¹⁶⁶Dy β^- decay 1979Ba40,1967Mo05

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 109, 1103 (2008)	1-Mar-2008

Parent: ¹⁶⁶Dy: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=81.6$ h *1*; $Q(\beta^-)=486.8$ *10*; $\%\beta^-$ decay=100.0

The values of the angular correlation coefficients for the $28.23\gamma-54.239\gamma$ cascade are A₂=-0.242 *15*, A₄=+0.031 *34*; these are in agreement with a 1(D)2(Q)0 spin sequence for the cascade (1979Ba40).

¹⁶⁶Ho Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0-	26.824 h 12	$T_{1/2}$: from Adopted Levels.
54.2391 10	2-	3.44 ns 12	g=0.034 5 (1979Ba40)
			$T_{1/2}$: from B(ce 54.24 γ)(t) (1961Ge14 scin s ce). Other: 1950Mc22.
82.4695 19	1-	≤0.3 ns	$T_{1/2}$: from B(ce 82.47 γ)(t) (1961Ge14 scin s ce).
373.13 10	$(1)^{-}$		
425.987 18	1^{+}		

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

β^- radiations

Eβ measured by 1949Ke22, 1950Bu30, 1960He09, 1960Ge12, 1962Gu03.

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(60.8 10)	425.987	1.17 18	5.25 7	av E β =15.60 27
(113.7 10)	373.13	0.016 5	7.94 14	av E β =29.87 28
399 5	82.4695	97 6	5.91 <i>3</i>	av $E\beta = 118.43 \ 33$
				Eβ is weighted average from 400 8 (1960Ge12 s); 402 5 (1960He09 s); 385 10 (1962Gu03 scin $\beta^-\gamma$). Iβ from 1960Ge12 (Iβ=99 6 from intensity balance).
(432.6 10)	54.2391	55	7.2^{1u} 5	av Eβ=141.26 34
				$I\beta^-$: from intensity balance. $I\beta < 0.3$ if $\log f^{lu}t > 8.5$.
481 10	0.0	<4	>7.6	av E β =146.22 35
				$E\beta$, $I\beta$ from 1960He09 ($I\beta \le 2$ from intensity balance).

[†] From intensity balance, unless otherwise noted.

[‡] Absolute intensity per 100 decays.

 $\gamma(^{166}\mathrm{Ho})$

I γ normalization: The intensity normalization (0.138 7) is based on I(82.47 γ)=13.8% 7 (1981Se09). I γ normalization=0.131 6 if Σ (I(γ +ce) to g.s.)=100%.

 $\beta^{-} \gamma \text{ coin}, \gamma - \gamma \text{ coin}$: 1960Ge04, 1960He09, 1960Ru05, 1962Gu03.

E_{γ}^{\dagger}	I_{γ} ^{‡#}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α [@]	Comments
28.227 5	8.2 6	82.4695	1-	54.2391	2-	M1	17.02	α (L)=13.29 <i>19</i> ; α (M)=2.94 <i>5</i> ; α (N+)=0.786 <i>11</i> α (N)=0.682 <i>10</i> ; α (O)=0.0989 <i>14</i> ; α (P)=0.00551 <i>8</i> Mult.: from L1:L2:L3=100:9.3:1.6 (1960Ge04); 100 <i>3</i> :9.5

				166 Dy β^-	decay	y 197 9	9 <mark>Ba40,1967</mark> N	Mo05 (continued)
$\gamma(^{166}\text{Ho})$ (continued)								
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α [@]	Comments
54.239 1	5.9 9	54.2391	2-	0.0	0-	E2	31.3	(1960Ru05); 100 24:7.6 24:<4 (1964Br10). E_{γ} : from 1964Br10. α (L)=24.0 4; α (M)=5.81 9; α (N+)=1.457 21 α (N)=1.305 19; α (O)=0.1519 22; α (P)=0.0001670 24
82.470 2	100	82.4695	1-	0.0	0-	M1	4.55	Mult.: from L1:L2:L3:M2:M3:M4=3.4 20:89 5:100 5:19 2:20 2:1.1 2 (1964Br10). Others: 1960Ge04, 1960Ru05. $\alpha(K)=3.82 6; \alpha(L)=0.569 8; \alpha(M)=0.1257 18;$ $\alpha(N+)=0.0337 5$ $\alpha(N)=0.0292 4; \alpha(O)=0.00424 6; \alpha(P)=0.000237 4$ Mult.: from K:L1:L2:L3:M1=100:13.7:L2:0.19:3.4
290.66 10	0.10 3	373.13	(1)-	82.4695	1-	M1	0.1336	(1960Ge04); 100 8:11.6 7:0.99 11:0.13 4 (1964Br10). $\alpha(K)=0.1126 \ 16; \ \alpha(L)=0.01639 \ 23; \ \alpha(M)=0.00361 \ 5; \ \alpha(N+)=0.000968 \ 14 \ \alpha(N)=0.000839 \ 12; \ \alpha(O)=0.0001222 \ 18;$
343.51 <i>3</i>	0.4 1	425.987	1+	82.4695	1-	(E1)	0.01281	$\alpha(P)=6.91\times10^{-6} \ 10$ Mult.: from Adopted Gammas. $\alpha(K)=0.01085 \ 16; \ \alpha(L)=0.001538 \ 22;$ $\alpha(M)=0.000337 \ 5; \ \alpha(N+)=8.93\times10^{-5} \ 13$ $\alpha(N)=7.77\times10^{-5} \ 11; \ \alpha(O)=1.104\times10^{-5} \ 16;$
371.75 <i>3</i>	3.8 8	425.987	1+	54.2391	2-	E1	0.01060	$\alpha(P)=5.72\times10^{-7} 8$ Mult.: from $\alpha(K)\exp<0.038$ (1964Br10). $\alpha(K)=0.00898 13$; $\alpha(L)=0.001267 18$; $\alpha(M)=0.000278 4$; $\alpha(N+)=7.36\times10^{-5} 11$ $\alpha(N)=6.40\times10^{-5} 9$; $\alpha(O)=9.12\times10^{-6} 13$;
425.99 3	4.2 9	425.987	1+	0.0	0-	E1	0.00770	$\alpha(P)=4.7/\times10^{-7} / Mult.: from \alpha(K)exp=0.0088 25 (1964Br10). \alpha(K)=0.00653 10; \alpha(L)=0.000914 13; \alpha(M)=0.000200 3; \alpha(N+)=5.32\times10^{-5} 8 \alpha(N)=4.62\times10^{-5} 7; \alpha(O)=6.61\times10^{-6} 10; \alpha(P)=3.50\times10^{-7} 5 Mult.: from \alpha(K)exp=0.0065 18 (1964Br10).$

[†] From 1967Mo05, unless otherwise noted. [‡] From 1979Ba40 for E γ <100. Other I γ are from 1964Br10 normalized to I γ (82 γ)=100 with authors' Δ I γ (82 γ)=20% added in quadrature to the uncertainties for $E\gamma$ >100. Measured Iy are I(28.23 γ):I(54.24 γ):I(82.47 γ)=8.2 6:5.9 9:100 (1979Ba40); $I(82.47\gamma):I(290.66\gamma):I(343.51\gamma):I(371.75\gamma):I(425.99\gamma)=100\ 20:0.12<:\ 0.4\ 1:3.8\ 3:4.2\ 3\ (1964Br10);$ I(290.66γ):I(343.51γ):I(371.75γ): I(425.99γ)=0.097 *16*:0.43 *9*:3.4 *5*:(4.2 *6*) (1967Mo05).

[#] For absolute intensity per 100 decays, multiply by 0.138 7.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁶⁶Dy β⁻ decay 1979Ba40,1967Mo05

¹⁶⁶₆₇Ho₉₉

3