⁻ 4 2008.17	4086.32 14	0.090 5	(6243.714)	3-,4-	2157.34		
4095.2.3 0.030.3 (6243.714) 3 ⁻ ,4 ⁻ 2145.43 4098.23 17 0.024.5 (6243.714) 3 ⁻ ,4 ⁻ 2139.3 4106.4.5 0.024.5 (6243.714) 3 ⁻ ,4 ⁻ 2137.2 4116.4.9 10.045.3 (6243.714) 3 ⁻ ,4 ⁻ 2137.2 4116.19 18 0.035.2 (6243.714) 3 ⁻ ,4 ⁻ 2127.47 4112.1.2.3 0.015.2 (6243.714) 3 ⁻ ,4 ⁻ 2127.47 4125.0.5 0.012.2 (6243.714) 3 ⁻ ,4 ⁻ 2128.7 4127.84.23 0.041.3 (6243.714) 3 ⁻ ,4 ⁻ 2118.7 4132.0.4 0.017.3 (6243.714) 3 ⁻ ,4 ⁻ 2118.7 4138.0.6 0.020.5 (6243.714) 3 ⁻ ,4 ⁻ 2105.7 4140.3.4 0.012.3 (6243.714) 3 ⁻ ,4 ⁻ 2105.7 4140.4 0.027.5 (6243.714) 3 ⁻ ,4 ⁻ 2105.7 4140.5 0.012.3 (6243.714) 3 ⁻ ,4 ⁻ 2105.7 4145.29 15 0.048.3 (6243.714) 3 ⁻ ,4 ⁻ 2098.37 4145.29	4091.98 16	0.088 5	(6243.714)	3-,4-	2151.68		
4098.23 17 0.072 4 (6243.714) 3^-4^- 2145.434104.4 5 0.028 5 (6243.714) 3^-4^- 2139.24105.5 4 0.028 5 (6243.714) 3^-4^- 2137.24112.47 16 0.046 3 (6243.714) 3^-4^- 2127.474116.19 18 0.035 2 (6243.714) 3^-4^- 2127.474121.2 3 0.015 2 (6243.714) 3^-4^- 2127.474125.0 5 0.012 2 (6243.714) 3^-4^- 2118.74127.84 23 0.041 3 (6243.714) 3^-4^- 2115.824132.0 4 0.017 3 (6243.714) 3^-4^- 2105.74138.0 6 0.020 5 (6243.714) 3^-4^- 2103.74140.0 4 0.027 5 (6243.714) 3^-4^- 209.24145.29 15 0.048 3 (6243.714) 3^-4^- 2094.44152.70 20 0.051 3 (6243.714) 3^-4^- 2094.74168.4 5 0.020 4 (6243.714) 3^-4^- 2075.3417.06 20 0.054 3 (6243.714) 3^-4^- 2075.34181.6 5 0.012 2 (6243.714) 3^-4^- 205.204188.0 3 0.003 7 (6243.714) 3^-4^- 2056.74189.3 3 0.046 5 (6243.714) 3^-4^- 2055.74189.3 3 0.046 5 (6243.714) 3^-4^- 4189.3 3 0.046 5 (6243.714) 3^-4^- 4189.3 3 0.046 5 (6243.714) 3^-4^- <tr <tr="">4189.3 3<</tr>	4095.2 <i>3</i>	0.030 <i>3</i>	(6243.714)	3-,4-	2148.5		
$4104.4.5$ $0.024.5$ (6243.714) $3^-,4^ 2139.3$ $4106.5.4$ $0.028.5$ (6243.714) $3^-,4^ 2137.2$ 4112.4716 $0.046.3$ (6243.714) $3^-,4^ 2131.19$ 4116.1918 $0.035.2$ (6243.714) $3^-,4^ 2127.47$ 4122.3 $0.015.2$ (6243.714) $3^-,4^ 2118.7$ $4127.84.23$ $0.017.3$ (6243.714) $3^-,4^ 2115.82$ $4132.0.4$ $0.017.3$ (6243.714) $3^-,4^ 2105.7$ $4134.5.6$ $0.012.3$ (6243.714) $3^-,4^ 2105.7$ 4145.2915 $0.048.3$ (6243.714) $3^-,4^ 2105.7$ 4145.2915 $0.048.3$ (6243.714) $3^-,4^ 2009.2$ 4145.2915 $0.048.3$ (6243.714) $3^-,4^ 2009.2$ 4145.2915 $0.048.3$ (6243.714) $3^-,4^ 2009.4$ $4155.901.8$ $0.045.3$ (6243.714) $3^-,4^ 2094.4$ $4155.901.8$ $0.045.3$ (6243.714) $3^-,4^ 2097.76$ 4168.45 $0.020.4$ (6243.714) $3^-,4^ 2077.77$ 4168.45 $0.020.4$ (6243.714) $3^-,4^ 2075.3$ $4171.06.20$ $0.064.4$ (6243.714) $3^-,4^ 2057.0$ 4188.65 $0.012.2$ (6243.714) $3^-,4^ 2058.7$ 4187.05 $0.038.7$ (6243.714) $3^-,4^ 2058.7$ $4189.3.3$ $0.046.5$ (6243.714) $3^-,4^ 2$	4098.23 17	0.072 4	(6243.714)	3-,4-	2145.43		
4106.5 40.028 5(6243.714) 3^-4^- 2137.24112.47 160.046 3(6243.714) 3^-4^- 2121.474121.2 30.015 2(6243.714) 3^-4^- 2122.54125.0 50.012 2(6243.714) 3^-4^- 2118.74127.84 230.017 3(6243.714) 3^-4^- 2115.824130.0 40.017 3(6243.714) 3^-4^- 2110.74148.0 60.020 5(6243.714) 3^-4^- 2109.24148.0 40.027 5(6243.714) 3^-4^- 2105.74149.3 40.015 2(6243.714) 3^-4^- 2105.74149.3 40.015 2(6243.714) 3^-4^- 2098.374149.3 40.015 2(6243.714) 3^-4^- 2099.44152.70 200.051 3(6243.714) 3^-4^- 2097.764168.4 50.020 4(6243.714) 3^-4^- 2077.774168.4 50.020 4(6243.714) 3^-4^- 2075.34171.06 200.664 4(6243.714) 3^-4^- 2075.604188.6 50.012 2(6243.714) 3^-4^- 2075.604188.6 50.012 2(6243.714) 3^-4^- 2056.74187.0 50.038 7(6243.714) 3^-4^- 2056.74189.3 30.046 5(6243.714) 3^-4^- 2056.7	4104.4 5	0.024 5	(6243.714)	3-,4-	2139.3		
4112.47 16 0.046 3 (6243.714) $3^-,4^ 2131.19$ 4116.19 18 0.035 2 (6243.714) $3^-,4^ 2127.47$ 4121.2 0.015 2 (6243.714) $3^-,4^ 2118.7$ 4125.0 5 0.012 2 (6243.714) $3^-,4^ 2118.7$ 4127.84 23 0.041 3 (6243.714) $3^-,4^ 2115.82$ 4132.0 4 0.017 3 (6243.714) $3^-,4^ 2105.7$ 4138.0 6 0.027 5 (6243.714) $3^-,4^ 2105.7$ 4140.0 4 0.027 5 (6243.714) $3^-,4^ 209.2$ 4149.3 4 0.0152 (6243.714) $3^-,4^ 2094.4$ 4155.90 16 0.0513 (6243.714) $3^-,4^ 2099.46$ 4155.90 8 0.0453 (6243.714) $3^-,4^ 2097.76$ 4155.90 8 0.0453 (6243.714) $3^-,4^ 2077.77$ 4168.45 0.020 (6243.714) $3^-,4^ 2077.77$ 4170.66 0.0122 (6243.714) $3^-,4^ 2072.60$ 4178.46 15 0.0966 (6243.714) $3^-,4^ 418.65$ 0.0122 (6243.714) $3^-,4^ 418.65$ 0.0122 (6243.714) $3^-,4^ 418.65$ 0.0122 (6243.714) $3^-,4^ 418.65$ 0.0122 (6243.714) $3^-,4^-$	4106.5 4	0.028 5	(6243.714)	3-,4-	2137.2		
4116.19 18 0.035 2 (6243.714) 3^-4^- 2127.474121.2 3 0.015 2 (6243.714) 3^-4^- 2118.74125.0 5 0.012 2 (6243.714) 3^-4^- 2115.824132.0 4 0.017 3 (6243.714) 3^-4^- 2115.824134.5 6 0.020 5 (6243.714) 3^-4^- 2109.24138.0 6 0.020 5 (6243.714) 3^-4^- 2105.74140.0 4 0.027 5 (6243.714) 3^-4^- 2098.374149.3 4 0.015 2 (6243.714) 3^-4^- 2098.474152.70 20 0.513 (6243.714) 3^-4^- 2097.764165.89 21 0.0755 (6243.714) 3^-4^- 2077.774168.45 0.020 (6243.714) 3^-4^- 2075.34171.06 20 0.064(6243.714) 3^-4^- 4181.65 0.0122 (6243.714) 3^-4^- 2058.74187.05 0.038 (6243.714) 3^-4^- 4189.33 0.046 (6243.714) 3^-4^- 2058.74189.33 0.046 (6243.714) 3^-4^- 2054.4	4112.47 <i>16</i>	0.046 <i>3</i>	(6243.714)	3-,4-	2131.19		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4116.19 <i>18</i>	0.035 2	(6243.714)	3-,4-	2127.47		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4121.2 <i>3</i>	0.015 2	(6243.714)	3-,4-	2122.5		
$4127.84\ 23$ $0.041\ 3$ (6243.714) $3^-,4^ 2115.82$ $4132.0\ 4$ $0.017\ 3$ (6243.714) $3^-,4^ 2111.7$ $4134.5\ 6$ $0.020\ 5$ (6243.714) $3^-,4^ 2109.2$ $4138.0\ 6$ $0.020\ 5$ (6243.714) $3^-,4^ 2105.7$ $4140.0\ 4$ $0.027\ 5$ (6243.714) $3^-,4^ 2105.7$ $4145.29\ 15$ $0.048\ 3$ (6243.714) $3^-,4^ 2098.37$ $4145.29\ 15$ $0.048\ 3$ (6243.714) $3^-,4^ 2099.44$ $4152.70\ 20$ $0.051\ 3$ (6243.714) $3^-,4^ 2097.76$ $4155.90\ 18$ $0.045\ 3$ (6243.714) $3^-,4^ 2077.77$ $4168.4\ 5$ $0.020\ 4$ (6243.714) $3^-,4^ 2077.3$ $4178.46\ 15$ $0.096\ 6$ (6243.714) $3^-,4^ 2072.60$ $4178.46\ 15$ $0.092\ 4$ (6243.714) $3^-,4^ 2076.20$ $4181.6\ 5$ $0.012\ 2$ (6243.714) $3^-,4^ 2076.20$ $4178.46\ 15$ $0.096\ 6$ (6243.714) $3^-,4^ 2076.20$ $4181.6\ 5$ $0.012\ 2$ (6243.714) $3^-,4^ 2062.1$ $4185.0\ 3$ $0.073\ 7$ (6243.714) $3^-,4^ 2056.7$ $4189.3\ 3$ $0.046\ 5$ (6243.714) $3^-,4^ 2056.7$	4125.0 5	0.012 2	(6243.714)	3-,4-	2118.7		
$4132.0 4$ $0.017 3$ (6243.714) $3^-,4^ 2111.7$ $4138.0 6$ $0.020 5$ (6243.714) $3^-,4^ 2109.2$ $4138.0 6$ $0.027 5$ (6243.714) $3^-,4^ 2105.7$ $4140.0 4$ $0.027 5$ (6243.714) $3^-,4^ 209.37$ $4145.29 15$ $0.048 3$ (6243.714) $3^-,4^ 209.44$ $4152.70 20$ $0.051 3$ (6243.714) $3^-,4^ 209.96$ $4155.90 18$ $0.045 3$ (6243.714) $3^-,4^ 2097.76$ $4165.89 21$ $0.075 5$ (6243.714) $3^-,4^ 2077.77$ $4168.4 5$ $0.020 4$ (6243.714) $3^-,4^ 2075.3$ $4171.06 20$ $0.064 4$ (6243.714) $3^-,4^ 2075.260$ $4181.6 5$ $0.012 2$ (6243.714) $3^-,4^ 2065.20$ $4181.6 5$ $0.012 2$ (6243.714) $3^-,4^ 2058.7$ $4187.0 5$ $0.038 7$ (6243.714) $3^-,4^ 2056.7$ $4189.3 3$ $0.046 5$ (6243.714) $3^-,4^ 2056.7$	4127.84 23	0.041 3	(6243.714)	3-,4-	2115.82		
4134.56 0.0123 (6243.714) $3^-4^ 2109.2$ 4138.06 0.0205 (6243.714) $3^-4^ 2105.7$ 4140.04 0.0275 (6243.714) $3^-4^ 2103.7$ 4145.2915 0.0483 (6243.714) $3^-4^ 2098.37$ 4149.34 0.0152 (6243.714) $3^-4^ 2094.4$ 4152.7020 0.0513 (6243.714) $3^-4^ 2097.76$ 4165.8921 0.0755 (6243.714) $3^-4^ 2077.77$ 4168.45 0.0204 (6243.714) $3^-4^ 2077.33$ 4171.0620 0.0644 (6243.714) $3^-4^ 2072.60$ 4181.65 0.0122 (6243.714) $3^-4^ 2065.20$ 4181.65 0.0122 (6243.714) $3^-4^ 2058.7$ 4187.05 0.0387 (6243.714) $3^-4^ 2056.7$ 4189.33 0.0465 (6243.714) $3^-4^ 2056.7$	4132.0 4	0.017 3	(6243.714)	3-,4-	2111.7		
4138.0 60.020 5(6243.714) $3^-,4^-$ 2105.74140.0 40.027 5(6243.714) $3^-,4^-$ 2103.74145.29 150.048 3(6243.714) $3^-,4^-$ 2098.374149.3 40.015 2(6243.714) $3^-,4^-$ 2094.44152.70 200.051 3(6243.714) $3^-,4^-$ 2099.964155.90 180.045 3(6243.714) $3^-,4^-$ 2087.764168.4 50.020 4(6243.714) $3^-,4^-$ 2077.774168.4 50.020 4(6243.714) $3^-,4^-$ 2075.34171.06 200.064 4(6243.714) $3^-,4^-$ 2065.204181.6 50.012 2(6243.714) $3^-,4^-$ 2065.204181.6 50.012 2(6243.714) $3^-,4^-$ 2058.74189.3 30.046 5(6243.714) $3^-,4^-$ 2056.74189.3 30.046 5(6243.714) $3^-,4^-$ 2054.4	4134.5 6	0.012 3	(6243.714)	3-,4-	2109.2		
$4140.0 4$ $0.027 5$ (6243.714) $3^-,4^ 2103.7$ $4145.29 15$ $0.048 3$ (6243.714) $3^-,4^ 2098.37$ $4149.3 4$ $0.015 2$ (6243.714) $3^-,4^ 2094.4$ $4152.70 20$ $0.051 3$ (6243.714) $3^-,4^ 2090.96$ $4155.90 18$ $0.045 3$ (6243.714) $3^-,4^ 2097.76$ $4168.4 5$ $0.020 4$ (6243.714) $3^-,4^ 2077.77$ $4168.4 5$ $0.020 4$ (6243.714) $3^-,4^ 2075.3$ $4171.06 20$ $0.064 4$ (6243.714) $3^-,4^ 2072.60$ $4181.6 5$ $0.012 2$ (6243.714) $3^-,4^ 2065.20$ $4181.6 5$ $0.012 2$ (6243.714) $3^-,4^ 2058.7$ $4187.0 5$ $0.038 7$ (6243.714) $3^-,4^ 2056.7$ $4189.3 3$ $0.046 5$ (6243.714) $3^-,4^ 2056.7$	4138.0 6	0.020 5	(6243.714)	3-,4-	2105.7		
$4145.29\ 15$ $0.048\ 3$ (6243.714) $3^-,4^ 2098.37$ $4149.3\ 4$ $0.015\ 2$ (6243.714) $3^-,4^ 2094.4$ $4152.70\ 20$ $0.051\ 3$ (6243.714) $3^-,4^ 2090.96$ $4155.90\ 18$ $0.045\ 3$ (6243.714) $3^-,4^ 2087.76$ $4165.89\ 21$ $0.075\ 5$ (6243.714) $3^-,4^ 2077.77$ $4168.4\ 5$ $0.020\ 4$ (6243.714) $3^-,4^ 2077.77$ $4168.4\ 5$ $0.020\ 4$ (6243.714) $3^-,4^ 2072.60$ $4171.06\ 20$ $0.064\ 4$ (6243.714) $3^-,4^ 2065.20$ $4181.6\ 5$ $0.012\ 2$ (6243.714) $3^-,4^ 2062.1$ $4185.0\ 3$ $0.073\ 7$ (6243.714) $3^-,4^ 2058.7$ $4187.0\ 5$ $0.038\ 7$ (6243.714) $3^-,4^ 2056.7$ $4189.3\ 3$ $0.046\ 5$ (6243.714) $3^-,4^ 2056.7$	4140.0 4	0.027 5	(6243.714)	3-,4-	2103.7		
4149.3 4 0.015 2 (6243.714) $3^-,4^ 2094.4$ 4152.70 20 0.051 3 (6243.714) $3^-,4^ 2090.96$ 4155.90 18 0.045 3 (6243.714) $3^-,4^ 2087.76$ 4165.89 21 0.075 5 (6243.714) $3^-,4^ 2077.77$ 4168.4 5 0.020 4 (6243.714) $3^-,4^ 2075.3$ 4171.06 20 0.064 4 (6243.714) $3^-,4^ 2072.60$ 4181.6 5 0.012 2 (6243.714) $3^-,4^ 2065.20$ 4181.6 5 0.073 7 (6243.714) $3^-,4^ 2058.7$ 4187.0 5 0.038 7 (6243.714) $3^-,4^ 2056.7$ 4189.3 0.046 5 (6243.714) $3^-,4^ 2056.7$	4145.29 15	0.048 3	(6243.714)	3-,4-	2098.37		
$4152.70 \ 20$ $0.051 \ 3$ (6243.714) $3^-,4^ 2090.96$ $4155.90 \ 18$ $0.045 \ 3$ (6243.714) $3^-,4^ 2087.76$ $4165.89 \ 21$ $0.075 \ 5$ (6243.714) $3^-,4^ 2077.77$ $4168.4 \ 5$ $0.020 \ 4$ (6243.714) $3^-,4^ 2075.3$ $4171.06 \ 20$ $0.064 \ 4$ (6243.714) $3^-,4^ 2072.60$ $4178.46 \ 15$ $0.096 \ 6$ (6243.714) $3^-,4^ 2065.20$ $4181.6 \ 5$ $0.012 \ 2$ (6243.714) $3^-,4^ 2062.1$ $4185.0 \ 3$ $0.073 \ 7$ (6243.714) $3^-,4^ 2058.7$ $4187.0 \ 5$ $0.038 \ 7$ (6243.714) $3^-,4^ 2056.7$ $4189.3 \ 3$ $0.046 \ 5$ (6243.714) $3^-,4^ 2054.4$	4149.3 4	0.015 2	(6243.714)	3-,4-	2094.4		
4155.9018 0.045 3 (6243.714) $3^-,4^ 2087.76$ 4165.8921 0.075 5 (6243.714) $3^-,4^ 2077.77$ 4168.4 5 0.020 4 (6243.714) $3^-,4^ 2075.3$ 4171.06 20 0.064 (6243.714) $3^-,4^ 2072.60$ 4178.46 15 0.096 6 (6243.714) $3^-,4^ 2065.20$ 4181.6 5 0.012 (6243.714) $3^-,4^ 2062.1$ 4185.0 3 0.073 7 (6243.714) $3^-,4^ 2058.7$ 4187.0 5 0.038 7 (6243.714) $3^-,4^ 2056.7$ 4189.3 3 0.046 5 (6243.714) $3^-,4^ 2054.4$	4152.70 20	0.051 3	(6243.714)	3-,4-	2090.96		
4165.8921 0.075 5 (6243.714) $3^-,4^ 2077.77$ 4168.45 0.020 4 (6243.714) $3^-,4^ 2075.3$ 4171.0620 0.064 (6243.714) $3^-,4^ 2072.60$ 4178.4615 0.096 (6243.714) $3^-,4^ 2065.20$ 4181.65 0.012 (6243.714) $3^-,4^ 2062.1$ 4185.03 0.073 7 (6243.714) $3^-,4^ 2058.7$ 4187.05 0.038 7 (6243.714) $3^-,4^ 2056.7$ 4189.33 0.046 5 (6243.714) $3^-,4^ 2054.4$	4155.90 18	0.045 3	(6243.714)	3-,4-	2087.76		
4168.4 5 $0.020 4$ (6243.714) $3^-,4^ 2075.3$ 4171.06 20 $0.064 4$ (6243.714) $3^-,4^ 2072.60$ 4178.46 15 $0.096 6$ (6243.714) $3^-,4^ 2065.20$ 4181.6 5 $0.012 2$ (6243.714) $3^-,4^ 2062.1$ 4185.0 3 $0.073 7$ (6243.714) $3^-,4^ 2058.7$ 4187.0 5 $0.038 7$ (6243.714) $3^-,4^ 2056.7$ 4189.3 3 $0.046 5$ (6243.714) $3^-,4^ 2054.4$	4165.89 21	0.075 5	(6243.714)	3-,4-	2077.77		
$4171.06\ 20$ $0.064\ 4$ (6243.714) $3^-,4^ 2072.60$ $4178.46\ 15$ $0.096\ 6$ (6243.714) $3^-,4^ 2065.20$ $4181.6\ 5$ $0.012\ 2$ (6243.714) $3^-,4^ 2062.1$ $4185.0\ 3$ $0.073\ 7$ (6243.714) $3^-,4^ 2058.7$ $4187.0\ 5$ $0.038\ 7$ (6243.714) $3^-,4^ 2056.7$ $4189.3\ 3$ $0.046\ 5$ (6243.714) $3^-,4^ 2054.4$	4168.4 5	0.020 4	(6243.714)	3-,4-	2075.3		
$41/8.46 I5$ $0.096 6$ (6243.714) 5 4 2065.20 4181.65 $0.012 2$ (6243.714) $3^-,4^ 2062.1$ $4185.0 3$ $0.073 7$ (6243.714) $3^-,4^ 2058.7$ $4187.0 5$ $0.038 7$ (6243.714) $3^-,4^ 2056.7$ $4189.3 3$ $0.046 5$ (6243.714) $3^-,4^ 2054.4$	4171.06 20	0.064 4	(6243.714)	3,4	2072.60		
4181.0 5 $0.012 2$ (6243.714) 5 4 2062.1 4185.0 3 $0.073 7$ (6243.714) $3^-,4^ 2058.7$ 4187.0 5 $0.038 7$ (6243.714) $3^-,4^ 2056.7$ 4189.3 3 $0.046 5$ (6243.714) $3^-,4^ 2054.4$	4178.46 15	0.096 6	(6243.714)	$3,4^{-}$	2065.20		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4181.6 3	0.012 2	(0243./14)	3,4 2-4-	2062.1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4185.0 5	0.0/3/	(0243./14)	3,4 2-4-	2058.7		
4107.5 5 0.040 J (0245.714) 5 ,4 2034.4	4187.03	0.038 /	(0243./14)	3,4 2-1-	2050.7		
	4109.3 3	0.040 3	(0245.714)	3,4	2034.4		

γ (¹⁶⁶Ho) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	J_i^{π}	E_f	Comments
4192.4 4	0.014 2	(6243,714)	$3^{-}.4^{-}$	2051.3	
4203.3 3	0.024 2	(6243.714)	3-,4-	2040.4	
4206.22 17	0.064 4	(6243.714)	3-,4-	2037.44	
4211.61 23	0.077 6	(6243.714)	3-,4-	2032.05	
4213.9 <i>3</i>	0.040 6	(6243.714)	3-,4-	2029.8	
4218.03 19	0.085 5	(6243.714)	3-,4-	2025.63	
4220.7 <i>3</i>	0.024 3	(6243.714)	3-,4-	2023.0	
4226.1 4	0.020 3	(6243.714)	3-,4-	2017.6	other: $E_{\gamma}=4227.2$ 5, $I_{\gamma}=0.058$ 26 ('Budapest data', 2007ChZX); possibly a $4226\gamma+4229\gamma$ doublet.
4228.59 21	0.065 5	(6243.714)	3-,4-	2015.07	
4232.89 13	0.047 <i>3</i>	(6243.714)	3-,4-	2010.77	
4238.77 10	0.179 10	(6243.714)	3-,4-	2004.89	other: $E_{\gamma}=4238.2$ 3, $I_{\gamma}=0.14$ 3 ('Budapest data', 2007ChZX).
4244.72 20	0.026 2	(6243.714)	3-,4-	1998.94	
4248.29 16	0.037 2	(6243.714)	3-,4-	1995.37	
4257.68 12	0.038 2	(6243.714)	3-,4-	1985.98	
4265.33 18	0.050 3	(6243.714)	3-,4-	1978.33	
4268.2 4	0.020 3	(6243.714)	3-,4-	1975.5	
4270.8 8	0.009 3	(6243.714)	3-,4-	1972.9	
4273.9 <i>3</i>	0.020 2	(6243.714)	3-,4-	1969.8	
4282.98 14	0.069 4	(6243.714)	3-,4-	1960.67	other: $E_{\gamma}=4282.7$ 5, $I_{\gamma}=0.064$ 16 ('Budapest data', 2007ChZX).
4286.13 <i>21</i>	0.038 <i>3</i>	(6243.714)	3-,4-	1957.52	
4289.4 7	0.007 2	(6243.714)	3-,4-	1954.3	
4292.78 12	0.138 8	(6243.714)	3-,4-	1950.87	other: $E\gamma = 4292.1 \ 3$, $I\gamma = 0.100 \ 18$ ('Budapest data', 2007ChZX).
4297.68 16	0.026 2	(6243.714)	3-,4-	1945.97	
4304.77 10	0.058 <i>3</i>	(6243.714)	3-,4-	1938.88	
4310.56 16	0.024 2	(6243.714)	3-,4-	1933.09	
4315.48 10	0.062 4	(6243.714)	3-,4-	1928.17	
4324.33 15	0.061 4	(6243.714)	3-,4-	1919.32	other: $E\gamma = 4323.3 \ 4$, $I\gamma = 0.074 \ I9$ ('Budapest data', 2007ChZX).
4327.4 6	0.015 3	(6243.714)	3-,4-	1916.3	other: $E\gamma = 4327.3 \ 5, \ I\gamma = 0.055 \ I9 \ ('Budapest data', 2007 ChZX).$
4329.7 4	0.021 3	(6243.714)	3-,4-	1914.0	
4335.98 11	0.047 3	(6243.714)	3-,4-	1907.67	other: $E\gamma = 4336.1 4$, $I\gamma = 0.061 18$ ('Budapest data', 2007ChZX).
4344.69 15	0.034 2	(6243.714)	3-,4-	1898.96	other: $E_{\gamma}=4344.3$ 6, $I_{\gamma}=0.058$ 23 ('Budapest data', 2007ChZX).
4348.37 11	0.151 8	(6243.714)	3-,4-	1895.28	other: $E_{\gamma}=4347.5 \ 3, \ I_{\gamma}=0.135 \ 24 \ ('Budapest data', 2007ChZX).$
4352.80 11	0.047 3	(6243.714)	3-,4-	1890.85	
4360.66 18	0.019 2	(6243.714)	3-,4-	1882.99	
4366.79 9	0.064 4	(6243.714)	3-,4-	1876.86	
43/3.4 4	0.009 1	(6243.714)	3-,4-	1870.3	
43/8.9 6	0.005 1	(6243.714)	3,4	1864.8	
4384.31 11	0.057 3	(6243.714)	3,4	1859.34	other: $E\gamma = 4.384.0\ 20,\ I\gamma = 0.06\ 4\ ('Budapest data',\ 200/ChZX).$
4388.67 13	0.048 3	(6243.714)	3-,4-	1854.98	
4392.6 3	0.014 1	(6243.714)	3,4	1851.1	
4400.66 9	0.118 7	(6243.714)	3-,4-	1842.99	other: $E\gamma = 4400.8$ 6, $I\gamma = 0.08$ 6 ('Budapest data', 200/ChZX).
4405.1 11	0.005 2	(6243.714)	3,4	1838.6	
4408.05 16	0.056 4	(6243.714)	3-,4-	1835.60	

γ (¹⁶⁶Ho) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	Comments
4414.12 24	0.017 2	(6243.714)	$3^{-}.4^{-}$	1829.53	
4419.79 10	0.063 4	(6243.714)	3-,4-	1823.86	
4426.67 9	0.073 4	(6243.714)	3-,4-	1816.98	
4438.2 <i>3</i>	0.011 1	(6243.714)	3-,4-	1805.5	
4444.9 <i>4</i>	0.009 1	(6243.714)	3-,4-	1798.8	
4449.47 15	0.027 2	(6243.714)	3-,4-	1794.18	
4458.1 <i>3</i>	0.011 1	(6243.714)	3-,4-	1785.5	
4466.89 7	0.150 8	(6243.714)	3-,4-	1776.76	other: $E_{\gamma}=4467.0 \ 3$, $I_{\gamma}=0.19 \ 3$ ('Budapest data', 2007ChZX).
4474.19 18	0.018 1	(6243.714)	3-,4-	1769.46	
4480.06 9	0.082 5	(6243.714)	3-,4-	1763.59	other: Ey=4479.8 7, Iy=0.093 23 ('Budapest data', 2007ChZX).
4484.0 <i>3</i>	0.020 2	(6243.714)	3-,4-	1759.6	
4486.8 6	0.009 2	(6243.714)	3-,4-	1756.8	
4491.2 <i>3</i>	0.011 1	(6243.714)	3-,4-	1752.4	
4501.39 12	0.028 2	(6243.714)	3-,4-	1742.26	
4512.55 <i>11</i>	0.035 2	(6243.714)	3-,4-	1731.10	
4519.8 6	0.004 1	(6243.714)	3-,4-	1723.8	
4527.00 20	0.021 2	(6243.714)	3-,4-	1716.65	
4530.41 23	0.035 3	(6243.714)	3-,4-	1713.24	
4533.0 <i>3</i>	0.019 3	(6243.714)	3-,4-	1710.6	
4539.34 8	0.054 3	(6243.714)	3-,4-	1704.31	
4548.64 7	0.073 4	(6243.714)	3-,4-	1695.01	other: $E_{\gamma}=4548.3 \ 5$, $I_{\gamma}=0.066 \ 19$ ('Budapest data', 2007ChZX).
4556.3 5	0.007 1	(6243.714)	3-,4-	1687.3	
4560.1 4	0.019 3	(6243.714)	3-,4-	1683.5	
4562.4 5	0.014 3	(6243.714)	3-,4-	1681.2	
4566.96 12	0.032 2	(6243.714)	3-,4-	1676.69	
4572.01 8	0.064 4	(6243.714)	3-,4-	1671.64	
4577.50 9	0.055 <i>3</i>	(6243.714)	3-,4-	1666.15	
4582.08 21	0.018 1	(6243.714)	3-,4-	1661.57	
4586.1 <i>3</i>	0.024 3	(6243.714)	3-,4-	1657.5	
4588.6 5	0.011 2	(6243.714)	3-,4-	1655.0	
4599.16 15	0.020 1	(6243.714)	3-,4-	1644.49	
4604.68 16	0.028 2	(6243.714)	3-,4-	1638.97	
4608.14 9	0.087 5	(6243.714)	3-,4-	1635.51	other: $E\gamma = 4608.0 4$, $I\gamma = 0.110 21$ ('Budapest data', 2007ChZX).
4613.7 3	0.047 8	(6243.714)	3-,4-	1629.9	
4615.5 4	0.027 7	(6243.714)	3-,4-	1628.1	other: $E\gamma = 4615.2 \ 6$, $I\gamma = 0.092 \ 21$ ('Budapest data', 200/ChZX); possibly a $4614\gamma + 4616\gamma$ doublet.
4623.3 3	0.011 1	(6243./14)	3,4	1620.3	
4627.62.25	0.052.6	(6243./14)	3,4	1616.0	other: $E\gamma = 4627.5$ 6, $I\gamma = 0.090$ 23 ('Budapest data', 2007ChZX).
4629.6 4	0.021 3	(6243.714)	3,4	1614.0	
4037.39 24	0.029 3	(0243./14)	5,4 2-4-	1606.25	
4039.83 13	0.085.0	(0243./14)	5,4 2-4-	1603.81	ouner: $E\gamma = 4058.2$ 0, $I\gamma = 0.081$ 23 ("Budapest data", 2007 (ChZX).
4043.00 9	0.062 4	(0243./14)	3,4 2-4-	1599.98	other: $E\gamma = 4045.8 4$, $I\gamma = 0.09779$ ('Budapest data', 2007CnZX).
4031.1/18	0.022 2	(0243./14)	5,4 2-4-	1592.4/	
4054.85 13	0.031 2	(0243./14)	5,4	1588.79	

23

γ (¹⁶⁶Ho) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E_i (level)	J_i^{π}	E_f	Comments
4666.75 12	0.025 2	(6243.714)	3-,4-	1576.89	other: $E_{\gamma}=4667.84$, $I_{\gamma}=0.05314$ ('Budapest data', 2007ChZX); data suggest presence of a contaminant.
4672.89 7	0.102 6	(6243.714)	3-,4-	1570.75	other: $E_{\gamma}=4672.7 \ 3$, $I_{\gamma}=0.124 \ 19$ ('Budapest data', 2007ChZX).
4677.1 5	0.007 1	(6243.714)	3-,4-	1566.5	
4682.6 4	0.024 5	(6243.714)	3-,4-	1561.0	
4684.74 17	0.088 7	(6243.714)	3-,4-	1558.90	other: Ey=4684.6 4, Iy=0.082 16 ('Budapest data', 2007ChZX).
4690.69 13	0.025 2	(6243.714)	3-,4-	1552.95	
4696.15 12	0.059 4	(6243.714)	3-,4-	1547.49	other: $E_{\gamma}=4695.4 \ 4$, $I_{\gamma}=0.084 \ 18$ ('Budapest data', 2007ChZX).
4699.2 10	0.005 2	(6243.714)	3-,4-	1544.4	
4702.7 5	0.009 2	(6243.714)	3-,4-	1540.9	other: $E_{\gamma}=4702.9$ 7, $I_{\gamma}=0.060$ 16 ('Budapest data', 2007ChZX); data suggest presence of a contaminant.
4706.02 11	0.052 3	(6243.714)	3-,4-	1537.62	
4711.52 6	0.123 7	(6243.714)	3-,4-	1532.12	other: $E\gamma = 4711.7 \ 4$, $I\gamma = 0.098 \ 19$ ('Budapest data', 2007ChZX).
4716.78 17	0.018 1	(6243.714)	3-,4-	1526.86	
4722.4 4	0.007 1	(6243.714)	3-,4-	1521.2	other: $E\gamma = 4722.0 \ I2$, $I\gamma = 0.006 \ I5 \ ('Budapest data', 2007 ChZX)$.
4733.04 7	0.066 4	(6243.714)	3-,4-	1510.60	other: $E\gamma = 4732.8 \ 4$, $I\gamma = 0.071 \ 18$ ('Budapest data', 2007ChZX).
4738.11 26	0.011 1	(6243.714)	3-,4-	1505.5	
4745.5 <i>4</i>	0.010 1	(6243.714)	3-,4-	1498.1	
4749.05 18	0.023 2	(6243.714)	3-,4-	1494.59	
4756.49 13	0.024 2	(6243.714)	3-,4-	1487.15	
4765.15 13	0.030 2	(6243.714)	3-,4-	1478.49	
4769.2 6	0.011 2	(6243.714)	3-,4-	1474.4	
4771.9 4	0.016 2	(6243.714)	3-,4-	1471.7	
4776.3 5	0.008 1	(6243.714)	3-,4-	1467.3	
4779.73 14	0.122 8	(6243.714)	3-,4-	1463.91	other: $E\gamma = 4780.0 4$, $I\gamma = 0.130 24$ ('Budapest data', 2007ChZX).
4782.0 4	0.023 5	(6243.714)	3-,4-	1461.6	
4784.8 5	0.011 2	(6243.714)	3-,4-	1458.8	
4794.72.5	0.098 5	(6243.714)	3-,4-	1448.92	other: $E\gamma = 4/94.2 \ 4$, $I\gamma = 0.103 \ 21$ ('Budapest data', 200/ChZX).
4810.00 12	0.035 2	(6243.714)	3,4	1433.64	
4813.84 7	0.076 4	(6243.714)	3,4	1429.80	other: $E\gamma = 4813.2$ /, $I\gamma = 0.095$ 23 ('Budapest data', 2007ChZX).
4822.16 13	0.023 2	(6243.714)	3,4	1421.48	
4827.84 4	0.2/3 15	(6243.714)	3,4 2-4-	1415.80	other: $E\gamma = 4827.9.5$, $I\gamma = 0.21.5$ (Budapest data', 200/ChZX).
485/.8 5	0.010 1	(6243.714)	5,4 2-4-	1405.8	
4841.8/ 11	0.035 2	(6243.714)	5,4 2-4-	1401.77	
4840.8/ /	0.062.4	(6243.714) (6243.714)	3,4 $2^{-}4^{-}$	1390.//	
4031.71 11	0.050 2	(6243.714)	5,4 $2^{-}4^{-}$	1391.93	other Eq. 4855.88.20 Iv. 0.24.2 ('Dudenost data', 2007Ch7V)
4033.09 3	0.311 1/	(0243.714) (6242.714)	5,4 2-4-	1307.73	other: $Ey=4853.86 \ 20 \ Iy=0.24 \ 5 \ (Budapest data , 20) \ (Ch2A).$
4003.49 19	0.025 2	(0243.714) (6242.714)	3,4 $2^{-}4^{-}$	1360.13	other: $E_{Y} = 460.7.00$, $f_{Y} = 0.054$ <i>TO</i> (Budgest data, 2007/CIZA).
4000.03 0	0.100 10	(0243.714) (6243.714)	5,4 3-1-	1370.01	outer. $\Box \gamma = 4007.50 \ 25 \ 1\gamma = 0.154 \ 21$ (Dudapest uata , 200/CIIZA).
4012.2 10	0.003 I 0.024 2	(6243.714)	5,4 3-1-	13/1.4	
4880 01 11	0.024 2	(6243.714)	3-1-	1367.31	
4888 62 5	0.029 2	(6243.714)	3-4-	1355 02	other: Fy-4888 4 4 Jy-0 101 16 ('Budapest data' 2007Cb7X)
4803 71 5	0.092 5	(6243.714)	$3^{-}4^{-}$	1349.02	other: $E_{y} = 4893.5 4 1_{y} = 0.101 10 (\text{ Budapest data}', 2007 1_{z} 2007 $
4900 58 8	0.092.5	(6243.714)	3-4-	1343.06	$U_1 = U_1 = U_2 $
TJ00.J0 0	0.07/ 5	(0273./17)	J , T	1545.00	

γ (¹⁶⁶Ho) (continued)

4904.89 6 0.086 5 (6243.714) 3^{-} , 4^{-} 1338.75 other: E γ =4903.4 3, I γ =0.150 18 ('Budapest data', 2007ChZX); data suggest line N	May Be complex.
$4911.5 \ 6 \ 0.005 \ l \ (6243.714) \ 3^-, 4^- \ 1332.1$	
4916.09 21 0.015 1 (6243.714) 3^{-} , 4^{-} 1327.55 other: E γ =4916.7 5, I γ =0.060 18 ('Budapest data', 2007ChZX).	
$4921.59\ 25 0.014\ 1 (6243.714) 3^-,4^- 1322.0$	
$4925.6\ 3 \qquad 0.011\ 1 \qquad (6243.714) \qquad 3^-,4^- \qquad 1318.0$	
$4933.10 \ 15 0.019 \ 1 (6243.714) 3^-, 4^- 1310.54$	
$4938.83 \ 13 0.031 \ 2 (6243.714) 3^-,4^- 1304.81$	
$4942.569 0.1248 (6243.714) 3^-, 4^- 1301.07$	
4945.187 0.405 22 (6243.714) 3 ⁻ ,4 ⁻ 1298.45	
4949.84 7 0.068 4 (6243.714) 3 ⁻ ,4 ⁻ 1293.79	
4954.34 11 0.030 2 (6243.714) $3^{-},4^{-}$ 1289.29	
4972.19 19 0.014 1 (6243.714) $3^{-},4^{-}$ 1271.44	
4979.79 ± 0.0975 (6243.714) $3^{-},4^{-}$ 1263.84	
4986./6/12 0.028/2 (6243./14) 3 ,4 1256.8/	
4990.94 14 0.026 2 (6243.714) 3 4 1252.69	
4995.44 10 0.043.5 (6245.114) 5,4 1248.19 other: $Ey=4995.17$, $Iy=0.027$ 10 (Budapest data', 2007CLZX).	
$4999.397 = 0.0875 = (5245.714) = 5,4 = 1240.70$ other: $E_Y = 5000.75, 1_Y = 0.10827$ (Budapest data', 2007ChZX).	
5002.950 0.0895 (0245.714) 5.4 1240.70	
5008.//12 $0.024.2$ $(0245./14)$ 5.4 $1234.805012.50.4$ $0.147.8$ (2045.714) 2.47 1230.04 other Ex-5012.7.4 Ex-0.124.22 (/Duderect date/ 2007ChZV)	
5015.59 4 0.147 6 (0245.714) 5 4 1250.04 other: Ey= 5015.74 , Fy= 0.15425 (Budapest data, 200/CHZA).	
5022.02 13 - 0.025 2 - (0245.714) - 5 + 4 - 1221.01	
5020.45 = 0.020.4 (0245.714) $5.4 = 1217.2$	
5026,70,20,0,032,2,0,032,5,4,0,024,5,714,1,5,5,4,1,214,5,5,5,0,0,032,2,0,032,2,0,202,4,0,202,0,032,2,0,032,2,0,032,2,0,032,2,0,032,2,0,032,2,0,032,2,0,032,2,0,032,2,0,032,2,0,032,0,00,00,0,0,0,	
504152 4 0.045 4 (5245.714) 5 4 1200.01 504152 4 0.045 4 (5245.714) 3 4 1202.11 other: E ₂ =5040.6.7 Jy=0.048 18 ('Budapest data' 2007ChZX)	
$5044.5213 = 0.004.2$ (5245.714) 3^{-4} (129.4)	
5053504 0 113 6 (6243.714) 3^{-4} 1190.13 other: $F_{Y}=505344$ $I_{Y}=0.13224$ ('Budapest data' 2007ChZX)	
5068 7 5 0.004 / (6243.714) 3 ⁻ 4 ⁻ 1174 9	
$5082 83 0 332 18 (6243.714) 3^{-4} - 1161 35 4 $ other: Ex=5081 3.4 $I_{x=0} 22.4$ ('Budapest data' 2007CbZX)	
50879 4 0.074 4 (6243.714) 3 ⁻⁴ - 1154.84	
509694 0.007 1 (6243.74) 3^{-4} 146.7	
510233 0014 (6243714) 3^{-4} 11413	
$5105 84 / 2 0.061 4 (6243.714) 3^{-}4^{-} 1137.79$	
$5108.66 11 0.62 4$ (6243.714) $3^{-}4^{-}$ 1134.97 strong transition, but not reported In 'Budapest data' In 2007ChZX.	
5112.6.3 0.011 / (6243.714) 3 ⁻ .4 ⁻ 1131.0	
5122.22 7 0.040 2 (6243.714) $3^{-}4^{-}$ 1121.41 other: Ey=5123.8 5, Iy=0.055 15 ('Budapest data', 2007ChZX).	
5128.96 3 0.265 14 (6243.714) $3^{-}.4^{-}$ 1114.67 3.(5) other: E_{γ} =5129.00 25, I_{γ} =0.28 3 ('Budapest data', 2007ChZX).	
5146.18 5 0.066 4 (6243.714) $3^{-}.4^{-}$ 1097.45 6 ⁺ other: Ey=5146.2 3, Iy=0.093 16 ('Budapest data', 2007ChZX).	
5155.71 4 0.088 5 (6243.714) $3^{-},4^{-}$ 1087.91 3 other: Ey=5154.9 4, Iy=0.090 14 ('Budapest data', 2007ChZX).	
5181.84 2 0.429 23 (6243.714) $3^{-},4^{-}$ 1061.788 2,4 other: Ey=5181.40 18 Iy=0.41 3 ('Budapest data', 2007ChZX).	
5188.76 22 0.011 <i>I</i> (6243.714) 3^{-} , 4^{-} 1054.87 other: E γ =5188.1 6, I γ =0.027 <i>I</i> 0 ('Budapest data', 2007ChZX).	
5213.25 3 0.403 22 (6243.714) $3^{-},4^{-}$ 1030.38 4 ⁺ other: Ey=5212.79 20 Iy=0.42 4 ('Budapest data', 2007ChZX).	
5217.5 5 0.010 2 (6243.714) 3 ⁻ ,4 ⁻ 1026.1	

25

γ (¹⁶⁶Ho) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
5220.2 23 5224.4 5 5227.40 15 5232.95 18	0.002 2 0.010 2 0.033 3 0.014 1	(6243.714) (6243.714) (6243.714) (6243.714)	3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻	1023.4 1019.2 1016.23 1010.68		
5238.79 5 5258.45 14 5263.8 10 5266.4 7 5282.54 6 5292.5 3	0.064 <i>4</i> 0.017 <i>1</i> 0.006 2 0.008 2 0.046 <i>3</i> 0.009 <i>1</i>	(6243.714) (6243.714) (6243.714) (6243.714) (6243.714) (6243.714)	3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻	1004.84 985.20 979.8 977.2 961.08 951.1	5 ⁺ 3 ⁺	other: $E\gamma = 5239.0 \ 3$, $I\gamma = 0.093 \ I4$ ('Budapest data', 2007ChZX).
5296.86 ^b 10 5318.3 7 5338.30 ^b 2	0.031 2 0.003 <i>1</i> 0.182 <i>10</i>	(6243.714) (6243.714) (6243.714)	3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻	945.86 925.0 905.544	5 ⁺ 2 ⁺	other: Eγ=5338.5 3, Iγ=0.177 24 ('Budapest data', 2007ChZX).
5352.50 <i>4</i> 5358.18 <i>17</i> 5362.96 ^b <i>4</i>	0.078 <i>4</i> 0.016 <i>1</i> 0.106 <i>6</i>	(6243.714) (6243.714) (6243.714)	3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻	891.124 885.345 881.040	4 ⁺ (3 ⁺) 3 ⁻	other: $E\gamma = 5352.9 \ 4$, $I\gamma = 0.068 \ 16 \ ('Budapest data', 2007ChZX)$. other: $E\gamma = 5362.6 \ 4$, $I\gamma = 0.118 \ 19 \ ('Budapest data', 2007ChZX)$.
5367.2 <i>3</i> 5373.43 <i>9</i> 5411.40 <i>5</i>	0.009 <i>1</i> 0.025 <i>2</i> 0.056 <i>3</i>	(6243.714) (6243.714) (6243.714)	3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻	876.37 870.13 832.197	(⁻) 5 ⁺	
5418.99 5 5428.47 2 5436.90 12 5451.6 4 5454.3 15	0.049 <i>3</i> 0.420 <i>23</i> 0.020 <i>1</i> 0.013 <i>2</i> 0.003 <i>2</i>	(6243.714) (6243.714) (6243.714) (6243.714) (6243.714)	3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻	824.62 815.139 806.56 792.789 788.618	3 ⁻ 3 ⁺ 5 ⁺ 4 ⁻ 6 ⁻	other: $E\gamma = 5419.0 \ 5$, $I\gamma = 0.052 \ 18$ ('Budapest data', 2007ChZX). other: $E\gamma = 5428.21 \ 20$, $I\gamma = 0.36 \ 4$ ('Budapest data', 2007ChZX).
5473.82 <i>4</i> 5484.71 ^{<i>b</i>} <i>11</i> 5501.55 <i>8</i> 5507.09 <i>21</i>	0.062 <i>3</i> 0.022 <i>1</i> 0.031 <i>2</i> 0.011 <i>1</i>	(6243.714) (6243.714) (6243.714) (6243.714) (6243.714)	3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻ 2 ⁻ ,4 ⁻	769.78 757.707 742.02 736.430 725.68	5 ⁺ 5 ⁻ 4 ⁻ 4 ⁺ 2 ⁻	other: Eγ=5473.4 4, Iγ=0.061 16 ('Budapest data', 2007ChZX).
5517.6 8 5524.21 2 5538.7 6	0.004 I 0.257 I4 0.005 I 0.065 I	(6243.714) (6243.714) (6243.714) (6243.714)	$3^{-},4^{-}$ $3^{-},4^{-}$ $3^{-},4^{-}$	725.08 719.370 704.962	$\frac{2}{4^{+}}$ 3^{-} (2^{+})	other: $E_{\gamma}=5524.16\ 24$, $I_{\gamma}=0.31\ 3$ ('Budapest data', 2007ChZX).
5550.21 4 5559.73 16 5575.50 6 5581.52 10 5585.28 17 5588.2 3 5605.27 8	0.065 4 0.015 1 0.046 3 0.039 2 0.035 3 0.015 2 0.050 3	$\begin{array}{c} (6243.714)\\ (6243.714)\\ (6243.714)\\ (6243.714)\\ (6243.714)\\ (6243.714)\\ (6243.714)\\ (6243.714)\end{array}$	3,4 3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻	695.388 683.805 668.005 662.169 657.995 654.818 638.235	(2 ⁺) 3 ⁻ 4 ⁻ 3 ⁺ 5 ⁻ 5 ⁺ 4 ⁻	otner: $E\gamma = 5549.0$ 3, $I\gamma = 0.082$ 16 ('Budapest data', 200/ChZX).
5609.3 <i>11</i> 5614.8 <i>5</i> 5638.7 <i>6</i> 5645.39 <i>5</i>	0.008 <i>1</i> 0.005 <i>1</i> 0.005 <i>1</i> 0.073 <i>4</i>	(6243.714) (6243.714) (6243.714) (6243.714)	3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻ 3 ⁻ ,4 ⁻	634.314 628.418 605.047 598.448	5 ⁺ 2 ⁻ 2 ⁺ 4 ⁺	

26

γ ⁽¹⁶⁶Ho) (continued)</sup>

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
5651.04 4	0.101 6	(6243.714)	3-,4-	592.501	3+	
5680.50 21	0.040 2	(6243.714)	3-,4-	562.890	4-	
5685.01 4	0.191 10	(6243.714)	3-,4-	558.571	4^{+}	other: $E_{\gamma}=5684.5 \ 3$, $I_{\gamma}=0.156 \ 21$ ('Budapest data', 2007ChZX).
5695.47 10	0.043 3	(6243.714)	3-,4-	547.934	4+	other: $E_{\gamma}=5697.3 \ 6$, $I_{\gamma}=0.061 \ 24$ ('Budapest data', 2007ChZX); possibly a $5695_{\gamma}+5700_{\gamma}$ doublet.
5699.89 15	0.033 2	(6243.714)	3-,4-	543.672	2^{-}	
5721.62 7	0.038 2	(6243.714)	3-,4-	521.982	3+	other: $E_{\gamma}=5721.3 \ 3$, $I_{\gamma}=0.047 \ 10$ ('Budapest data', 2007ChZX).
5761.71 <i>3</i>	0.223 12	(6243.714)	3-,4-	481.846	3+	other: $E_{\gamma}=5761.9 \ 3$, $I_{\gamma}=0.172 \ 21$ ('Budapest data', 2007ChZX).
5767.92 4	0.124 7	(6243.714)	3-,4-	475.680	3-	other: $E_{\gamma}=5767.5 \ 8$, $I_{\gamma}=0.060 \ 13$ ('Budapest data', 2007ChZX).
5772.78 4	0.144 8	(6243.714)	3-,4-	470.841	5+	other: $E_{\gamma}=5772.8 \ 3$, $I_{\gamma}=0.145 \ 19$ ('Budapest data', 2007ChZX).
5779.02 <i>13</i>	0.029 2	(6243.714)	3-,4-	464.501	2^{+}	
5813.55 2	0.94 5	(6243.714)	3-,4-	430.031	2^{+}	other: $E_{\gamma} = 5813.43 \ 17, I_{\gamma} = 0.87 \ 6$ ('Budapest data', 2007ChZX).
5823.5 5	0.006 1	(6243.714)	3-,4-	?		$E\gamma$ implies the existence of a level At 420.2, but No other evidence exists for such a level so it is not included In Adopted Levels.
5827.28 15	0.025 2	(6243.714)	3-,4-	416.086	2^{-}	
5871.54 <i>3</i>	0.372 20	(6243.714)	3-,4-	371.985	4+	other: $E_{\gamma} = 5871.07 \ 2I$, $I_{\gamma} = 0.36 \ 3$ ('Budapest data', 2007ChZX).
5895.57 24	0.008 1	(6243.714)	3-,4-	348.257	5^{+}	
5914.0 <i>3</i>	0.006 1	(6243.714)	3-,4-	329.774	5^{-}	
5982.84 <i>3</i>	0.141 8	(6243.714)	3-,4-	260.6625	4+	other: E_{γ} =5983.38 23 I $_{\gamma}$ =0.150 18 ('Budapest data', 2007ChZX).
6052.66 <i>3</i>	0.374 20	(6243.714)	3-,4-	190.9021	3+	other: $E_{\gamma} = 6052.31 \ 22 \ I_{\gamma} = 0.30 \ 3$ ('Budapest data', 2007ChZX).
6063.21 16	0.014 1	(6243.714)	3-,4-	180.467	4-	
6072.46 4	0.063 <i>3</i>	(6243.714)	3-,4-	171.0738	3-	other: Ey=6072.7 4, Iy=0.047 13 ('Budapest data', 2007ChZX).
6189.33 <i>19</i>	0.006 1	(6243.714)	3-,4-	54.2391	2-	

[†] E γ data are from 1984Ke15 if E>4050, and E<4050 data are from 1967Mo05 (cryst.), except As noted. 1967Mo05 also report two separateGe(Li) detector measurements of E γ and/or I γ for a number of γ rays. E γ data from 2007ChZX (Budapest data) are, In general, less precise and less extensive, but In reasonable agreement with the crystal data; I γ data show poor to fair agreement with the crystal data. The evaluator gives the latter E γ , I γ data In comments; the possible existence of complex lines (due to poorer resolution or presence of impurities) makes it difficult to combine these data with the crystal data. The E γ data of 1967Mo05 are from wavelength measurements and probably need to be increased by about 9 ppm to correspond to a scale on which E γ (¹⁹⁸Au)=411.80205 17. Also, the uncertainties do not include an uncertainty of 0.3 ppm in the conversion of wavelength to energy (see, e.g., 2000He14).

[‡] From conversion electron data (1967Mo05,1973PrZI), except As noted. The photon and electron intensity scales were normalized by 1967Mo05 assuming $\alpha(K)(116\gamma)=1.46$, $\alpha(L1)(116)=0.18$ (from M1 theory) and $\alpha(K)(137\gamma)=0.117$ (from E1 theory); current theoretical values are 3.7% lower, 1.3% lower and 5.4% higher, respectively, but In view of the relatively much larger uncertainties In the experimental data, the evaluator has chosen not to renormalize those authors' values.

[#] Questionable transition.

[@] Line is complex (1967Mo05).

[&] From 1989Du03 (Si(Li)).

^a From 1989Du03; a calibration uncertainty of 6% has been added In quadrature with the statistical uncertainty.

^b E γ deviates from least-squares prediction by At least 5 σ .

γ (¹⁶⁶Ho) (continued)

^c Placement from 2000Pr03.

^d Intensity per 100 neutron captures.

^{*e*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^f Multiply placed with undivided intensity.

^{*g*} Multiply placed with intensity suitably divided.

^{*h*} Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

¹⁶⁶₆₇Ho₉₉

0.0 26.824 h 12

¹⁶⁶₆₇Ho₉₉

0.0 26.824 h 12

¹⁶⁶₆₇Ho₉₉

0.0 26.824 h 12

¹⁶⁶₆₇Ho₉₉

¹⁶⁶Ho₉₉

¹⁶⁶₆₇Ho₉₉-35

¹⁶⁶₆₇Ho₉₉-41

¹⁶⁶₆₇Ho₉₉

¹⁶⁶₆₇Ho₉₉

Band(V): K^π=2⁺, (π 7/2[523])-(ν 3/2[521]) band

4+ 1030.38

3+ 961.08

Band(W): K^π=5⁺, (π 7/2[523])+(v 3/2[521]) band

<u>5+</u> 925.0

2+ 905.544

¹⁶⁶Ho₉₉