Adopted Levels, Gammas

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	25-Jan-2015				

 $Q(\beta^{-})=3350 SY; S(n)=6120 SY; S(p)=11130 SY; Q(\alpha)=-2430 SY$ 2012Wa38

Estimated uncertainties (2012Wa38): 600 for $Q(\beta^-)$, 670 for S(n), 680 for S(p), 630 for $Q(\alpha)$.

S(2n)=10900 630, S(2p)=21010 670 (syst, 2012Wa38).

2005Ic02: production and identification of ¹⁶⁶Gd: 15.5 MeV proton-induced fission of ²³⁸U; JAERI-ISOL on-line mass separation of products; plastic scin and Ge detectors for x-ray and γ detection.

2014Mu09: theoretical calculation of β -decay half-life, and Gamow-Teller strength functions.

166Gd Levels

Cross Reference (XREF) Flags

A 166 Eu β^{-} decay (1.7 s) **B** 166 Gd IT decay (950 ns)

E(level) [†]	J ^π ‡	T _{1/2}	XREF	Comments
0.0#	0+	4.8 s 10	AB	$\%\beta^{-}=100$ J ^{π} : g.s. of even-even nucleus. T _{1/2} : from γ decay curves (2005Ic02).
70.0 [#] 10	(2^+)		AB	
230.8 [#] 11	(4^{+})		AB	
479.6 [#] 11	(6^{+})		В	
1240.1 [@] 11	(3 ⁺)		В	
1318.9 [@] 11	(4^{+})		В	
1350.1 ^{&} 11	(4^{+})		В	
1418.4 [@] 11	(5 ⁺)		В	
1455.2 <mark>&</mark> 11	(5+)		В	
1601.5 11	(6 ⁻)	950 ns <i>60</i>	В	%IT=100 Configuration= $v5/2[512] \otimes v7/2[633]$, $\beta_2=0.291$, $\beta_4=0.014$, $\beta_6=-0.017$. T _{1/2} : from decay curves obtained from (ion implantation)(γ)(t) correlations for 146-,

161-, 183-, 249-, 1088-, 1170- and 1188-keV γ rays (2014Pa55).

[†] From least-squares fit to $E\gamma$ data.

[‡] As proposed by 2014Pa55 based on systematics of even-even nuclides for low-lying levels and potential-energy surface calculations for higher levels above 1 MeV, supported by multipolarities obtained from intensity balances.

[#] Band(A): The g.s. band. Calculations suggest $\beta_2=0.296$, $\beta_4=0.015$, $\beta_6=-0.020$ for ground state.

[@] Band(B): γ -vibrational band. The 2⁺ bandhead is expected at \approx 1190 keV.

[&] Band(C): $\pi 3/2[411] \otimes \pi 5/2[413], K^{\pi} = (4^+)$. Calculations suggest $\beta_2 = 0.299, \beta_4 = 0.017, \beta_6 = -0.022$ for 4⁺ bandhead.

Adopted Levels, Gammas (continued)

$\gamma(^{166}\text{Gd})$ α^{\dagger} E_i(level) Mult. Comments 70.0 9.7 6 $\alpha(K)=2.58 \ 8; \ \alpha(L)=5.5 \ 4; \ \alpha(M)=1.30 \ 10;$ [E2] $\alpha(N)=0.290\ 21;\ \alpha(O)=0.038\ 3;\ \alpha(P)=0.000132$ 5 α(K)=0.299 5; α(L)=0.1289 20; α(M)=0.0300 5 230.8 (4^{+}) 160.8 2 100 70.0 (2⁺) (E2) 0.465 α (N)=0.00672 10; α (O)=0.000907 14; $\alpha(P)=1.630\times10^{-5}\ 24$ 479.6 230.8 (4⁺) 0.1087 $\alpha(K)=0.0802$ 12; $\alpha(L)=0.0222$ 4; $\alpha(M)=0.00507$ (6^{+}) 248.7 3 100 (E2) 8 $\alpha(N)=0.001142$ 17; $\alpha(O)=0.0001597$ 24; $\alpha(P)=4.83\times10^{-6}$ 7 1240.1 (3^{+}) 1009.1 7 41 12 230.8 (4⁺) 1169.9 3 100 21 70.0 (2⁺) 1240.1 (3+) (4^{+}) 78 1 23 7 1318.9 (M1) 4.12 17 $\alpha(K)=3.47$ 14; $\alpha(L)=0.50$ 2; $\alpha(M)=0.109$ 5; α (N)=0.025 *1*; α (O)=0.0039 *2*; α (P)=0.00026 100 20 1088.1 3 230.8 (4⁺) 1249.2 3 60 17 70.0 (2+) 1350.1 (4^{+}) 1119.3 3 100 38 $230.8(4^+)$ 1280.1 2 38 13 70.0 (2^+) (M1) 1418.4 (5^+) 99.8 3 678 $1318.9(4^+)$ 2.02 4 $\alpha(K)=1.71; \alpha(L)=0.247 4; \alpha(M)=0.0537 9;$ $\alpha(N)=0.01235\ 21;\ \alpha(O)=0.00191\ 4;$ $\alpha(P)=12.8\times10^{-5}$ 2 α(K)=0.219 4; α(L)=0.0836 13; α(M)=0.0194 3 0.327 178.3 2 $1240.1 (3^+)$ [E2] 31 6 $\alpha(N)=0.00435$ 7; $\alpha(O)=0.000591$ 9; $\alpha(P)=1.224\times10^{-5}$ 18 938.64 42 11 479.6 (6+) 1187.5 3 100 19 $230.8(4^+)$ 1455.2 (5^+) (37) 58 33 $1418.4(5^+)$ [M1] 5.7 5 $\alpha(L)=4.49$ 7; $\alpha(M)=0.976$ 14; $\alpha(N)=0.225$ 4; $\alpha(O)=0.0347$ 5; $\alpha(P)=0.00230$ 4 105.0 3 100 17 1.93 18 $\alpha(K)=1.25\ 23;\ \alpha(L)=0.5\ 4;\ \alpha(M)=0.12\ 8;$ 1350.1 (4⁺) (M1(+E2)) α (N)=0.027 17; α (O)=0.0037 21; α (P)=8.E-5 3 137 I 42 25 $\alpha(K)=0.59 \ 11; \ \alpha(L)=0.18 \ 8; \ \alpha(M)=0.041 \ 20;$ $1318.9(4^+)$ (M1(+E2))0.817 23 $\alpha(N)=0.009$ 5; $\alpha(O)=0.0013$ 5; $\alpha(P)=3.8\times10^{-5}$ 14 1224.3 3 83 33 230.8 (4+) $B(E1)(W.u.)=2.8\times10^{-8}$ 3 0.1047 1601.5 (6^{-}) 146.3 2 6651455.2 (5⁺) (E1) $\alpha(K)=0.0884$ 13; $\alpha(L)=0.01281$ 19; $\alpha(M) = 0.00277 \ 4$ α (N)=0.000629 10; α (O)=9.36×10⁻⁵ 14; $\alpha(P)=5.20\times10^{-6}$ 8 Reduced hindrance $f_{\nu}=3.77\times10^7$ 24 (2014Pa55), assuming the the 146-keV transition feeds the $K^{\pi}=5^+$ band with $\nu=1$. B(E1)(W.u.)=2.15×10⁻⁸ 16 183.1 2 100 $1418.4(5^+)$ (E1) 0.0574 $\alpha(K)=0.0486\ 7;\ \alpha(L)=0.00692\ 10;$ a(M)=0.001497 22 $\alpha(N)=0.000341$ 5; $\alpha(O)=5.11\times10^{-5}$ 8; $\alpha(P)=2.94\times10^{-6}$ 5 Reduced hindrance $f_v = 356$ 7 (2014Pa55), assuming the the 183-keV transition feeds the

[†] From ¹⁶⁶Gd IT decay (950 ns). Some E2 admixture is possible for pure M1 multipolarities.

[‡] Value overlaps M1 and E2 when $\delta(E2/M1)$ is not given for M1(+E2) transitions.

 γ band with ν =3.

 $^{166}_{64}\text{Gd}_{102}$

Adopted Levels, Gammas

 $^{166}_{64}\text{Gd}_{102}$