¹⁶⁶Ho IT decay (185 μs) 1965Bj03

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Coral M. Baglin	NDS 109, 1103 (2008)	1-Mar-2008							

Parent: ¹⁶⁶Ho: E=190.9021 20; $J^{\pi}=3^+$; $T_{1/2}=185 \ \mu s \ 15$; %IT decay=100.0

¹⁶⁶Ho Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	0-	26.824 h 12	T _{1/2} : from Adopted Levels.
54.239 2	2^{-}	3.44 ns 12	$T_{1/2}$: from Adopted Levels.
171.072 4	3-		
190.904 4	3+	185 µs 15	$T_{1/2}$: from 1965Bj03. Others: 214 μ s <i>10</i> (1960Al27); 158 μ s <i>14</i> (1964KaZZ); 207 μ s (1965Mc03); see also 1961Kr01, 1962En04.

[†] From Adopted Levels.

$\gamma(^{166}\text{Ho})$

I v normalization: Iv was normalized against the conversion electron spectrum by assuming (I(K x ray)+Iy(54.2y)) = $\omega(K) \Sigma$ I(ce(K)) + I(54.2 γ) with ω (K)=0.93.

 $I(K x ray) + I(54.2\gamma) = 24 4.$

$E_{\gamma}^{\#}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α &	Comments
19.840 <i>6</i>	73	190.904	3+	171.072	3-	E1	4.79	α (L)=3.74 6; α (M)=0.847 <i>12</i> ; α (N+)=0.206 <i>3</i> α (N)=0.185 <i>3</i> ; α (O)=0.0204 <i>3</i> ; α (P)=0.000514 <i>8</i> ce(L)<<130 (1965Bj03). E _y : from Adopted Gammas.
54.239 2	3.0 5	54.239	2-	0.0	0-	E2	31.3	$\alpha'(L)=24.0 4; \alpha(M)=5.81 9; \alpha(N+)=1.457 21 \alpha(N)=1.305 19; \alpha(O)=0.1519 22; \alpha(P)=0.0001670 24 Iγ: calculated from the intensity of the L line using \alpha(L)(E2 theory).ce(L)=73 15.$
116.835 3	13 5	171.072	3-	54.239	2-	M1	1.673	$\alpha(K)=1.406\ 20;\ \alpha(L)=0.209\ 3;\ \alpha(M)=0.0460\ 7;\ \alpha(N+)=0.01233\ 18$ $\alpha(N)=0.01069\ 15;\ \alpha(O)=0.001555\ 22;\ \alpha(P)=8.71\times10^{-5}\ 13$ $\alpha(K)=16\ 3\ and\ \alpha(L)=3\ 0.6\ (1065P;03)$
136.662 4	50 10	190.904	3+	54.239	2-	E1	0.1378	$\alpha(K)=0.1155 \ 17; \ \alpha(L)=0.01749 \ 25; \ \alpha(M)=0.00385 \ 6; \\ \alpha(N+)=0.001007 \ 14 \\ \alpha(N)=0.000880 \ 13; \ \alpha(O)=0.0001210 \ 17; \\ \alpha(P)=5.50\times10^{-6} \ 8 \\ ce(K)=7 \ 2 \ and \ ce(L)=1.1 \ 2 \ (1965Bj03).$

[†] From 1965Bj03, except As noted.

[±] From Adopted Gammas, unless otherwise noted. [#] From 165 Ho(n, γ) measured by 1965Bj03.

[@] Absolute intensity per 100 decays.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁶⁶Ho IT decay (185 μs) 1965Bj03

¹⁶⁶₆₇Ho₉₉