		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 109, 1103 (2008)	1-Mar-2008

¹⁶⁶Er Levels

Parent: ¹⁶⁶Tm: E=0.0; $J^{\pi}=2^+$; $T_{1/2}=7.70$ h 3; $Q(\varepsilon)=3038$ 12; $\%\varepsilon+\%\beta^+$ decay=100.0

Data are from 1989Ad11, unless otherwise noted. Other measurements: 1995KrZX (and 1996KrZW), 1993AdZY, 1993BaZS, 1980Pe15, 1979Ad06, 1974Ar28, 1961Ha23, 1961Gr33, 1966Zy01, 1973De22, 1970Re16, 1967Bu14, 1968Mi13, 1959Ba12, 1959Bo57, 1959Br17, 1960Ja08, 1960Wi12, 1961Bo15, 1962Gr29, 1964Pr02, 1969Ar23.

E(level) [†]	$J^{\pi \ddagger}$						
0.0	0^{+}	1830.42 4	1-	2172.757 20	3+	2464.52 10	1+
80.581 11	2+	1865.17 5		2212.97 12		2475.40 4	$(1,2^+)$
264.985 13	4+	1894.364 23	$2^+, 3^+, 4^+$	2215.972 16	2-,3-	2542.88 5	
545.444 16	6+	1917.767 <i>13</i>	3-	2243.099 23	3-	2586.07 12	$(3,4)^+$
785.917 11	2+	1938.273 15	$(3)^{+}$	2260.66 3	$2^{(+)},3$	2600.64 4	1+
859.399 12	3+	1969.71 17	(2,3,4)	2264.31 6	$(1,2^+)$	2613.50 17	
956.240 12	4+	1978.432 16	$(4)^+$	2273.01 <i>3</i>	3-	2619.6 6	(2^{+})
1075.281 12	5+	1985.644 16	3-	2282.68 5	$2^{(+)},3$	2624.8 <i>3</i>	(1,2)
1458.164 14	$(2)^{-}$	2001.874 16	(3)-	2290.997 25	$(3)^{+}$	2628.5 <i>3</i>	(1,2)
1513.760 14	3-	2021.359 16	$(2,3)^{-}$	2328.69 9	(1,2)	2632.66 17	$(3,4)^+$
1528.404 14	2+	2022.62 12	(4^{+})	2352.91 8	$2^{(+)},3$	2671.98 17	
1572.206 14	$(4)^{-}$	2046.88 4	$2^+, 3^+$	2377.77 5	1+	2679.05 18	1^{+}
1596.263 17	$(4)^{-}$	2076.305 22	(3 ⁻)	2382.27 4	$(3)^{+}$	2729.094 20	$(3,4)^+$
1662.32 6	1-	2101.6 3	(4^{+})	2393.14 <i>3</i>	2+,3+	2783.69 19	1+
1678.77 <i>3</i>	$(4)^{+}$	2117.8 8	$(2^+, 3, 4^+)$	2413.68 8	(2,3,4)	2797.5 4	(1,2)
1703.057 20	$(2,3,4)^+$	2132.951 12	3+	2435.11 10	$(3,4)^+$	2811.99 <i>11</i>	1
1813.2 <i>3</i>	$1^{(+)}$	2160.121 14	3+	2444.16 24		2858.17 18	(1,2)

[†] From least-squares fit to $E\gamma$, omitting the 646.8 γ from the 2160 level and all three placements for the 1216.173 γ because these transitions have $E\gamma$ values that deviate from the expected value by At least 5σ .

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
(180 12)	2858.17	0.0031 4	8.28 10	0.0031 4	εK=0.724 13; εL=0.209 10; εM+=0.067 4
(226 12)	2811.99	< 0.025	>7.6	< 0.025	εK=0.756 7; εL=0.186 5; εM+=0.0588 18
(241 12)	2797.5	0.0035 5	8.55 9	0.0035 5	εK=0.762 6; εL=0.181 4; εM+=0.0570 15
(254 12)	2783.69	0.0121 17	8.07 8	0.0121 17	εK=0.768 5; εL=0.177 4; εM+=0.0555 13
(309 12)	2729.094	0.358 25	6.81 5	0.358 25	εK=0.783 3; εL=0.1654 21; εM+=0.0514 8
(359 12)	2679.05	0.070 8	7.67 6	0.070 8	εK=0.7924 20; εL=0.1586 15; εM+=0.0489 6
(366 12)	2671.98	0.0075 10	8.66 7	0.0075 10	εK=0.7935 19; εL=0.1579 14; εM+=0.0487 5
(405 12)	2632.66	0.019 6	8.35 14	0.019 6	εK=0.7986 15; εL=0.1541 11; εM+=0.0473 4
(410 12)	2628.5	0.0056 8	8.90 7	0.0056 8	εK=0.7991 14; εL=0.1537 11; εM+=0.0472 4
(413 12)	2624.8	0.0057 7	8.90 6	0.0057 7	εK=0.7995 14; εL=0.1534 10; εM+=0.0471 4
(418 12)	2619.6	0.008 3	8.76 17	0.008 3	εK=0.8001 14; εL=0.1530 10; εM+=0.0469 4
(425 12)	2613.50	0.0051 6	8.97 6	0.0051 6	εK=0.8007 13; εL=0.1526 10; εM+=0.0467 4
(437 12)	2600.64	0.12 6	7.63 22	0.12 6	εK=0.8020 12; εL=0.1516 9; εM+=0.0464 4
(452 12)	2586.07	0.023 14	8.4 <i>3</i>	0.023 14	εK=0.8033 11; εL=0.1506 9; εM+=0.0460 3
(495 12)	2542.88	0.077 9	7.94 6	0.077 9	εK=0.8068 9; εL=0.1481 7; εM+=0.04513 24
(563 12)	2475.40	0.082 7	8.04 5	0.082 7	εK=0.8110 7; εL=0.1449 5; εM+=0.04402 18
(573 12)	2464.52	0.037 3	8.40 4	0.037 3	εK=0.8116 7; εL=0.1445 5; εM+=0.04387 17

Continued on next page (footnotes at end of table)

166 Tm ε decay 1989Ad11 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Ιβ ⁺ ‡	$I\varepsilon^{\dagger\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
(594 12)	2444.16		0.024 5	8.62 10	0.024 5	εK=0.8126 6; εL=0.1438 5; εM+=0.04360 16
(603 12)	2435.11		0.090 14	8.06 7	0.090 14	εK=0.8131 6; εL=0.1435 5; εM+=0.04349 15
(624 12)	2413.68		0.058 8	8.29 7	0.058 8	εK=0.8140 6; εL=0.1428 4; εM+=0.04324 14
(645 12)	2393.14		0.250 19	7.68 4	0.250 19	εK=0.8149 5; εL=0.1421 4; εM+=0.04301 13
(656 12)	2382.27		0.138 11	7.96 4	0.138 11	εK=0.8153 5; εL=0.1418 4; εM+=0.04290 13
(660 12)	2377.77		0.195 12	7.81 4	0.195 12	εK=0.8155 5; εL=0.1417 4; εM+=0.04286 13
(685 12)	2352.91		0.025 4	8.74 8	0.025 4	εK=0.8164 5; εL=0.1410 4; εM+=0.04262 12
(709 12)	2328.69		0.0066 7	9.35 5	0.0066 7	εK=0.8172 4; εL=0.1404 3; εM+=0.04240 11
(747 12)	2290.997		1.36 11	7.08 4	1.36 11	εK=0.8183 4; εL=0.1396 3; εM+=0.04210 10
(755 12)	2282.68		0.086 7	8.29 4	0.086 7	εK=0.8186 4; εL=0.1394 3; εM+=0.04204 9
(765 12)	2273.01		0.46 3	7.58 4	0.46 3	εK=0.8188 4; εL=0.13920 25; εM+=0.04197 9
(774 12)	2264.31		0.0296 23	8.78 4	0.0296 23	εK=0.8191 4; εL=0.13902 24; εM+=0.04191 9
$(777 \ 12)$	2260.66		0.188 13	7.98 4	0.188 13	εK=0.8192 4; εL=0.13895 24; εM+=0.04188 9
(795 12)	2243.099		0.324 24	7.76 4	0.324 24	εK=0.8196 3; εL=0.13862 23; εM+=0.04176 8
(822 12)	2215.972		3.48 21	6.76 <i>3</i>	3.48 21	εK=0.8203 3; εL=0.13813 21; εM+=0.04159 8
(825 12)	2212.97		0.054 12	8.58 10	0.054 12	εK=0.8203 3; εL=0.13808 21; εM+=0.04157 8
(865 12)	2172.757		2.35 18	6.98 4	2.35 18	εK=0.8212 3; εL=0.13742 19; εM+=0.04134 7
(878 12)	2160.121		16.2 11	6.16 4	16.2 11	εK=0.8215 3; εL=0.13723 19; εM+=0.04127 7
(905 12)	2132.951		59 <i>4</i>	5.62 4	59 <i>4</i>	εK=0.8220 3; εL=0.13684 18; εM+=0.04113 6
(920 12)	2117.8		0.067 13	8.58 9	0.067 13	εK=0.8223 3; εL=0.13663 17; εM+=0.04106 6
(936 12)	2101.6		0.024 3	9.05 6	0.024 3	εK=0.8226 3; εL=0.13641 16; εM+=0.04098 6
(962 12)	2076.305		0.222 15	8.10 4	0.222 15	εK=0.8230 2; εL=0.13609 15; εM+=0.04087 6
(991 12)	2046.88		0.147 10	8.31 4	0.147 10	εK=0.8235 2; εL=0.13574 14; εM+=0.04074 5
(1015 12)	2022.62		0.061 7	8.71 6	0.061 7	εK=0.8239 2; εL=0.1355 2; εM+=0.04064 5
(1017 12)	2021.359		2.56 16	7.09 3	2.56 16	εK=0.8239 2; εL=0.1355 2; εM+=0.04064 5
(1036 12)	2001.874		0.53 14	7.79 12	0.53 14	εK=0.8242 2; εL=0.1352 2; εM+=0.04056 5
(1068 12)	1969.71		0.059 11	8.78 9	0.059 11	εK=0.8246 2; εL=0.1349 2; εM+=0.04045 5
(1100 12)	1938.273		0.99 8	7.58 4	0.99 8	εK=0.8250 2; εL=0.1346 2; εM+=0.04034 4
(1144 12)	1894.364		≤0.027	≥9.2	≤0.027	εK=0.8256 2; εL=0.1342 1; εM+=0.04020 4
(1173 12)	1865.17		0.093 8	8.66 4	0.093 8	εK=0.8259 2; εL=0.1340 1; εM+=0.04012 4
(1208 12)	1830.42		0.016 5	9.45 14	0.016 5	εK=0.8262 2; εL=0.1337 1; εM+=0.04002 4
(1225 12)	1813.2		0.059 9	8.90 7	0.059 9	εK=0.8264 2; εL=0.13358 9; εM+=0.03997 4
(1335 12)	1703.057		0.375 25	8.17 <i>3</i>	0.375 25	εK=0.8272; εL=0.13280 8; εM+=0.03970 3
(1359 12)	1678.77		0.012 6	9.69 22	0.012 6	εK=0.8273; εL=0.13264 8; εM+=0.03965 3
(1376 12)	1662.32		0.045 13	9.12 13	0.045 13	εK=0.8274; εL=0.13253 8; εM+=0.03961 3
(1442 12)	1596.263		0.040 11	10.09^{1u} 12	0.040 11	εK=0.8164 2; εL=0.14089 16; εM+=0.04262 6
(1466 12)	1572.206		0.052 19	$10.00^{1u} \ 16$	0.052 19	εK=0.8167 2; εL=0.14059 15; εM+=0.04251 6
(1510 12)	1528.404	0.00191 24	1.03 7	7.85 3	1.03 7	av $E\beta$ =234.8 54; ε K=0.8272; ε L=0.13165 9; ε M+=0.03931 3
(1524 12)	1513.760	0.00025 19	0.12 9	8.8 4	0.12 9	av $E\beta$ =241.3 54; ε K=0.8271 <i>I</i> ; ε L=0.13155 <i>9</i> ; ε M+=0.03927 3
(1580 12)	1458.164	0.0014 6	0.45 18	8.25 18	0.45 18	av $E\beta$ =265.7 53; ε K=0.8265 2; ε L=0.13116 9; ε M+=0.03914 3
(2179 12)	859.399	0.05 3	1.1 6	8.16 24	1.1 6	av E β =529.0 54; ε K=0.7952 13; ε L=0.12403 22; ε M+=0.03692 7
(2252 12)	785.917	0.075 22	1.3 4	8.09 13	1.4 4	av $E\beta$ =561.5 53; ε K=0.7874 14; ε L=0.12263 25; ε M = -0.03649.8
(2957 12)	80.581	1.0 10	4 4	7.9 5	5 5	av $E\beta$ =874.9 54; ϵ K=0.669 3; ϵ L=0.1030 4; ϵ M+=0.03061 13
						E(decay): $E\beta$ +=1940 20 (1961Gr33); =1928 20 (1961Zy02); =1936 20 (1963Pr13).

[†] From intensity balance, unless otherwise noted.
 [‡] Absolute intensity per 100 decays.

						¹⁶⁶ Tı	n ɛ deca	ay 1989Ad11 (continued)
								γ (¹⁶⁶ Er)
Iγ normaliza g.s.)=1009 $\gamma\gamma$ -coin: 196	tion: The ba %. 50Wi12, 196	asis of the in 51Bo15, 1966	tensity 5 Zy 01,	normalization 1968Mi13,	on is 1979 <i>1</i>	that $\varepsilon + \beta^+$ Ad06.	feeding	to the ground state of ¹⁶⁶ Er is not expected ($\Delta J=2$, $\Delta \pi=No$), so Σ (I(γ +ce) to
x-rays: (1 Energy	1980VyZZ) 1	(I γ relation γ	ive to Iden	$I\gamma(778.8)$ ntificati	γ)=10 on	00)		
48.221 49.128 55.6 57.1	L 142 3 252 80 21	2.5 28 2.0 40 0.2 15 1.0 4	Ка Ка Ку Ку	$lpha_2$ x ray $lpha_1$ x ray eta_1' x ray eta_2' x ray				
1973De22 re I(Tm K x ra 868 21:100:	eport, for ay):I(82.3 :805 32:90	r equilibri βγ, ¹⁶⁶ Tm):).2 9:73 4	ium son I(Er K	urce (¹⁶⁶ ¥ x ray):I	b+ ¹⁶⁶ (80.0	Tm+ ¹⁶⁶ Er δγ, ¹⁶⁶ Er):):I(78	5.9 γ , ¹⁶⁶ Er)=
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{d}	Comments
73.45 2	≤0.5	859.399	3+	785.917	2+	M1	6.92	$\alpha(K)=5.80 \ 9; \ \alpha(L)=0.876 \ 13; \ \alpha(M)=0.194 \ 3; \ \alpha(N+)=0.0522 \ 8 \\ \alpha(N)=0.0453 \ 7; \ \alpha(O)=0.00655 \ 10; \ \alpha(P)=0.000360 \ 5 \\ Mult.: \ from \ L1:L2:L3=10 \ 3:70 \ 7:50 \ 5. \\ F_{1} \ L_{2} \ form \ 1070 \ Adds$
80.585 <i>15</i>	60.4 32	80.581	2+	0.0	0+	E2	6.78	$\alpha(K)=1.671\ 24;\ \alpha(L)=3.91\ 6;\ \alpha(M)=0.953\ 14;\ \alpha(N+)=0.241\ 4$ $\alpha(N)=0.215\ 3;\ \alpha(O)=0.0251\ 4;\ \alpha(P)=7.29\times10^{-5}\ 11$ %I(80.6 γ)=11.5 3 assuming adopted normalization. Mult.: from L1:L2:L3=2270\ 115:26700\ 1400:27500\ 1400 and $\alpha(K)$ exp=2.2 6; (K·L:M=0\ 40\ 4:1:0\ 32\ 3\ (19667x01))
84.11 2	0.19 5	2001.874	(3)-	1917.767	3-	M1	4.68	$\alpha(K)=3.92 6; \alpha(L)=0.591 9; \alpha(M)=0.1311 19; \alpha(N+)=0.0352 5$ $\alpha(N)=0.0306 5; \alpha(O)=0.00442 7; \alpha(P)=0.000243 4$ Mult.: from L1:L2:L3=110 11:10 1:2.5. $\alpha(K)\exp=219$ is not consistent with M1; probably Iy or Ice contained a typographical error. Ex. L: from 1979Ad06; not reported In 1989Ad11
86.84		1917.767	3-	1830.42	1-	E2	5.05	$\alpha(K)=1.458\ 21;\ \alpha(L)=2.75\ 4;\ \alpha(M)=0.671\ 10;\ \alpha(N+)=0.1694\ 24$ $\alpha(N)=0.1516\ 22;\ \alpha(O)=0.01770\ 25;\ \alpha(P)=6.18\times10^{-5}\ 9$ $E_{\gamma}:\ from\ 1993BaZS.$ Mult: from $1.2/1\ 3\simeq1\ (1993BaZS)$
96.85 5	0.065 3	956.240	4+	859.399	3+	E2	3.32	$\alpha(K) = 1.157 \ 17; \ \alpha(L) = 1.658 \ 24; \ \alpha(M) = 0.403 \ 6; \ \alpha(N+) = 0.1019 \ 15 \ \alpha(N) = 0.0912 \ 13; \ \alpha(O) = 0.01069 \ 16; \ \alpha(P) = 4.82 \times 10^{-5} \ 7 \ Mult : from 1.12 \ 21.3 = 3.1 \ 4.19 \ 2.17 \ 2 \ and \ \alpha(K) \approx p = 2.3 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 1$
112.7 ⁸		2273.01	3-	2160.121	3+			 E_γ: from 1993BaZS. Mult.: M1+E2 from L1/L2=0.25, L2/L3=1.3 (1993BaZS). However, level scheme requires E1. consequently, placement is shown As uncertain here and transition is omitted from Adopted Gammas.

ω

 $^{166}_{68}{
m Er}_{98}$ -3

From ENSDF

 $^{166}_{68}{
m Er}_{98}$ -3

					166 Tm ε decay	7 1989Ad11 (c	ontinued)	
					γ ⁽¹⁶	⁶ Er) (continued)		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f J ⁱ	f Mult. [‡]	δ	α^{d}	Comments
114.09		1572.206	(4) ⁻	1458.164 (2)	E2		1.80	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.778 \ 11; \ \alpha(\mathrm{L}) = 0.783 \ 11; \ \alpha(\mathrm{M}) = 0.190 \ 3; \\ \alpha(\mathrm{N}+) = 0.0481 \ 7 \\ \alpha(\mathrm{N}) = 0.0430 \ 6; \ \alpha(\mathrm{O}) = 0.00508 \ 8; \ \alpha(\mathrm{P}) = 3.26 \times 10^{-5} \ 5 \end{array} $
118.18 <i>3</i>	0.16 5	2290.997	(3)+	2172.757 3+	[M1]		1.765	E _γ : from 1993BaZS. Mult.: from L1/L2≈1 (1993BaZS). α (K)=1.481 21; α (L)=0.222 4; α (M)=0.0492 7; α (N+)=0.01321 19 α (N)=0.01147 16; α (O)=0.001657 24; α (P)=9.13×10 ⁻⁵
(119.041 3)	0.0173 5	1075.281	5+	956.240 4+	(M1+E2)	+1.94 +23-21	1.579 24	¹³ $\alpha(K)=0.86\ 4;\ \alpha(L)=0.556\ 19;\ \alpha(M)=0.134\ 5;$ $\alpha(N+)=0.0341\ 12$
130.90 <i>20</i>	2.70 25	2132.951	3+	2001.874 (3)	- E1		0.1590	$\begin{array}{l} \alpha(\mathrm{N})=0.0304 \ 11; \ \alpha(\mathrm{O})=0.00366 \ 12; \ \alpha(\mathrm{P})=4.2\times10^{-5} \ 3\\ \mathrm{E}_{\gamma}, \mathrm{Mult.,}\delta; \ \mathrm{from \ Adopted \ Gammas.}\\ \mathrm{I}_{\gamma}: \ \mathrm{from \ I}(810\gamma) \ \mathrm{and \ adopted \ branching.}\\ \alpha(\mathrm{K})=0.1328 \ 20; \ \alpha(\mathrm{L})=0.0205 \ 3; \ \alpha(\mathrm{M})=0.00453 \ 7;\\ \alpha(\mathrm{N}+)=0.001188 \ 18 \\ \alpha(\mathrm{N})=0.001040 \ 16; \ \alpha(\mathrm{O})=0.0001414 \ 21; \ \alpha(\mathrm{P})=6.22\times10^{-6} \\ \mathrm{O} \end{array}$
								Mult.: from L1:L2:L3=14 2:2.8 3:3.0 3 and α (K)exp=0.20 4.
139.64 <i>4</i> 143.2 <i>6</i> 147.301 <i>20</i>	0.066 <i>4</i> 0.013 <i>5</i> 1.79 <i>7</i>	2215.972 2729.094 2132.951	$2^{-},3^{-}$ (3,4) ⁺ 3^{+}	2076.305 (3 ⁻ 2586.07 (3,4 1985.644 3 ⁻) 4) ⁺ E1		0.1162	$\alpha(K)=0.0973 \ 14; \ \alpha(L)=0.01482 \ 21; \ \alpha(M)=0.00328 \ 5; \ \alpha(N+)=0.000861 \ 12 \ \alpha(N)=0.000753 \ 11; \ \alpha(O)=0.0001029 \ 15; \ \alpha(P)=4.63\times10^{-6}$
154.508 <i>25</i>	1.08 9	2132.951	3+	1978.432 (4)	+ M1+E2	0.75 25	0.75 4	$\begin{array}{l} \alpha(\mathrm{N}) = 0.000705 \ 11, \ \alpha(\mathrm{C}) = 0.0001025 \ 10, \ \alpha(\mathrm{I}) = 0.0001025 \ 10$
158.269 25	0.186 9	2160.121	3+	2001.874 (3)	- E1		0.0961	$\begin{aligned} &\alpha(N) = 0.0074 \ 10; \ \alpha(O) = 0.00098 \ 10; \ \alpha(P) = 3.3 \times 10^{-5} \ 5 \\ &\text{Mult.: from L1:L2:L3 = 14 2:2.7 3:1.4 2 and} \\ &\alpha(K) = 0.54 \ 11. \\ &\delta: \text{ from Adopted Gammas.} \\ &\alpha(K) = 0.0805 \ 12; \ \alpha(L) = 0.01218 \ 17; \ \alpha(M) = 0.00269 \ 4; \\ &\alpha(N+) = 0.000708 \ 10 \\ &\alpha(N) = 0.000619 \ 9; \ \alpha(O) = 8.49 \times 10^{-5} \ 12; \ \alpha(P) = 3.87 \times 10^{-6} \end{aligned}$
^x 163.21 <i>10</i> 166.26 ^e 20 166.26 ^e 20	$0.030 \ 4$ $0.020^{e} \ 8$ $0.020^{e} \ 8$ $0.390 \ 20$	2212.97 2382.27 956 240	$(3)^+_{4^+}$	2046.88 2 ⁺ , 2215.972 2 ⁻ , 785 917 2 ⁺	3+ 3- F2		0.433	6 Mult.: from $\alpha(K)$ exp=0.13 6. $\alpha(K)=0.258$ 4: $\alpha(L)=0.1347$ /9: $\alpha(M)=0.0323$ 5:

					¹⁶⁶ Tm ε	decay	1989Ad11 (con	tinued)	
						γ (¹⁶⁶ Er)	(continued)		
$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α^{d}	Comments
									α (N+)=0.00824 <i>12</i> α (N)=0.00734 <i>11</i> ; α (O)=0.000893 <i>13</i> ; α (P)=1.169×10 ⁻⁵ <i>17</i>
184.405 <i>25</i>	85.0 <i>18</i>	264.985	4+	80.581 2	2+	E2		0.331	Mult.: from L1:L2:L3=2.5 3:6.7 7:5.9 6 and α (K)exp=0.30 11. α (K)=0.205 3; α (L)=0.0964 14; α (M)=0.0230 4; α (N+)=0.00590 9 α (N)=0.00524 8; α (O)=0.000642 9; α (P)=9.48×10 ⁻⁶ 14 Mult : from L1:L2:L3=330 20:580 30:500 25 and
6	c								α (K)exp=0.19 8.; (K:L:M=2.1 <i>I</i> :1:0.36 2 (1966Zy01)). δ : δ (E2/M3)=+0.09 <i>I</i> 0 (1985DaZV).
194.678 ^{J @} 15	≈4.0 ^J	2132.951	3+	1938.273 ((3)+	M1		0.433	$\alpha(K)=0.364\ 5;\ \alpha(L)=0.0541\ 8;\ \alpha(M)=0.01199\ 17;\ \alpha(N+)=0.00322\ 5$ $\alpha(N)=0.00280\ 4;\ \alpha(O)=0.000404\ 6;\ \alpha(P)=2.24\times10^{-5}\ 4$ Mult.: from L1:L2:L3=43\ 5:3.7\ 4:0.55\ 10 and $\alpha(K)\exp=0.37\ 8.$
194.678 ^{<i>f</i>} @	≈0.35 f	2215.972	2-,3-	2021.359 ((2,3)-	M1		0.433	$\alpha(K)=0.364 5; \alpha(L)=0.0541 8; \alpha(M)=0.01199 17; \alpha(N+)=0.00322 5$
215.185 <i>14</i>	27.7 9	2132.951	3+	1917.767 3	3-	E1+M2	-0.09 +7-6	0.056 23	$\alpha(N)=0.00280 \ 4; \ \alpha(O)=0.000404 \ 6; \ \alpha(P)=2.24\times10^{-5} \ 4$ $\alpha(K)=0.047 \ 18; \ \alpha(L)=0.008 \ 4; \ \alpha(M)=0.0017 \ 9;$ $\alpha(N+)=0.00045 \ 24$ $\alpha(N)=0.00039 \ 21; \ \alpha(O)=5.E-5 \ 3; \ \alpha(P)=2.7\times10^{-6} \ 15$ $I_{\gamma}: from \ 1989Ad11; \ E_{\gamma}=215.185 \ 185 \ 14, \ I_{\gamma}=28.0 \ 9 \ for$ doublet. Mult.: from L1:L2:L3=22 \ 3:3.7 \ 4:4.2 \ 5 \ and $\alpha(K)exp=0.034 \ 7.$ $\delta: from \ 1985Da2V. other \ \delta: \ -0.04 \ 8 \ from \ \gamma(\theta,H,t)$ (1995KrZY)
215.88 3	0.290 13	1075.281	5+	859.399 3	3+	[E2]		0.196	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1298 \ I9; \ \alpha(\mathbf{L}) = 0.0506 \ 7; \ \alpha(\mathbf{M}) = 0.01201 \ I7; \\ &\alpha(\mathbf{N}+) = 0.00308 \ 5 \\ &\alpha(\mathbf{N}) = 0.00274 \ 4; \ \alpha(\mathbf{O}) = 0.000340 \ 5; \ \alpha(\mathbf{P}) = 6.23 \times 10^{-6} \ 9 \\ &\mathbf{I}_{\gamma}: \ \text{from } 1989\text{Ad11}; \ \mathbf{E}_{\gamma} = 215.185 \ I85 \ 14, \ \mathbf{I}_{\gamma} = 28.0 \ 9 \ \text{for doublet.} \end{aligned}$
225.9 5 ^x 228.21 7	0.007 <i>3</i> 0.121 <i>4</i>	2273.01	3-	2046.88 2	2+,3+	M1+E2		0.22 6	$\alpha(K)=0.17\ 7;\ \alpha(L)=0.038\ 3;\ \alpha(M)=0.0087\ 10;$ $\alpha(N+)=0.00227\ 20$ $\alpha(N)=0.00199\ 20;\ \alpha(O)=0.000267\ 8;\ \alpha(P)=1.0\times10^{-5}\ 5$ Multiple form $\alpha(K)=0.20\ 10$
238.581 20	0.187 5	2132.951	3+	1894.364 2	2+,3+,4+	M1		0.248	Mult.: from $\alpha(K)\exp=0.39\ 10$. $\alpha(K)=0.208\ 3;\ \alpha(L)=0.0308\ 5;\ \alpha(M)=0.00683\ 10;\ \alpha(N+)=0.00184\ 3$ $\alpha(N)=0.001592\ 23;\ \alpha(O)=0.000230\ 4;\ \alpha(P)=1.276\times10^{-5}\ 18$ Mult.: from $\alpha(K)\exp=0.31\ 9$.

S

 $^{166}_{68}\mathrm{Er}_{98}$ -5

						166 Tm ε de	cay 1989Ad1	l (continue	<u>d)</u>
						<u>)</u>	v(¹⁶⁶ Er) (continue	ed)	
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	δ	α^{d}	Comments
255.44 6 257.36 10 ^x 277.73 20	0.028 <i>3</i> 0.017 <i>5</i> 0.030 <i>10</i>	1917.767 2243.099	3- 3-	1662.32 1985.644	1 ⁻ 3 ⁻	(M1)		0.1641	$\alpha(K)=0.1380\ 20;\ \alpha(L)=0.0203\ 3;\ \alpha(M)=0.00450\ 7;\ \alpha(N+)=0.001210\ 18$ $\alpha(N)=0.001050\ 15;\ \alpha(O)=0.0001521\ 22;\ \alpha(P)=8\ 44\times10^{-6}\ 12$
280.461 20	1.47 3	545.444	6+	264.985	4+	E2		0.0849	Mult.: from $\alpha(K)$ exp=0.16 15. $\alpha(K)$ =0.0611 9; $\alpha(L)$ =0.0183 3; $\alpha(M)$ =0.00430 6; $\alpha(N+)$ =0.001112 16 $\alpha(N)$ =0.000984 14; $\alpha(C)$ =0.0001255 18; $\alpha(P)$ =3.11×10 ⁻⁶ 5
287.1 <i>3</i> ^x 293.40 <i>8</i>	0.006 2 0.051 8	2273.01	3-	1985.644	3-	(E2)		0.0739	Mult.: from L1:L2:L3=3.1 4:3.3 4:2.3 3 and α (K)=0.0538 8; α (L)=0.01550 22; α (M)=0.00363 5; α (N+)=0.000940 14
298.207 20	0.95 2	2215.972	2-,3-	1917.767	3-	M1		0.1355	$\begin{aligned} &\alpha(N) = 0.000831 \ 12; \ \alpha(O) = 0.0001065 \ 15; \ \alpha(P) = 2.76 \times 10^{-6} \ 4 \\ &\text{Mult.: from } \alpha(K) = 0.16 \ 8. \\ &\alpha(K) = 0.1140 \ 16; \ \alpha(L) = 0.01676 \ 24; \ \alpha(M) = 0.00371 \ 6; \\ &\alpha(N+) = 0.000998 \ 14 \\ &\alpha(N) = 0.000866 \ 13; \ \alpha(O) = 0.0001254 \ 18; \ \alpha(P) = 6.96 \times 10^{-6} \ 10 \end{aligned}$
312.58 20 ^x 319.883 18	0.006 <i>3</i> 0.233 <i>7</i>	2290.997	(3)+	1978.432	(4)+	M1		0.1123	Mult.: from α (K)exp=0.12 3. α (K)=0.0945 14; α (L)=0.01387 20; α (M)=0.00307 5; α (N+)=0.000826 12
345.569 15	2.43 6	1917.767	3-	1572.206	(4)-	M1+E2	-0.57 +21-25	0.080 8	$\begin{aligned} &\alpha(\text{N}) = 0.000716 \ 10; \ \alpha(\text{O}) = 0.0001038 \ 15; \ \alpha(\text{P}) = 5.76 \times 10^{-6} \ 8 \\ &\text{Mult.: from } \alpha(\text{K}) \text{exp} = 0.19 \ 6. \\ &\alpha(\text{K}) = 0.067 \ 7; \ \alpha(\text{L}) = 0.0106 \ 5; \ \alpha(\text{M}) = 0.00237 \ 9; \\ &\alpha(\text{N}+) = 0.00063 \ 3 \\ &\alpha(\text{N}) = 0.000552 \ 21; \ \alpha(\text{O}) = 7.8 \times 10^{-5} \ 4; \ \alpha(\text{P}) = 4.0 \times 10^{-6} \ 5 \\ &\text{Mult.: from } \text{L1:L2} = 6.7 \ 7:1.0 \ 1 \ \text{and} \ \alpha(\text{K}) \text{exp} = 0.10 \ 2. \\ &\delta: \ \text{from } \text{A}_2 = +0.22 \ 6, \ \text{A}_4 = -0.07 \ 15 \ \text{for } 215\gamma - 345\gamma(\theta) \\ &(1993\text{AdZY}). \ \text{Other } \delta: \ 0.75 \ 25 \ \text{from ce data.} \end{aligned}$
385.54 <i>4</i>	0.062 4	2215.972	2-,3-	1830.42	1-	E2		0.0331	$\alpha(K)=0.0255 \ 4; \ \alpha(L)=0.00594 \ 9; \ \alpha(M)=0.001372 \ 20; \ \alpha(N+)=0.000358 \ 5 \ \alpha(N)=0.000315 \ 5; \ \alpha(O)=4.16\times10^{-5} \ 6; \ \alpha(P)=1.367\times10^{-6} \ 20$
389.38 <i>3</i>	0.254 7	1985.644	3-	1596.263	(4)-	M1		0.0668	Mult.: from $\alpha(K)$ exp=0.042 5. $\alpha(K)$ =0.0563 8; $\alpha(L)$ =0.00820 12; $\alpha(M)$ =0.00182 3; $\alpha(N+)$ =0.000488 7
404.004 13	4.12 10	1917.767	3-	1513.760	3-	M1+E2	-0.34 +17-19	0.057 4	$\begin{aligned} &\alpha(N)=0.000423 \ 6; \ \alpha(O)=6.14\times10^{-5} \ 9; \ \alpha(P)=3.42\times10^{-6} \ 5\\ &\text{Mult.: from } \alpha(K)\exp=0.059 \ 23.\\ &\alpha(K)=0.048 \ 4; \ \alpha(L)=0.0072 \ 3; \ \alpha(M)=0.00160 \ 6;\\ &\alpha(N+)=0.000429 \ 17\\ &\alpha(N)=0.000372 \ 15; \ \alpha(O)=5.36\times10^{-5} \ 25; \ \alpha(P)=2.91\times10^{-6} \ 23 \end{aligned}$

From ENSDF

 $^{166}_{68}{
m Er}_{98}$ -6

					¹⁶⁶ T	m ε decay	1989Ad	11 (continue	ed)
						$\gamma(^{166}$	Er) (contin	ued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [‡]	δ	α^{d}	Comments
410.797 16	0.490 10	956.240	4+	545.444	6+	E2		0.0278	Mult.: from L1:L2=7 1:0.8 3 and α (K)exp=0.053 12. δ : from A ₂ =+0.05 8, A ₄ =+0.08 15 for 215 γ -404 γ (θ) (1993AdZY). α (K)=0.0216 3; α (L)=0.00481 7; α (M)=0.001109 16; α (N+)=0.000290 4 α (N)=0.000255 4; α (O)=3.39×10 ⁻⁵ 5; α (P)=1.167×10 ⁻⁶ 17 Additional information 3.
413.430 18	0.320 10	1985.644	3-	1572.206	(4)-	E2		0.0273	Iγ(411γ):Iγ(691γ)=0.0233 5:1.85 (2006Ku03). Mult.: from α(K)exp=0.019 10. α(K)=0.0212 3; α(L)=0.00472 7; α(M)=0.001086 16; α(N+)=0.000284 4 (N)=0.000250 4 ((Q)) 2.222 1075 5 ((D)) 1.140, 1076 16
429.885 20	0.410 10	2132.951	3+	1703.057	(2,3,4)+	M1		0.0516	$\alpha(N)=0.000250 \ 4; \ \alpha(O)=3.32\times10^{-5} \ 5; \ \alpha(P)=1.149\times10^{-6} \ 16$ Mult.: from $\alpha(K)\exp=0.047 \ 18.$ $\alpha(K)=0.0435 \ 6; \ \alpha(L)=0.00632 \ 9; \ \alpha(M)=0.001397 \ 20;$ $\alpha(N+)=0.000376 \ 6$ $\alpha(N)=0.000326 \ 5; \ \alpha(O)=4.72\times10^{-5} \ 7; \ \alpha(P)=2.64\times10^{-6} \ 4$
454.20 <i>3</i>	0.172 20	2132.951	3+	1678.77	(4)+	(E2)		0.0211	Mult.: from $\alpha(K)$ exp=0.055 21. $\alpha(K)$ =0.01664 24; $\alpha(L)$ =0.00349 5; $\alpha(M)$ =0.000801 12; $\alpha(N+)$ =0.000210 3 $\alpha(N)$ =0.000184 3; $\alpha(O)$ =2.47×10 ⁻⁵ 4; $\alpha(P)$ =9.12×10 ⁻⁷ 13
459.600 15	0.030.8	1917.767	3-	1458.164	(2)-	M1+E2	-0.16 4	0.0428 7	Mult.: E1,E2 from α (K)exp=0.009 5; $\Delta \pi$ =No from level scheme. α (K)=0.0361 6; α (L)=0.00525 8; α (M)=0.001162 18; α (N+)=0.000312 5 α (N)=0.000271 4; α (O)=3.93×10 ⁻⁵ 6; α (P)=2.18×10 ⁻⁶ 4 Mult.: from Adopted Gammas. M1 from L1:L2:L3=14 2:1.0 2:0.3 and α (K)exp=0.043 9. δ : from Adopted Gammas. δ =-0.17 3 from A ₂ =-0.28 3, A ₄ =+0.01 7 for 215γ-460γ(θ) and δ =-0.21 9 from A ₂ =-0.17 5, A ₄ =+0.06 9 for 460γ-672γ(θ) (1993AdZY). Additional information 10.
471.871 23	0.558 13	1978.432	3-	1513.760	3-	M1		0.0405	$\begin{aligned} &\alpha(\text{K}) = 0.0342 \ 5; \ \alpha(\text{L}) = 0.00495 \ 7; \ \alpha(\text{M}) = 0.001094 \ 16; \\ &\alpha(\text{N}+) = 0.000294 \ 5 \\ &\alpha(\text{N}) = 0.000255 \ 4; \ \alpha(\text{O}) = 3.70 \times 10^{-5} \ 6; \ \alpha(\text{P}) = 2.07 \times 10^{-6} \ 3 \\ &\text{Mult.: from } \alpha(\text{K}) \text{exp} = 0.034 \ 10. \end{aligned}$
475.36 25 x477.24 20 481.33 10	0.055 <i>10</i> 0.028 <i>7</i> 0.089 <i>7</i>	2413.68 2160.121	(2,3,4) 3 ⁺	1938.273 1678.77	(3) ⁺ (4) ⁺				
488.19 <i>8</i> 496.935 <i>16</i>	0.18 <i>4</i> 0.990 <i>20</i>	2001.874 1572.206	(3) ⁻ (4) ⁻	1513.760 1075.281	3 ⁻ 5 ⁺	E1		0.00566	$\begin{aligned} &\alpha(\text{K}) = 0.00480 \ 7; \ \alpha(\text{L}) = 0.000672 \ 10; \ \alpha(\text{M}) = 0.0001479 \ 21; \\ &\alpha(\text{N}+) = 3.94 \times 10^{-5} \ 6 \\ &\alpha(\text{N}) = 3.43 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 4.88 \times 10^{-6} \ 7; \ \alpha(\text{P}) = 2.57 \times 10^{-7} \ 4 \\ &\text{Mult.: from } \alpha(\text{K}) \text{exp} = 0.0072 \ 35. \end{aligned}$

 \neg

						166 Tm ε de	ecay 1	989Ad11 (co	ontinued)
						í	γ(¹⁶⁶ Er) ((continued)	
$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult.‡	δ	α^{d}	Comments
520.92 4	0.32 4	1596.263	$(4)^{-}$	1075.281	5+				E_{γ} : from deconvolution of a doublet (1989Ad11).
520.99 4	0.998 23	785.917	2+	264.985	4+	E2		0.01481	I_{γ} : see comment on 521γ from 786 level. $\alpha(K)=0.01184 \ 17; \ \alpha(L)=0.00230 \ 4; \ \alpha(M)=0.000525 \ 8; \ \alpha(N+)=0.0001382 \ 20$
									α (N)=0.0001211 <i>17</i> ; α (O)=1.644×10 ⁻⁵ <i>23</i> ; α (P)=6.58×10 ⁻⁷ <i>10</i> Additional information 1.
									L1:L2=0.4 2:0.15 and α (K)exp=0.012 5 for the doublet.
									$(2006 \text{Ku} 03)$ and (705γ) . E γ =520.945 15, 1γ =1.32 3 for doublet
									In 1989Ad11, so $1\gamma(521\gamma$ from 1596 level)=0.32 4. note, however, that the resulting 521γ branch from the 1596 level is somewhat
									smaller than the value adopted from β^- decay (1.20×10 ³ y). 1989Ad11 estimated Ex=520.99.4 Jy=0.89.9 and Ex=520.92.4
									$I_{\gamma}=0.42$ 7 for the respective components of the doublet they showed
527.58 10	0.154 5	1985.644	3-	1458.164	(2)-				observed.
529.835 20	0.947 20	1075.281	5+	545.444	6+	E2		0.01419	$\alpha(K)=0.01136 \ 16; \ \alpha(L)=0.00219 \ 3; \ \alpha(M)=0.000499 \ 7; \ \alpha(N+)=0.0001314 \ 19$
									$\alpha(N)=0.0001151\ 17;\ \alpha(O)=1.566\times10^{-5}\ 22;\ \alpha(P)=6.32\times10^{-7}\ 9$
536.67 <i>3</i>	0.671 18	2132.951	3+	1596.263	(4)-	E1		0.00478	Mult.: from $\alpha(\mathbf{K})$ exp=0.012 6. $\alpha(\mathbf{K})$ =0.00406 6; $\alpha(\mathbf{L})$ =0.000566 8; $\alpha(\mathbf{M})$ =0.0001244 18;
									$\alpha(N+)=3.32\times10^{-5} 5$ $\alpha(N)=2.88\times10^{-5} 4$; $\alpha(O)=4.12\times10^{-6} 6$; $\alpha(P)=2.18\times10^{-7} 3$
542 60 2	0 207 11	2001 874	$(2)^{-}$	1450 164	$(2)^{-}$	E2 M1		0.021.9	Mult.: from $\alpha(K)$ exp=0.0038 20. $\alpha(K) = 0.017$ 7. $\alpha(L) = 0.0027$ 7. $\alpha(M) = 0.00061$ 15. $\alpha(M) = 0.00016$ 4
545.09 5	0.387 11	2001.874	(3)	1438.104	(2)	E2,M1		0.021 8	$\alpha(K)=0.00177$; $\alpha(L)=0.00277$; $\alpha(M)=0.0000175$; $\alpha(N+)=0.000164$ $\alpha(N)=0.000144$; $\alpha(O)=2.0\times10^{-5}6$; $\alpha(P)=1.0\times10^{-6}5$ Mult.: from $\alpha(K)\exp=0.02514$.
x547.04 25 557 514 18	0.028 7	1513 760	3-	956 240	4+	E1		0 00440	$\alpha(K) = 0.00374$ 6: $\alpha(L) = 0.000520$ 8: $\alpha(M) = 0.0001143$ 16:
557.51110	1.515	1010.700	5	<i>750.</i> 210		D 1		0.00110	$a(N+)=3.05\times10^{-5} 5$
									$\alpha(N)=2.65\times10^{-5}$ 4; $\alpha(O)=3.79\times10^{-6}$ 6; $\alpha(P)=2.01\times10^{-7}$ 3 Mult.: from $\alpha(K)\exp=0.004$ 2.
560.77 3	0.363 12	2132.951	3^+	1572.206	$(4)^{-}$	E2 M1		0.010.7	Additional information 14. $\alpha(K) = 0.016 \text{ fs} \cdot \alpha(L) = 0.0025 \text{ J4} \cdot \alpha(NL) = 0.00015 \text{ J4}$
303.21 3	0.518 10	2021.339	(2,3)	1438.104	(2)	E∠,IVI I		0.019 /	$\alpha(\mathbf{N}) = 0.00013 \ 0; \ \alpha(\mathbf{L}) = 0.0023 \ 7; \ \alpha(\mathbf{M}) = 0.000053 \ 14; \ \alpha(\mathbf{N}+) = 0.00015 \ 4$ $\alpha(\mathbf{N}) = 0.00013 \ 4; \ \alpha(\mathbf{O}) = 1.8 \times 10^{-5} \ 6; \ \alpha(\mathbf{P}) = 9.\mathbf{E} - 7 \ 4$
572.2		1528 404	2^{+}	956 240	4+				Mult.: from α (K)exp=0.015 8. E _w : from 1993BaZS.
587.90 16	0.27 5	2160.121	$\frac{2}{3^+}$	1572.206	(4) ⁻	F2 . M1	10.0	0.0111.7	$(T_{1}) = 0.0000 (C_{1}) = 0.001(1, 7) (0, 0) 0.0000(5, 14)$
594.409 15	18.3 4	859.399	3'	264.985	4'	E2+M1	-12.2	0.0111 7	$\alpha(K)=0.0090 6; \ \alpha(L)=0.00161 \ /; \ \alpha(M)=0.000365 \ 14; \ \alpha(N+)=9.7\times10^{-5} \ 4$
									α (N)=8.4×10 ⁻⁵ 4; α (O)=1.16×10 ⁻⁵ 5; α (P)=5.1×10 ⁻⁷ 4 Mult.: from L1:L2:L3=4.5 5:1.3 2:0.8 <i>I</i> and α (K)exp=0.0076 20.

 ∞

 $^{166}_{68}{
m Er}_{98}{
m -8}$

					16	⁶⁶ Tm ε decay	1989Ad	11 (continue	<u>d)</u>
						$\gamma(^{166})$	Er) (continu	ued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ	α^{d}	Comments
									δ: from γ(θ,H,t) (1995KrZX). other δ: >+31 from γγ(θ) (1980Bu26); +5.5 +74-22 (1985DaZV); -1.3 +3-5 from 594γ-184γ(θ) (1993AdZY), however, evaluator cannot reproduce this value using the authors' stated A2 and A4 coefficients.
598.764 19	11.13 23	1458.164	(2)-	859.399	3+	E1(+M2)	-0.02 6	0.0038 4	$\alpha(K)=0.0032 \ 3; \ \alpha(L)=0.00045 \ 5; \ \alpha(M)=9.8\times10^{-5} \ 12; \ \alpha(N+)=2.6\times10^{-5} \ 3 \ \alpha(N)=2.3\times10^{-5} \ 3; \ \alpha(O)=3.3\times10^{-6} \ 4; \ \alpha(P)=1.75\times10^{-7} \ 21 \ Mult_{\circ} \delta; \ from \ Adopted \ Gammas, \ E1 \ from \ L1:L2:L3=1.2 \ 2:0.2 \ Adopted \ Gammas, \ E1 \ from \ L1:L2:L3=1.2 \ 2:0.2 \ Adopted \ Gammas, \ E1 \ from \ L1:L2:L3=1.2 \ 2:0.2 \ Adopted \ Gammas, \ E1 \ from \ L1:L2:L3=1.2 \ 2:0.2 \ Adopted \ Gammas, \ E1 \ from \ L1:L2:L3=1.2 \ 2:0.2 \ Adopted \ Gammas, \ E1 \ from \ L1:L2:L3=1.2 \ 2:0.2 \ Adopted \ Gammas, \ E1 \ from \ L1:L2:L3=1.2 \ 2:0.2 \ Adopted \ Gammas, \ E1 \ from \ L1:L2:L3=1.2 \ 2:0.2 \ Adopted \ Gammas, \ E1 \ from \ L1:L2:L3=1.2 \ 2:0.2 \ Adopted \ Gammas, \ E1 \ from \ L1:L2:L3=1.2 \ 2:0.2 \ Adopted \ Gammas, \ E1 \ from \ L1:L2:L3=1.2 \ 2:0.2 \ Adopted \ Gammas, \ E1 \ from \ L1:L2:L3=1.2 \ 2:0.2 \ Adopted \ Gammas, \ E1 \ from \ L1:L2:L3=1.2 \ 2:0.2 \ Adopted \ Gammas, \ E1 \ from \ L1:L2:L3=1.2 \ 2:0.2 \ Adopted \ Gammas, \ E1 \ from \ Adopted \ Adopted \ Gammas, \ E1 \ from \ Adopted \ Adopted\ Adopted \ Adopted \ Adopted \ Adopted \ Adopted \ Ado$
604.553 <i>15</i>	1.047 23	2132.951	3+	1528.404	2+	E2		0.01025	and α (K)exp=0.0042 <i>I3</i> . α (K)=0.00832 <i>I2</i> ; α (L)=0.001506 <i>21</i> ; α (M)=0.000341 <i>5</i> ; α (N+)=9.01×10 ⁻⁵ <i>I3</i> α (N)=7.88×10 ⁻⁵ <i>I1</i> ; α (O)=1.083×10 ⁻⁵ <i>I6</i> ; α (P)=4.67×10 ⁻⁷ <i>7</i> Mult: from α (K)exp=0.0086 <i>I8</i>
610.8 ^e 3	0.015 ^e 6	2273.01	3-	1662.32	1-				Mult. 1011 a/12/0000 10.
610.8 ^e 3 615.963 15 619.49 ^e 25	$\begin{array}{c} 0.015^{e} \ 6\\ 0.763 \ 17\\ 0.015^{e} \ 6\end{array}$	2783.69 1572.206 2132.951	1^+ (4) ⁻ 3 ⁺	2172.757 956.240 1513.760	3+ 4+ 3 ⁻	(E1(+M2))			Mult.: from Adopted Gammas.
619.49 ^e 25 631.62 <i>10</i>	0.015 ^e 6 0.380 10	2215.972 2160.121	2 ⁻ ,3 ⁻ 3 ⁺	1596.263 1528.404	$(4)^{-}$ 2 ⁺	(E2)		0.00924	$\alpha(K)=0.00752 \ 11; \ \alpha(L)=0.001336 \ 19; \ \alpha(M)=0.000302 \ 5; \ \alpha(N+)=7.98\times10^{-5} \ 12 \ \alpha(N)=6.98\times10^{-5} \ 10; \ \alpha(O)=9.63\times10^{-6} \ 14; \ \alpha(P)=4.23\times10^{-7} \ 6 \ Mult.; \ from \ \alpha(K)exp=0.009 \ 5.$
640.04 <i>3</i> 643.90 <i>10</i>	0.263 <i>8</i> 0.120 <i>6</i>	1596.263 2215.972	$^{(4)^{-}}_{2^{-},3^{-}}$	956.240 1572.206	4^+ (4) ⁻				
646.75 ^{<i>f</i> & a} 4	$\approx 0.04^{f}$	2160.121	3+	1513.760	3-				
646.75 ^{<i>f</i> & <i>4</i>}	$\approx 0.08^{f}$	2243.099	3-	1596.263	$(4)^{-}$	D 1		0.00214	(T) 0.002(7.4 (T) 0.0002(0.4 (D) 0.00 10 ⁻⁵ .10
654.358 16	1.97 4	1513.760	3	859.399	5'	El		0.00314	$\alpha(\mathbf{K})=0.002674; \alpha(\mathbf{L})=0.0003686; \alpha(\mathbf{M})=8.08\times10^{-5}12; \\ \alpha(\mathbf{N}+)=2.16\times10^{-5}3 \\ \alpha(\mathbf{N})=1.87\times10^{-5}3; \alpha(\mathbf{O})=2.69\times10^{-6}4; \alpha(\mathbf{P})=1.446\times10^{-7}21 \\ \text{Mult: from } \alpha(\mathbf{K})\approx p=0.004625 $
659.04 20	0.029 6	2172.757	3+	1513.760	3-				man. nom $\alpha(\mathbf{K})$ -0.0040 23.
672.242 20	32.4 7	1458.164	(2)-	785.917	2+	E1		0.00297	$\alpha(\mathbf{K})=0.00253 \ 4; \ \alpha(\mathbf{L})=0.000348 \ 5; \ \alpha(\mathbf{M})=7.63\times10^{-5} \ 11; \\ \alpha(\mathbf{N}+)=2.04\times10^{-5} \ 3 \\ \alpha(\mathbf{N})=1.771\times10^{-5} \ 25; \ \alpha(\mathbf{O})=2.54\times10^{-6} \ 4; \ \alpha(\mathbf{P})=1.370\times10^{-7} \\ 20 \\ \delta: \ <-0.01 \ \text{from} \ \gamma\gamma(\theta) \ (1980\mathrm{Bu}26); \ +0.16 \ 4 \ \text{from} \\ 672\gamma_{2}785\gamma(\theta) \ (1993\mathrm{Ad}7\mathbf{Y})$
									Mult.: from L1:L2:L3=1.9 2:0.2 <i>1</i> :0.2 <i>1</i> and α (K)exp=0.0026 9.
674.788 22	13.6 3	2132.951	3+	1458.164	$(2)^{-}$	E1		0.00295	$\alpha(K)=0.00251 4; \alpha(L)=0.000345 5; \alpha(M)=7.57\times10^{-5} 11;$

From ENSDF

 $^{166}_{68}{
m Er}_{98}$ -9

¹⁶⁶₆₈Er₉₈-9

					¹⁶⁶ Tm <i>ε</i>	e decay 1989A	d11 (continue	ed)
						$\gamma(^{166}\text{Er})$ (cont	inued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	α^{d}	Comments
691.250 <i>17</i>	39.1 8	956.240	4+	264.985 4+	E2+M1	-3.3 +12-30	0.00802 20	$\begin{aligned} &\alpha(\text{N}+)=2.02\times10^{-5} \ 3\\ &\alpha(\text{N})=1.757\times10^{-5} \ 25; \ \alpha(\text{O})=2.52\times10^{-6} \ 4; \ \alpha(\text{P})=1.359\times10^{-7} \ 19\\ &\text{Mult.: from } \alpha(\text{K})\text{exp}=0.002 \ 1.\\ &\alpha(\text{K})=0.00660 \ 17; \ \alpha(\text{L})=0.001106 \ 23; \ \alpha(\text{M})=0.000248 \ 5;\\ &\alpha(\text{N}+)=6.59\times10^{-5} \ 14\\ &\alpha(\text{N})=5.75\times10^{-5} \ 12; \ \alpha(\text{O})=8.03\times10^{-6} \ 18; \ \alpha(\text{P})=3.76\times10^{-7} \ 11\\ &\text{Additional information } 4. \end{aligned}$
								δ: from Adopted Gammas. δ from ε decay: -3.75 from $\gamma\gamma(\theta)$ (1980Bu26); $-8.5 < \delta < +7.0$ (1985DaZV), -139 from $691\gamma - 184\gamma(\theta)$ (1993AdZY), $+5.5 + 28 - 14$ from $\gamma(\theta, H, t)$ (1995KrZX). Mult.: from L1:L2:L3=5.6 6:0.5 2:0.5 2 and α(K)exp=0.0068 16.
702.28 10	2.71 7	2215.972	2-,3-	1513.760 3-	M1		0.01475	$\alpha(K)=0.01247 \ 18; \ \alpha(L)=0.001782 \ 25; \ \alpha(M)=0.000393 \ 6; \ \alpha(N+)=0.0001058 \ 15$
705.333 20	58.0 12	785.917	2+	80.581 2+	M1+E2	-5 +3-14	0.00716 13	$\begin{aligned} \alpha(N) &= 9.17 \times 10^{-5} 13; \ \alpha(O) &= 1.532 \times 10^{-5} 19; \ \alpha(P) &= 7.49 \times 10^{-5} 11 \\ \text{Mult.: from } \alpha(K) &= p = 0.014 \ 4. \\ \alpha(K) &= 0.00588 \ 11; \ \alpha(L) &= 0.000999 \ 16; \ \alpha(M) &= 0.000225 \ 4; \\ \alpha(N+) &= 5.96 \times 10^{-5} \ 10 \\ \alpha(N) &= 5.20 \times 10^{-5} 9; \ \alpha(O) &= 7.24 \times 10^{-6} \ 12; \ \alpha(P) &= 3.32 \times 10^{-7} \ 7 \\ \alpha(N) &= 5.20 \times 10^{-5} 9; \ \alpha(O) &= 7.24 \times 10^{-6} \ 12; \ \alpha(P) &= 3.32 \times 10^{-7} \ 7 \\ \alpha(N) &= 5.20 \times 10^{-5} 9; \ \alpha(O) &= 7.24 \times 10^{-6} \ 12; \ \alpha(P) &= 3.32 \times 10^{-7} \ 7 \\ \alpha(N) &= 5.20 \times 10^{-5} 9; \ \alpha(O) &= 7.24 \times 10^{-6} \ 12; \ \alpha(P) &= 3.32 \times 10^{-7} \ 7 \\ \alpha(N) &= 5.20 \times 10^{-5} 9; \ \alpha(O) &= 7.24 \times 10^{-6} \ 12; \ \alpha(P) &= 3.32 \times 10^{-7} \ 7 \\ \alpha(N) &= 5.20 \times 10^{-5} 9; \ \alpha(O) &= 7.24 \times 10^{-6} \ 12; \ \alpha(P) &= 3.32 \times 10^{-7} \ 7 \\ \alpha(N) &= 5.20 \times 10^{-5} 9; \ \alpha(O) &= 7.24 \times 10^{-6} \ 12; \ \alpha(P) &= 3.32 \times 10^{-7} \ 7 \\ \alpha(N) &= 5.20 \times 10^{-5} 9; \ \alpha(O) &= 7.24 \times 10^{-6} \ 12; \ \alpha(P) &= 3.32 \times 10^{-7} \ 7 \\ \alpha(N) &= 5.20 \times 10^{-5} 9; \ \alpha(O) &= 7.24 \times 10^{-6} \ 12; \ \alpha(P) &= 3.32 \times 10^{-7} \ 7 \\ \alpha(N) &= 5.20 \times 10^{-7} \ 1$
								δ: from $\gamma\gamma(\theta)$ (198/Kr12). Other: -22 +13-7 (1980Bu26), -7 +23-3 from $\gamma(\theta, H, t)$ (1995KrZX). Mult.: from L1:L2:L3=7.0 7:0.7 1:0.7 1 and α(K)exp=0.0067 14.
712.817 22	2.19 4	1572.206	(4) ⁻	859.399 3+	E1		0.00264	$\alpha(K)=0.00224 4; \alpha(L)=0.000308 5; \alpha(M)=6.75\times10^{-5} 10; \alpha(N+)=1.80\times10^{-5} 3$
727.858 20	2.09 10	1513.760	3-	785.917 2+	E1		0.00253	$\alpha(N)=1.568\times10^{-5}\ 22;\ \alpha(O)=2.25\times10^{-6}\ 4;\ \alpha(P)=1.219\times10^{-7}\ 17$ Mult.: from $\alpha(K)$ exp=0.0032 17. $\alpha(K)=0.00215\ 3;\ \alpha(L)=0.000295\ 5;\ \alpha(M)=6.47\times10^{-5}\ 9;$
								$\alpha_{(N+)=1.729\times10^{-5}25}$ $\alpha(N)=1.502\times10^{-5}21; \ \alpha(O)=2.16\times10^{-6}3; \ \alpha(P)=1.170\times10^{-7}17$ Mult.: from $\alpha(K)\exp=0.00135.$
729.38 3	0.45 4	2243.099	3-	1513.760 3-	M1		0.01342	Additional information 5. $\alpha(K)=0.01135 \ 16; \ \alpha(L)=0.001619 \ 23; \ \alpha(M)=0.000357 \ 5; \ \alpha(N+)=9.61\times10^{-5} \ 14 \ \alpha(N)=8.33\times10^{-5} \ 12; \ \alpha(O)=1.210\times10^{-5} \ 17; \ \alpha(P)=6.81\times10^{-7} \ 10 \ \alpha(P)=0.000357 \ 12; \ 12; \ \alpha(P)=0.000357 \ 12; \ 12; \ \alpha(P)=0.000357 \ 12;$
736.832 <i>22</i> 742.59 <i>10</i>	0.721 <i>24</i> 0.138 <i>12</i>	1596.263 1528.404	$(4)^{-}$ 2 ⁺	859.399 3 ⁺ 785.917 2 ⁺				Mult.: from α (K)exp=0.023 13.

 $^{166}_{68}{
m Er}_{98}$ -10

¹⁶⁶Tm ε decay **1989Ad11** (continued)

$\gamma(^{166}\text{Er})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	α^{d}	Comments
743.8 5 757.798 17	0.037 <i>13</i> 12.33 <i>25</i>	2729.094 2215.972	$(3,4)^+$ 2 ⁻ ,3 ⁻	1985.644 3 ⁻ 1458.164 (2) ⁻	M1		0.01220	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01032 \ 15; \ \alpha(\mathbf{L}) = 0.001471 \ 21; \ \alpha(\mathbf{M}) = 0.000324 \ 5; \\ &\alpha(\mathbf{N}+) = 8.73 \times 10^{-5} \ 13 \\ &\alpha(\mathbf{N}) = 7.57 \times 10^{-5} \ 11; \ \alpha(\mathbf{O}) = 1.099 \times 10^{-5} \ 16; \ \alpha(\mathbf{P}) = 6.19 \times 10^{-7} \end{aligned}$
778.814 <i>15</i>	100.0 <i>20</i>	859.399	3+	80.581 2+	E2+M1	-20 +2-4	0.00580	9 Mult.: from α (K)exp=0.011 3. δ : 0.03 +18-14 if J ^{\pi} =2 ⁻ or +0.31 9 if J ^{\pi} =3 ⁻ (1985DaZV). α (K)=0.00479 7; α (L)=0.000784 11; α (M)=0.0001758 25; α (N+)=4.67×10 ⁻⁵ 7 α (N)=4.07×10 ⁻⁵ 6; α (O)=5.71×10 ⁻⁶ 8; α (P)=2.72×10 ⁻⁷ 4 Additional information 2. δ : from Adopted Gammas. data from ε decay: +8.4 7 from $\gamma\gamma(\theta)$ (1980Bu26); +15 +26-6 (1985DaZV), +10 +130-5 from 598 γ -778 $\gamma(\theta)$ (1993AdZY), -6.2 +10-8 from $\gamma(\theta,H,t)$ (1995KrZX); reason for discrepant results is not
785.904 <i>15</i>	52.5 6	785.917	2+	0.0 0+	E2		0.00561	known. Mult.: from L1:L2:L3=11 <i>1</i> :2.2 <i>3</i> :1.0 2 (α (K)=4.79×10 ⁻³ (E2 theory)). α (K)=0.00463 7; α (L)=0.000759 <i>11</i> ; α (M)=0.0001701 24; α (N+)=4.52×10 ⁻⁵ 7 α (N)=3.94×10 ⁻⁵ 6; α (O)=5.52×10 ⁻⁶ 8; α (P)=2.63×10 ⁻⁷ 4 I _γ : from I _γ (786γ)/I _γ (705γ)=0.906 <i>10</i> (2006Ku03) and I(705γ); In excellent agreement with I _γ =52.4 <i>11</i> from 1989Ad11. Mult.: from L1:L2:L3=3.3 <i>10</i> :1.3 4:0.5 2 and α (K)exp=0.0046 3.
797.02 20	0.023 5	2393.14	2+,3+	1596.263 (4)-				
810.290 <i>16</i>	5.78 13	1075.281	5+	264.985 4+	E2+M1	-21.2 +18-21	0.00526	α(K)=0.00436 7; α(L)=0.000706 10; α(M)=0.0001580 23; α(N+)=4.20×10-5 6 α(N)=3.66×10-5 6; α(O)=5.14×10-6 8; α(P)=2.47×10-7 4 Mult.: from Adopted Gammas; E2 from L1:L2=1.0 2:0.2 1 and α(K)exp=0.006 2. δ: from Adopted Gammas; <-17 from γγ(θ) (1980Bu26). +0.39 +19-17 from 810γ-184γ(θ) (1993AdZY); however, evaluator obtains -0.35 +9-11 and -3.8 +11-21 (first colution performed) wing outboard at and A
814.82 20 824.52 ^e 11 824.52 ^e 11 832.88 7 *858.62 9	0.062 <i>12</i> 0.026 ^e 7 0.026 ^e 7 0.051 <i>4</i> 0.042 7	2273.01 2282.68 2352.91 2290.997	3^{-} $2^{(+)},3$ $2^{(+)},3$ $(3)^{+}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				solution preferred) using authors' stated A_2 and A_4 .
808.4/ 12	0.052.9	2382.27	$(3)^{\circ}$	1313./00/3				

¹⁶⁶₆₈Er₉₈-11

					¹⁶⁶ T	mεdecay	1989Ad11	(continued)
						$\gamma(^{166})$	Er) (continued	<u>l)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{d}	Comments
875.650 15	21.5 4	956.240	4+	80.581	2+	E2	0.00444	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00369 \ 6; \ \alpha(\mathbf{L}) = 0.000584 \ 9; \ \alpha(\mathbf{M}) = 0.0001305 \ 19; \\ &\alpha(\mathbf{N}+) = 3.47 \times 10^{-5} \ 5 \\ &\alpha(\mathbf{N}) = 3.03 \times 10^{-5} \ 5; \ \alpha(\mathbf{O}) = 4.27 \times 10^{-6} \ 6; \ \alpha(\mathbf{P}) = 2.10 \times 10^{-7} \ 3 \\ &I\gamma(875\gamma):I\gamma(691\gamma) = 1.026 \ 16:1.85 \ (2006 \mathrm{Ku} 03). \\ &\mathrm{Mult.: \ from \ L1:L2:L3 = 2.0 \ 2:0.4 \ 1:0.2 \ and \ \alpha(\mathbf{K}) \exp = 0.0035 \ 4. \\ &\delta: \ \delta(\mathrm{E2/M3}) = -0.07 \ 9 \ (1985 \mathrm{DaZV}). \end{aligned}$
899.80 <i>18</i> 903.01 <i>13</i> 924.21 <i>11</i> 946.57 8	0.020 <i>4</i> 0.029 <i>5</i> 0.063 <i>9</i> 0.028 <i>5</i>	2413.68 1978.432 2382.27 2542.88	(2,3,4) $(4)^+$ $(3)^+$	1513.760 1075.281 1458.164	3^{-} 5^{+} $(2)^{-}$ $(4)^{-}$			
940.37 8 982.00 15 ^x 985.53 15 ^x 1004.99 20	$\begin{array}{c} 0.038 \ 5 \\ 0.051 \ 9 \\ 0.052 \ 9 \\ 0.028 \ 8 \end{array}$	2342.88 1938.273	(3)+	956.240	(4) 4 ⁺			
1017.29 6	0.077 5	2475.40	$(1,2^+)$	1458.164	$(2)^{-}$			
1022.175 23	0.294 11	1978.432	$(4)^+$	956.240	4+			
1034.79 <i>13</i>	0.029 5	1894.364	$2^+, 3^+, 4^+$	859.399	3+			_
1045.648 20	0.901 20	2001.874	(3)-	956.240	4+	E1	1.26×10 ⁻³	$\alpha(K)=0.001075 \ I5; \ \alpha(L)=0.0001447 \ 21; \ \alpha(M)=3.17\times10^{-5} \ 5; \\ \alpha(N+)=8.49\times10^{-6} \ I2 \\ \alpha(N)=7.36\times10^{-6} \ I1; \ \alpha(O)=1.063\times10^{-6} \ I5; \ \alpha(P)=5.90\times10^{-8} \ 9 \\ Mult.; \ from \ \alpha(K)exp=0.0018 \ 9.$
1057.67 4	3.66 12	2132.951	3+	1075.281	5+	E2	0.00300	$\alpha(\mathbf{K})=0.00251 \ 4; \ \alpha(\mathbf{L})=0.000379 \ 6; \ \alpha(\mathbf{M})=8.43\times10^{-5} \ 12; \\ \alpha(\mathbf{N}+)=2.25\times10^{-5} \ 4 \\ \alpha(\mathbf{N})=1.96\times10^{-5} \ 3; \ \alpha(\mathbf{O})=2.78\times10^{-6} \ 4; \ \alpha(\mathbf{P})=1.430\times10^{-7} \ 20 \\ \text{Mult: from } \alpha(\mathbf{K})=0.0024 \ 3 \\ \alpha(\mathbf{N})=1.00\times10^{-7} \ 10^{$
1078.876 22	2.51 5	1938.273	(3) ⁺	859.399	3+	M1	0.00513	which noise $\alpha(\mathbf{K}) \exp[-0.0024/3]$. $\alpha(\mathbf{K}) = 0.00435/6$; $\alpha(\mathbf{L}) = 0.000612/9$; $\alpha(\mathbf{M}) = 0.0001349/19$; $\alpha(\mathbf{N}+) = 3.63 \times 10^{-5}/5$ $\alpha(\mathbf{N}) = 3.15 \times 10^{-5}/5$; $\alpha(\mathbf{O}) = 4.57 \times 10^{-6}/7$; $\alpha(\mathbf{P}) = 2.59 \times 10^{-7}/4$ Mult.: from $\alpha(\mathbf{K}) \exp[=0.0059/20]$. Additional information 12.
1084.826 <i>17</i>	1.92 4	2160.121	3+	1075.281	5+	E2	0.00285	$\alpha(K)=0.00239 \ 4; \ \alpha(L)=0.000359 \ 5; \ \alpha(M)=7.96\times10^{-5} \ 12; \ \alpha(N+)=2.13\times10^{-5} \ 3 \ \alpha(N)=1.85\times10^{-5} \ 3; \ \alpha(O)=2.63\times10^{-6} \ 4; \ \alpha(P)=1.360\times10^{-7} \ 19 \ Mult.; \ from \ \alpha(K)exp=0.0024 \ 2.$
1090.70 6	0.113 6	2046.88	2+,3+	956.240	4+			
1097.46 5	0.302 9	2172.757	3+	1075.281	5+	E2	0.00278	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00233 \ 4; \ \alpha(\mathrm{L}) = 0.000350 \ 5; \ \alpha(\mathrm{M}) = 7.76 \times 10^{-5} \ 11; \\ &\alpha(\mathrm{N}+) = 2.07 \times 10^{-5} \ 3\\ &\alpha(\mathrm{N}) = 1.80 \times 10^{-5} \ 3; \ \alpha(\mathrm{O}) = 2.57 \times 10^{-6} \ 4; \ \alpha(\mathrm{P}) = 1.329 \times 10^{-7} \ 19\\ &\mathrm{Mult.: \ from } \ \alpha(\mathrm{K}) \exp = 0.0035 \ 19. \end{aligned}$
1119.50 ^{f#}	≈0.68 ^ƒ	1978.432	$(4)^{+}$	859.399	3+			-
1119.5 ^{f#}	≈0.67 ^{<i>f</i>}	2076.305	(3 ⁻)	956.240	4+			
x1126.807 25	0.380 11		~ /			M1+E2	0.0036 10	α (K)=0.0031 9; α (L)=0.00044 11; α (M)=9.7×10 ⁻⁵ 24; α (N+)=2.7×10 ⁻⁵ 7

					10	⁶⁶ Tm ε decay	1989A	d11 (continued	<u>)</u>
						$\gamma(^{16}$	⁶ Er) (conti	nued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^{π}	Mult. [‡]	δ	α^d	Comments
1131.872 25	1.28 3	1917.767	3-	785.917	2+	E1		1.09×10 ⁻³	$ \frac{\alpha(N)=2.3\times10^{-5} \ 6; \ \alpha(O)=3.3\times10^{-6} \ 9; \ \alpha(P)=1.8\times10^{-7} \ 6; \ \alpha(IPF)=7.8\times10^{-7} \ 8 \ Mult.: \ \alpha(K)=0.00031 \ 13; \ \alpha(L)=0.0001249 \ 18; \ \alpha(M)=2.73\times10^{-5} \ 4; \ \alpha(N+)=1.183\times10^{-5} \ 17 \ \alpha(N)=6.35\times10^{-6} \ 9; \ \alpha(O)=9.18\times10^{-7} \ 13; \ \alpha(P)=5.11\times10^{-8} \ 8; \ \alpha(IPF)=4.50\times10^{-6} \ 7 $
1142.45 ^e 3	0.578 ^e 13	2001.874	(3)-	859.399	3+				Mult.: from α (K)exp=0.0013 7. Mult.: α (K)exp \approx 0.0010, mult=E1 for doublet
1142.45 ^e 3	0.578 ^e 13	2600.64	1^{+}	1458.164	(2)-				(1995) $Ball(E)$ (1995
1152.350 <i>16</i>	8.20 <i>21</i>	1938.273	(3)+	785.917	2+	M1		0.00438	(1995B2CS). $\alpha(K)=0.00371 \ 6; \ \alpha(L)=0.000521 \ 8; \ \alpha(M)=0.0001148 \ 16; \ \alpha(N+)=3.28\times10^{-5} \ 5 \ \alpha(N)=2.68\times10^{-5} \ 4; \ \alpha(O)=3.89\times10^{-6} \ 6; \ \alpha(P)=2.21\times10^{-7} \ 3; \ \alpha(IPF)=1.94\times10^{-6} \ 3$
1161.955 <i>16</i>	3.78 9	2021.359	(2,3) ⁻	859.399	3+	E1		1.05×10 ⁻³	Mult.: from α (K)exp=0.0040 <i>14</i> (1979Ad06,1989Ad11) and 0.0033 <i>5</i> (1993BaZS). Additional information 13. α (K)=0.000888 <i>13</i> ; α (L)=0.0001190 <i>17</i> ;
									$\alpha(M)=2.60\times10^{-5} 4; \alpha(N+)=1.721\times10^{-5} 25$ $\alpha(N)=6.05\times10^{-6} 9; \alpha(O)=8.75\times10^{-7} 13;$ $\alpha(P)=4.88\times10^{-8} 7; \alpha(IPF)=1.024\times10^{-5} 15$ Mult : from $\alpha(K)=0.0012 6$
1176.704 <i>16</i>	50.5 10	2132.951	3+	956.240	4+	M1+E2	+0.20 4	0.00410 7	Ardin: from α (K)exp=0.0010 or α (K)=0.00347 6; α (L)=0.000488 8; α (M)=0.0001074 17 ; α (N+)=3.26×10 ⁻⁵ 5 α (N)=2.51×10 ⁻⁵ 4; α (O)=3.64×10 ⁻⁶ 6; α (P)=2.06×10 ⁻⁷ 4; α (IPF)=3.70×10 ⁻⁶ 6 Mult.: from α (K)exp=0.0032 2. Additional information 15. δ : weighted average of +0.24 4 from 1177γ-876γ(θ) (1993AdZY), +0.11 7 from 1177γ-876γ(θ) (1993AdZY) and +0.16 <i>H</i> (1985DaZV)
1187.49 <i>4</i>	0.560 14	2046.88	2+,3+	859.399	3+	M1(+E2)		0.0032 9	$\alpha(K)=0.0027 \ 8; \ \alpha(L)=0.00039 \ 10; \ \alpha(M)=8.6\times10^{-5} \ 21; \ \alpha(N+)=2.7\times10^{-5} \ 6 \ \alpha(N)=2.0\times10^{-5} \ 5; \ \alpha(O)=2.9\times10^{-6} \ 8; \ \alpha(P)=1.6\times10^{-7} \ 5; \ \alpha(IPF)=4.4\times10^{-6} \ 5 \ Mult : \ from \ \alpha(K)=0.0030 \ 7 \ (1993Ba7S)$
1192.516 <i>16</i>	0.880 20	1978.432	(4) ⁺	785.917	2+	E2		0.00236	$\alpha(K)=0.00198 \ 3; \ \alpha(L)=0.000292 \ 4; \ \alpha(M)=6.48\times10^{-5} \ 9; \ \alpha(N+)=2.17\times10^{-5} \ 3 \ \alpha(N)=1.505\times10^{-5} \ 21; \ \alpha(O)=2.15\times10^{-6} \ 3;$

Т

					166,	Tm ε decay	1989Ad11 ((continued)	
						$\gamma(^{166})$	Er) (continued)	<u>)</u>	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_{f} .	\mathbf{J}_{f}^{π}	Mult. [‡]	δ	α^{d}	Comments
1200.66 <i>3</i>	1.66 5	2729.094	(3,4)+	1528.404 2	2+	E2,M1		0.0032 9	$\alpha(P)=1.130\times10^{-7} \ 16; \ \alpha(IPF)=4.41\times10^{-6} \ 7$ Mult.: from $\alpha(K)\exp=0.0015 \ 8 \ (1979Ad06)$ and 0.0020 6 (1993BaZS). $\alpha(K)=0.0027 \ 7; \ \alpha(L)=0.00038 \ 10; \ \alpha(M)=8.4\times10^{-5} \ 20; \ \alpha(N+)=2.8\times10^{-5} \ 6$ $\alpha(N)=2.0\times10^{-5} \ 5; \ \alpha(O)=2.8\times10^{-6} \ 7; \ \alpha(P)=1.6\times10^{-7} \ 6 \ C$
1203.873 20	5.49 11	2160.121	3+	956.240 4	4+	M1+E2		0.0031 9	5; $\alpha(\text{IPF})=5.7\times10^{-6} 6$ Mult.: from $\alpha(\text{K})\text{exp}=4.3\times10^{-3} 22.$ $\alpha(\text{K})=0.0026 7$; $\alpha(\text{L})=0.00038 10$; $\alpha(\text{M})=8.3\times10^{-5} 20$; $\alpha(\text{N}+)=2.8\times10^{-5} 6$ $\alpha(\text{N})=1.9\times10^{-5} 5$; $\alpha(\text{O})=2.8\times10^{-6} 7$; $\alpha(\text{P})=1.5\times10^{-7}$ 5 ; $\alpha(\text{IPF})=6.1\times10^{-6} 6$ Mult : from $\alpha(\text{K})\text{exp}=0.0026 4$
1216.173 ^{fa} 17	2.5 ^{<i>f</i>} 5	2001.874	(3)-	785.917 2	2+				I_{γ} : from ce- γ coin data (1989Ad11); I_{γ} =3.72 8 for doublet
1216 173 fag 17	f	2076 305	(3^{-})	859 399	3+				L. Iv must be small Placement is uncertain
1216.173^{fa} 17	1.2 ^{<i>f</i>} 5	2172.757	3+	956.240	4 ⁺				I_{γ} : from ce- γ coin data (1989Ad11); I_{γ} =3.72 8 for doublet.
1235.433 <i>16</i>	9.8 2	2021.359	(2,3) ⁻	785.917 2	2+	E1(+M2)	+0.04 +9-6	0.00098 12	$\alpha(K)=0.00081 \ 10; \ \alpha(L)=0.000108 \ 16; \ \alpha(M)=2.4\times10^{-5} \\ 4; \ \alpha(N+)=4.35\times10^{-5} \ 8 \\ \alpha(N)=5.5\times10^{-6} \ 8; \ \alpha(O)=8.0\times10^{-7} \ 12; \ \alpha(P)=4.4\times10^{-8} \\ 7; \ \alpha(IPF)=3.71\times10^{-5} \ 8 \\ Mult.: \ from \ Adopted \ Gammas. \ E1 \ from \\ \alpha(K)exp=0.8\times10^{-3} \ 4 \ (1979Ad06), \ 0.00092 \ 20 \\ (1993BaZS). \\ \delta: \ from \ Adopted \ Gammas. \ other \ \delta: \ +0.1 \ 2 \\ (1985DaZV) \ \pm0.05 \ 10 \ from \ \alpha(\theta \ H \ t) \ (1995KrZX)$
1242.2 <i>3</i> 1248.78 <i>3</i>	0.035 7 1.175 25	2101.6 1513.760	(4 ⁺) 3 ⁻	859.399 3 264.985 4	3+ 4+	E1+M2	+0.13 3	0.008	(1985DaZV), +0.05 <i>10</i> from $\gamma(0, H, t)$ (1995KfZX). $\alpha(K)=0.004 \ 4; \ \alpha(L)=0.0006 \ 5; \ \alpha(M)=0.00013 \ 11;$ $\alpha(N+)=5.8\times10^{-5} \ 10$
1056 7 2	0.047.20	2212.07		056 240	4+				α (N)=3.E-5 <i>3</i> ; α (O)=4.E-6 <i>4</i> ; α (P)=2.5×10 ⁻⁷ 2 <i>1</i> ; α (IPF)=2.3×10 ⁻⁵ 20 Mult., δ : from Adopted Gammas; E1(+M2) from α (K)exp=0.0011 <i>4</i> (1993BaZS). Additional information 6.
1263.412 <i>16</i>	4.77 <i>10</i>	1528.404	2+	264.985 4	+ · 4 ⁺	E2		0.00212	$\begin{aligned} &\alpha(\mathrm{K}) = 0.001772\ 25;\ \alpha(\mathrm{L}) = 0.000259\ 4;\\ &\alpha(\mathrm{M}) = 5.72 \times 10^{-5}\ 8;\ \alpha(\mathrm{N}+) = 2.85 \times 10^{-5}\ 4\\ &\alpha(\mathrm{N}) = 1.331 \times 10^{-5}\ 19;\ \alpha(\mathrm{O}) = 1.91 \times 10^{-6}\ 3;\\ &\alpha(\mathrm{P}) = 1.010 \times 10^{-7}\ 15;\ \alpha(\mathrm{IPF}) = 1.315 \times 10^{-5}\ 19\\ &\mathrm{Mult.:\ from\ Adopted\ Gammas;\ consistent\ with}\\ &\alpha(\mathrm{K}) \exp = 0.0030\ 12\ (1979\mathrm{Ad06})\ \mathrm{and}\ 0.0021\ 4\end{aligned}$

 $^{166}_{68}\mathrm{Er}_{98}$ -14

Т

						¹⁶⁶ Tm ε d	lecay 19	89Ad11 (cont	tinued)
							γ ⁽¹⁶⁶ Er) (c	ontinued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E _f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α^{d}	Comments
1273.540 16	78.6 <i>16</i>	2132.951	3+	859.399	3+]	M1+E2	-0.11 8	0.00344 6	(1993BaZS). Additional information 7. $\alpha(K)=0.00290 5; \alpha(L)=0.000407 7; \alpha(M)=8.96\times10^{-5} 15;$ $\alpha(N+)=4.18\times10^{-5} 7$ $\alpha(N)=2.09\times10^{-5} 4; \alpha(O)=3.04\times10^{-6} 5; \alpha(P)=1.73\times10^{-7} 3;$
1007 1 2	0.022.6	2242.000	2-	056 240	4+				α(IPF)=1.77×10 ⁻⁵ 3 Mult.: from α(K)exp=0.0029 2. δ: -0.11 8 (1985DaZV); however, δ=+0.30 6 from 1273γ-778γ(θ) (1993AdZY). Additional information 16.
1287.13	0.023 0	2243.099	(3^{-})	956.240 4 785 917 1	4 · 2+				
1300.725 16	7.05 14	2160.121	3+	859.399	3+]	M1		0.00330	α (K)=0.00278 4; α (L)=0.000388 6; α (M)=8.55×10 ⁻⁵ 12; α (N+)=4.61×10 ⁻⁵ 7 α (N)=1.99×10 ⁻⁵ 3; α (O)=2.90×10 ⁻⁶ 4; α (P)=1.648×10 ⁻⁷ 23; α (IPF)=2.31×10 ⁻⁵ 4 Mult.: from α (K)exp=0.0028 3.
									Additional information 19.
1307.17 15	0.023 6	1572.206	(4) ⁻	264.985	4+				
1313.37 3	1.13 3	2172.757	3+	859.399	3+]	M1,E2		0.0026 7	$\alpha(K)=0.0022 \ 6; \ \alpha(L)=0.00031 \ 7; \ \alpha(M)=6.8\times10^{-5} \ 16; \\ \alpha(N+)=4.2\times10^{-5} \ 7 \\ \alpha(N)=1.6\times10^{-5} \ 4; \ \alpha(O)=2.3\times10^{-6} \ 6; \ \alpha(P)=1.3\times10^{-7} \ 4; \\ \alpha(IPF)=2.37\times10^{-5} \ 23 \\ Mult.: \ from \ \alpha(K)exp=0.0014 \ 7. \\ Additional \ information \ 22. \end{cases}$
1315.6 8	0.090 9	2101.6	(4^{+})	785.917	2 ⁺ 4+ 1	M1(+E2)		0.0025.6	$(K) = 0.0021.5 + (L) = 0.00020.7 + (M) = 0.0010^{-5}.15$
1554.74 21	0.042 /	2290.997	(3)	956.240	4.]	MII(+E2)		0.0023 8	$\alpha(\mathbf{K})=0.00213; \ \alpha(\mathbf{L})=0.000307; \ \alpha(\mathbf{M})=6.0\times10^{-5}7; \ \alpha(\mathbf{N})=1.5\times10^{-5}7; \ \alpha(\mathbf{N})=1.5\times10^{-5}4; \ \alpha(\mathbf{O})=2.2\times10^{-6}6; \ \alpha(\mathbf{P})=1.2\times10^{-7}4; \ \alpha(\mathbf{IPF})=2.8\times10^{-5}3; \ \mathbf{Mult.; from } \alpha(\mathbf{K})\exp\approx0.0048; \ \delta(\mathbf{1993BaZS}).$
1347.035 18	5.79 12	2132.951	3+	785.917	2+]	M1		0.00304	$\alpha(K)=0.00255 \ 4; \ \alpha(L)=0.000357 \ 5; \ \alpha(M)=7.86\times10^{-5} \ 11; \\ \alpha(N+)=5.56\times10^{-5} \ 8 \\ \alpha(N)=1.83\times10^{-5} \ 3; \ \alpha(O)=2.67\times10^{-6} \ 4; \ \alpha(P)=1.516\times10^{-7} \ 22; \\ \alpha(IPF)=3.45\times10^{-5} \ 5 \\ Mult.; \ from \ \alpha(K)exp=0.0024 \ 3. \end{cases}$
									Additional information 17.
1353.27 25	0.050 15	2212.97	2- 2-	859.399	3 ⁺				$M_{\rm ell}$ = $(K)_{\rm even} = 0.009 \epsilon (10020, 70)$
1356.62 <i>4</i> 1374.194 25	0.09 6 29.6 7	2215.972 2160.121	2,3 3 ⁺	859.399 785.917	2 ⁺]	M1+E2	-0.11 4	0.00290 5	Mult.: $\alpha(K)\exp=0.008 \ 6 \ (1993BaZS).$ $\alpha(K)=0.00242 \ 4; \ \alpha(L)=0.000339 \ 5; \ \alpha(M)=7.46\times10^{-5} \ 11;$ $\alpha(N+)=6.24\times10^{-5} \ 9$

 $^{166}_{68}{
m Er_{98}}$ -15

Т

					166 Tm ε decay	7 1989Ad11 (con	ntinued)	
					$\gamma(^{16}$	⁶ Er) (continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	α^d	Comments
								$\begin{aligned} \alpha(N) &= 1.74 \times 10^{-5} \ 3; \ \alpha(O) &= 2.53 \times 10^{-6} \ 4; \\ \alpha(P) &= 1.438 \times 10^{-7} \ 21; \ \alpha(IPF) &= 4.23 \times 10^{-5} \ 6 \\ \text{Mult.: from } \alpha(K) &\exp = 0.0023 \ 2. \\ \delta: \ \text{weighted average of } -0.18 \ 7 \ (1985 \text{DaZV}) \ \text{and} \\ -0.09 \ 4 \ \text{from } 1374 \gamma - 785 \gamma(\theta) \ (1993 \text{AdZY}). \\ \text{others: } +0.01 \ 14 \ \text{from } 1374 \gamma - 705 \gamma(\theta) \\ (1993 \text{AdZY}), \ -0.34 \ +17 - 12 \ \text{from } \gamma(\theta, \text{H}, \text{t}) \\ (1995 \text{KrZX}). \end{aligned}$
1378.6 <i>10</i> 1383.5 <i>3</i>	0.040 <i>20</i> 0.06 <i>3</i>	1458.164 2243.099	$(2)^{-}$ 3 ⁻	80.581 2 ⁴ 859.399 3 ⁴	-			
1396.8 4	0.22 5	2352 91	2 (+) 3	956 240 4 ⁴	-			
1401.16 <i>4</i> <i>x</i> 1406.6 <i>3</i>	0.39 <i>3</i> 0.023 <i>8</i>	2260.66	$2^{(+)},3^{($	859.399 3 ⁴	-			
1413.81 4	0.310 15	1678.77	(4)+	264.985 4	M1(+E2+E0)	+0.35 30	0.062 21	$\alpha(K)=0.00218 \ 17; \ \alpha(L)=0.000306 \ 22;$ $\alpha(M)=6.7\times10^{-5} \ 5; \ \alpha(N+)=7.2\times10^{-5} \ 4$ $\alpha(N)=1.57\times10^{-5} \ 11; \ \alpha(O)=2.28\times10^{-6} \ 17;$ $\alpha(P)=1.29\times10^{-7} \ 11; \ \alpha(IPF)=5.43\times10^{-5} \ 20$ Mult.: from $\alpha(K)\exp=0.0048 \ 16 \ (1993BaZS).$ α : approximate value from $\alpha(K)\exp x \ 1.3$.
1427.06 <i>20</i> 1430.2 <i>3</i>	0.14 <i>4</i> 0.86 <i>20</i>	2212.97 2215.972	2-,3-	785.917 2 ⁴ 785.917 2 ⁴	-			
1431.6 <i>3</i> 1433.1 <i>3</i>	1.8 <i>3</i> 2.3 <i>4</i>	2290.997 1513.760	(3) ⁺ 3 ⁻ 2 ⁺ 2 ⁺	859.399 3 ⁻¹ 80.581 2 ⁺¹	E1+M2	+0.054 +19-27	8.70×10 ⁻⁴	Additional information 27. $\alpha(K)=0.000615 \ 9; \ \alpha(L)=8.18\times10^{-5} \ 12;$ $\alpha(M)=1.79\times10^{-5} \ 3; \ \alpha(N+)=0.0001553 \ 22$ $\alpha(N)=4.16\times10^{-6} \ 6; \ \alpha(O)=6.03\times10^{-7} \ 9;$ $\alpha(P)=3.39\times10^{-8} \ 5; \ \alpha(IPF)=0.0001505 \ 22$ Mult., δ : from Adopted Gammas; E1 from $\alpha(K)\exp=0.0009 \ 3 \ (1993BaZS).$
1437.5 5 1447.820 25	3.39 8	2393.14 1528.404	2,5'	80.581 2 ⁺	M1+E2+E0	+0.5 3	0.0021 5	$\alpha(K)=0.0018 4; \alpha(L)=0.00025 6;$ $\alpha(M)=5.5\times10^{-5} 12; \alpha(N+)=7.6\times10^{-5} 9$ $\alpha(N)=1.3\times10^{-5} 3; \alpha(O)=1.8\times10^{-6} 4;$ $\alpha(P)=1.03\times10^{-7} 25; \alpha(IPF)=6.1\times10^{-5} 6$ Mult.: from $\alpha(K)\exp=0.0038 9$ (1993BaZS). δ : from Adopted Gammas. Additional information 8.
1457.17° 5 1474.84 4	0.35 5 0.593 <i>16</i>	2243.099 2260.66	3 2 ⁽⁺⁾ ,3	785.917 2 ⁴ 785.917 2 ⁴	M1,E2		0.0021 5	α (K)=0.0017 4; α (L)=0.00024 5; α (M)=5.2×10 ⁻⁵ 11; α (N+)=8.5×10 ⁻⁵ 10

From ENSDF

 $^{166}_{68}{
m Er}_{98}$ -16

¹⁶⁶₆₈Er₉₈-16

						166 Tm ε d	lecay 1989	d11 (continued))
							$\gamma(^{166}\text{Er})$ (cont	tinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ	α^d	Comments
									α (N)=1.2×10 ⁻⁵ 3; α (O)=1.8×10 ⁻⁶ 4; α (P)=9.9×10 ⁻⁸ 24; α (IPF)=7.1×10 ⁻⁵ 7 Mult.: from α (K)exp=1.8×10 ⁻³ 10.
1487.01 <i>15</i> 1493.43 <i>16</i>	0.046 <i>8</i> 0.081 <i>12</i>	2273.01 2352.91	3^{-} $2^{(+)},3$	785.917 859.399	2+ 3+				
^x 1495.57 18	0.074 12		,						
1505.00 4	4.37 10	2290.997	(3)+	785.917	2+	M1(+E2)	-0.2 +2-3	0.00237 14	α(K)=0.00194 12; α(L)=0.000270 16; α(M)=5.9×10-5 4; α(N+)=0.000105 4 α(N)=1.39×10-5 8; α(O)=2.02×10-6 12; α(P)=1.15×10-7 8; α(IPF)=8.9×10-5 3 Mult.: from α(K)exp=0.0024 10. δ: from 1985DaZV. Additional information 28.
1518.8 9	0.026 6	2377.77	1^{+}	859.399	3+				
1522.85 4	0.552 21	2382.27	(3)+	859.399	3+	M1(+E2)		0.0019 4	$\alpha(K)=0.0016 \ 4; \ \alpha(L)=0.00022 \ 5; \ \alpha(M)=4.9\times10^{-5} \ 10; \\ \alpha(N+)=0.000101 \ 12 \\ \alpha(N)=1.14\times10^{-5} \ 23; \ \alpha(O)=1.6\times10^{-6} \ 4; \\ \alpha(P)=9.2\times10^{-8} \ 22; \ \alpha(IPF)=8.8\times10^{-5} \ 9 \\ Mult : \ from \ \alpha(K)exp=2.4\times10^{-3} \ 9. \end{cases}$
1528.38 4	0.207 <i>17</i>	1528.404	2+	0.0	0+	E2		1.54×10 ⁻³	$\alpha(K)=0.001235 \ ls; \ \alpha(L)=0.0001753 \ 25; \alpha(M)=3.86\times10^{-5} \ 6; \ \alpha(N+)=9.19\times10^{-5} \ l3 \alpha(N)=8.99\times10^{-6} \ l3; \ \alpha(O)=1.295\times10^{-6} \ l9; \alpha(P)=7.03\times10^{-8} \ l0; \ \alpha(IPF)=8.15\times10^{-5} \ l2 Mult: from \ \alpha(K)exp>0.0013.$
1533.80 <i>19</i> 1554.33 <i>20</i>	0.024 6 0.030 15	2393.14 2413.68	$2^+, 3^+$ (2,3,4)	859.399 859.399	3+ 3+				
^x 1562.05 9 1575.65 26 ^x 1577.5 3	0.068 <i>12</i> 0.14 <i>3</i> 0.051 <i>20</i>	2435.11	(3,4)+	859.399	3+				
1581.8 8	0.15 6	1662.32	1-	80.581	2+	E1(+M2)	-0.027 27	8.69×10 ⁻⁴ 15	$\begin{aligned} &\alpha(\text{K}) = 0.000523 \ 11; \ \alpha(\text{L}) = 6.94 \times 10^{-5} \ 15; \\ &\alpha(\text{M}) = 1.52 \times 10^{-5} \ 4; \ \alpha(\text{N}+) = 0.000261 \ 4 \\ &\alpha(\text{N}) = 3.53 \times 10^{-6} \ 8; \ \alpha(\text{O}) = 5.11 \times 10^{-7} \ 11; \\ &\alpha(\text{P}) = 2.89 \times 10^{-8} \ 7; \ \alpha(\text{IPF}) = 0.000257 \ 4 \\ &\text{Mult.}, \delta: \ \text{from Adopted Gammas.} \end{aligned}$
1586.68 8	0.143 24	2542.88		956.240	4+				-
1591.77 6	0.812 18	2377.77	1+	785.917	2+	E2,M1		0.0018 4	$\alpha(K)=0.0014 \ 3; \ \alpha(L)=0.00020 \ 4; \ \alpha(M)=4.4\times10^{-5} \ 9; \\ \alpha(N+)=0.000128 \ 14 \\ \alpha(N)=1.03\times10^{-5} \ 20; \ \alpha(O)=1.5\times10^{-6} \ 3; \\ \alpha(P)=8.4\times10^{-8} \ 19; \ \alpha(IPF)=0.000116 \ 12 \\ Mult.: \ from \ \alpha(K)exp=0.0026 \ 14. \end{cases}$
1596.7 5	0.045 20	2382.27	(3)+	785.917	2+				-
1607.18 <i>3</i>	0.79 4	2393.14	$2^+, 3^+$	785.917	2^{+}	E2,M1		0.0018 4	$\alpha(K)=0.0014 \ 3; \ \alpha(L)=0.00020 \ 4; \ \alpha(M)=4.3\times10^{-5} \ 9;$

From ENSDF

 $^{166}_{68}\mathrm{Er}_{98}$ -17

					166 Tm ε deca	ıy 1989Ad1	11 (continued)
					$\gamma^{(1)}$	¹⁶⁶ Er) (continu	ued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E _f J	\int_{f}^{π} Mult. [‡]	α^{d}	Comments
1615.88 7 1622.45 <i>3</i>	0.153 <i>11</i> 2.39 6	2475.40 1703.057	$(1,2^+)$ $(2,3,4)^+$	859.399 3 80.581 2	³⁺ E2,M1	0.0018 4	$\alpha(N+)=0.000134 \ I5$ $\alpha(N)=1.01\times10^{-5} \ 20; \ \alpha(O)=1.5\times10^{-6} \ 3; \ \alpha(P)=8.2\times10^{-8} \ I8; \ \alpha(IPF)=0.000122 \ I3$ Mult.: from $\alpha(K)\exp=2.0\times10^{-3} \ I1.$ $\alpha(K)=0.0014 \ 3; \ \alpha(L)=0.00019 \ 4; \ \alpha(M)=4.2\times10^{-5} \ 8; \ \alpha(N+)=0.000140 \ I6$ $\alpha(N)=9.9\times10^{-6} \ I9; \ \alpha(O)=1.4\times10^{-6} \ 3; \ \alpha(P)=8.0\times10^{-8} \ I8; \ \alpha(IPF)=0.000129 \ I3$ Mult.: from $\alpha(K)\exp=0.0021 \ I1.$ Additional information 9
1627.8 <i>3</i>	0.16 3	2413.68	(2,3,4)	785.917 2	+		if this is the same transition As the 1630 γ In (n,n' γ), mult=D+Q,
$1629.4^{e} 3$ $1629.4^{e} 3$ $x 1641 10^{b} 20$	$0.15^{e} 3$ $0.15^{e} 3$ 0.127 15	1894.364 2586.07	$2^+, 3^+, 4^+$ (3,4) ⁺	264.985 4 956.240 4	;+ ;+		0-+13 +51-5.
1649.19 <i>10</i> 1652.76 <i>3</i>	0.33 6 5.60 15	2435.11 1917.767	(3,4) ⁺ 3 ⁻	785.917 2 264.985 4	2+ ⊧+ E1	8.75×10 ⁻⁴	$\begin{aligned} &\alpha(\text{K})=0.000484\ 7;\ \alpha(\text{L})=6.40\times10^{-5}\ 9;\ \alpha(\text{M})=1.399\times10^{-5}\ 20;\\ &\alpha(\text{N}+)=0.000313\ 5\\ &\alpha(\text{N})=3.26\times10^{-6}\ 5;\ \alpha(\text{O})=4.72\times10^{-7}\ 7;\ \alpha(\text{P})=2.67\times10^{-8}\ 4;\\ &\alpha(\text{IPF})=0.000310\ 5\\ &\delta:\ <-0.03\ \text{from}\ \gamma\gamma(\theta)\ (1980\text{Bu26});\ -0.05\ 8\ \text{from}\ \text{A}_2=-0.10\ 7,\\ &\text{A}_4=-0.06\ 16\ \text{for}\ 1653\gamma-184\gamma(\theta)\ (1993\text{AdZY}).\\ &\text{Mult.:\ from}\ \alpha(\text{K})\text{exp}=0.0005\ 2.\\ &\text{Additional\ information\ 11.} \end{aligned}$
1658.4 <i>3</i> 1662.33 <i>20</i> 1673.5 <i>4</i> 1683.3 <i>3</i>	0.097 20 0.120 15 0.078 20 0.08 3	2444.16 1662.32 1938.273 2542.88	$1^{-}(3)^{+}$	785.917 2 0.0 0 264.985 4 859.399 3	2+)+ E1 ;+ ;+	8.77×10 ⁻⁴	Mult.: from Adopted Gammas.
^x 1688.6 4 1690.2 4 ^x 1702.0 5	0.041 15 0.043 15 0.055 22	2475.40	(1,2 ⁺)	785.917 2	2+		
1705.0 5 1704.7 3 ^x 1707.7 5 ^x 1714.2 5	0.035 22 0.17 4 0.032 12 0.025 10	1969.71	(2,3,4)	264.985 4	!+		
1720.87 20	0.26 3	1985.644	3-	264.985 4	ι+ (E1)	8.89×10 ⁻⁴	$\alpha(K)=0.000453\ 7;\ \alpha(L)=5.98\times10^{-5}\ 9;\ \alpha(M)=1.307\times10^{-5}\ 19;\ \alpha(N+)=0.000363\ 5$ $\alpha(N)=3.04\times10^{-6}\ 5;\ \alpha(O)=4.41\times10^{-7}\ 7;\ \alpha(P)=2.50\times10^{-8}\ 4;\ \alpha(IPF)=0.000360\ 5$ Mult: E1.E2 from $\alpha(K)\exp=0.6\times10^{-3}\ 4.5$
1726.3 <i>5</i>	0.021 8	2586.07	(3,4)+	859.399 3	3+		
1731.9 5	0.12 4	1813.2	$1^{(+)}$	80.581 2	2+ (M1+E2)		Mult.: from Adopted Gammas.

$^{166}_{68}\mathrm{Er}_{98}$ -18

From ENSDF

¹⁶⁶₆₈Er₉₈-18

						¹⁶⁶ Tm ε decay	1989Ad11 (c	ontinued)	
						$\gamma(^{166})$	PEr) (continued)		
$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	δ	α^{d}	Comments
1737.09 20	0.41 2	2001.874	(3)-	264.985	4+	(E1)		8.93×10 ⁻⁴	$\alpha(K)=0.000446\ 7;\ \alpha(L)=5.89\times10^{-5}\ 9;\alpha(M)=1.287\times10^{-5}\ 18;\ \alpha(N+)=0.000375\ 6\alpha(N)=2.99\times10^{-6}\ 5;\ \alpha(O)=4.34\times10^{-7}\ 6;\alpha(P)=2.46\times10^{-8}\ 4;\ \alpha(IPF)=0.000372\ 6$
1749.78 7 *1755 5 5	0.113 8 0.033 6	1830.42	1-	80.581	2+	(E1(+M2))		0.0023 15	Mult.: from Adopted Gammas.
1758.06.20	0.101.9	2022 62	(4^{+})	264 985	Δ^+				
1781 40 15	0.110 12	2022.02	2+3+	264 985	4+				
1784 58 4	0.489.25	1865.17	2,5	80 581	2+				
1810.6.5	0.10.3	2076 305	(3^{-})	264 985	$\frac{1}{4}$				
1813.4^{e} 3	0.10° 5	1813.2	1(+)	0.0	0+	(M1)			Mult : from Adopted Gammas
1813.4^{e} 3	$0.37^{e} 5$	1894 364	2^+ 3^+ 4^+	80 581	2+	(111)			Mutt. Hom Adopted Gummas.
^x 1824.10.20	0.51 10	107 1.501	2,,5,1	00.201	-				
1830.9.5	0.050.20	1830.42	1-	0.0	0^{+}	(E1)		9.20×10^{-4}	Mult · from Adopted Gammas
1837 17 3	3 95 9	1917 767	3-	80 581	2+	E1		9.22×10^{-4}	$\alpha(K) = 0.000407 \text{ 6}$: $\alpha(L) = 5.37 \times 10^{-5} \text{ 8}$:
1846.6 <i>3</i>	0.08 3	2632.66	$(3,4)^+$	785.917	$2^+_{4^+}$				$\alpha(M)=1.172\times10^{-5} \ 17; \ \alpha(N+)=0.000449 \ 7$ $\alpha(N)=2.73\times10^{-6} \ 4; \ \alpha(O)=3.96\times10^{-7} \ 6; \ \alpha(P)=2.25\times10^{-8} \ 4; \ \alpha(IPF)=0.000446 \ 7$ Mult.: from $\alpha(K)\exp=5.3\times10^{-4} \ 25$.
1853.1 10	0.25 0	2117.8	$(2^{+}, 3, 4^{+})$	204.985	$\frac{4}{2^+}$				
1857.94 <i>3</i>	0.10 3 21.4 5	2132.951	(3)' 3 ⁺	80.581 264.985	4+	M1+E2	+3.49 +10-3	1.26×10 ⁻³	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000878 \ 13; \ \alpha(\mathrm{L}) = 0.0001218 \ 18; \\ &\alpha(\mathrm{M}) = 2.68 \times 10^{-5} \ 4; \ \alpha(\mathrm{N}+) = 0.000232 \ 4 \\ &\alpha(\mathrm{N}) = 6.24 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 9.02 \times 10^{-7} \ 13; \\ &\alpha(\mathrm{P}) = 5.01 \times 10^{-8} \ 7; \ \alpha(\mathrm{IPF}) = 0.000225 \ 4 \\ &\delta: \ \mathrm{from} \ \gamma\gamma(\theta) \ (1980\mathrm{Bu26}). \ \mathrm{Others:} \ 3.7 \\ &+ 57 - 18 \ (1987\mathrm{Kr12}). \ +4.3 \ +10 - 7 \ \mathrm{from} \\ &1868\gamma - 184\gamma(\theta) \ (1993\mathrm{AdZY}), \ +3.6 \ +24 - 12 \\ &\mathrm{from} \ \gamma(\theta,\mathrm{H,t}) \ (1995\mathrm{KrZX}). \end{aligned}$ Mult.: $\mathrm{from} \ \alpha(\mathrm{K}) \exp = 0.81 \times 10^{-3} \ 9. \end{aligned}$
~1883.18 <i>11</i>	0.12722	1060 71	(2, 2, 4)	00 501	2^+				
1869.12 20 1895.12 3	0.14 <i>3</i> 6.4 <i>20</i>	2160.121	(2,3,4) 3 ⁺	264.985	2 · 4+	M1+E2	+2.63 4	1.27×10 ⁻³	$\alpha(K)=0.000870 \ 13; \ \alpha(L)=0.0001206 \ 17; \\ \alpha(M)=2.65\times10^{-5} \ 4; \ \alpha(N+)=0.000248 \ 4 \\ \alpha(N)=6.17\times10^{-6} \ 9; \ \alpha(O)=8.94\times10^{-7} \ 13; \\ \alpha(P)=4.98\times10^{-8} \ 7; \ \alpha(IPF)=0.000240 \ 4 \\ \delta: \ from \ \gamma\gamma(\theta) \ (1980Bu26) \ based \ on \\ \%E2=87.4 \ and \ \%M1=12.6 \ 3. \ other: \ +2.3 \\ +6-4 \ from \ 1895\gamma-184\gamma(\theta) \ (1993AdZY). \\ Mult.: \ from \ \alpha(K)exp=0.76\times10^{-3} \ 10. \\ \end{cases}$

					166 Tm ε decay		1989	Ad11 (continue	ed)
						$\gamma(^{16}$	⁶⁶ Er) (con	tinued)	
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α^{d}	Comments
1905.43 23 1907.71 6	0.23 6 1.82 8	1985.644 2172.757	3- 3+	80.581 264.985	2 ⁺ 4 ⁺	E2,M1		0.00141 21	$\alpha(K)=0.00098 \ 16; \ \alpha(L)=0.000135 \ 22; \\ \alpha(M)=3.0\times10^{-5} \ 5; \ \alpha(N+)=0.00027 \ 3 \\ \alpha(N)=6.9\times10^{-6} \ 11; \ \alpha(O)=1.00\times10^{-6} \ 17; \\ \alpha(P)=5.7\times10^{-8} \ 10; \ \alpha(IPF)=0.00027 \ 3 \\ Mult : \ from \ \alpha(K)=0.0015 \ 6 \\ \end{array}$
1921.40 <i>15</i> ^x 1922.4 <i>4</i> ^x 1929 1 3	0.36 <i>3</i> 0.06 <i>3</i> 0.024 6	2001.874	(3)-	80.581	2+				Mutt. Holli u(K)exp=0.0015 0.
1941.78 <i>15</i> 1943.6 <i>15</i> 1948.28 3	0.22 <i>3</i> 0.06 <i>4</i> 0.071 <i>8</i>	2022.62 2729.094 2212.97	(4^+) $(3,4)^+$	80.581 785.917 264.985	2^+ 2^+ 4^+				
^x 1966.52 4	0.234 23	2212.97		204.903	-	M1,M2			E_{γ} : close to, but inconsistent with, E_{γ} expected for a 2047 to 81 transition. Mult.: from $\alpha(K) \exp = 0.0023$ 15.
^x 1976.38 20	0.29 3								
1978.12 20	0.43 3	2243.099	3-	264.985	4+	E1		9.71×10 ⁻⁴	$\alpha(K)=0.000361 5; \alpha(L)=4.75\times10^{-5} 7; \alpha(M)=1.038\times10^{-5} 15; \alpha(N+)=0.000552 8 \alpha(N)=2.41\times10^{-6} 4; \alpha(O)=3.51\times10^{-7} 5; \alpha(P)=1.99\times10^{-8} 3; \alpha(IPF)=0.000549 8 Mult.: E1,E2 from \alpha(K)exp=1.0\times10^{-3} 6.$
^x 1986.53 5	0.194 <i>10</i>					M1,E2		0.00136 <i>19</i>	$\alpha(K) = 0.00090 \ 14; \ \alpha(L) = 0.000124 \ 19; \alpha(M) = 2.7 \times 10^{-5} \ 4; \ \alpha(N+) = 0.00031 \ 4 \alpha(N) = 6.3 \times 10^{-6} \ 10; \ \alpha(O) = 9.2 \times 10^{-7} \ 15; \alpha(P) = 5.2 \times 10^{-8} \ 9; \ \alpha(IPF) = 0.00031 \ 4 Mult : from \ \alpha(K) exp = 0.0011 \ 6$
1996.10 <i>15</i> ^x 2003.4 <i>3</i>	0.041 <i>5</i> 0.071 <i>14</i>	2076.305	(3 ⁻)	80.581	2+				
2008.00 4	1.21 3	2273.01	3-	264.985	4+	E1		9.82×10 ⁻⁴	$\alpha(K)=0.000353 5; \alpha(L)=4.64\times10^{-5} 7;$ $\alpha(M)=1.012\times10^{-5} 15; \alpha(N+)=0.000573 8$ $\alpha(N)=2.36\times10^{-6} 4; \alpha(O)=3.42\times10^{-7} 5;$ $\alpha(P)=1.95\times10^{-8} 3; \alpha(IPF)=0.000571 8$ Mult.: from $\alpha(K)\exp=0.44\times10^{-3} 25$. Additional information 25.
2017.67 7 x2022.03 20	0.200 <i>20</i> 0.09 <i>3</i>	2282.68	2 ⁽⁺⁾ ,3	264.985	4+				
$\begin{array}{c} 2026.06^{e} \ 11\\ 2026.06^{e} \ 11\\ 2036.8 \ 12 \end{array}$	0.120 ^e 20 0.120 ^e 20 0.100 20	2290.997 2811.99 2117.8	$(3)^+$ 1 $(2^+,3,4^+)$	264.985 785.917 80.581	4+ 2+ 2+				
2052.36 3	91.0 <i>18</i>	2132.951	3+	80.581	2+	M1+E2	+7.0 5	1.16×10^{-3}	α (K)=0.000723 <i>11</i> ; α (L)=9.96×10 ⁻⁵ <i>14</i> ; α (M)=2.19×10 ⁻⁵ <i>3</i> ; α (N+)=0.000314 <i>5</i>

From ENSDF

					¹⁶⁶ Tm a	e decay 1989	Ad11 (continue	ed)
						γ ⁽¹⁶⁶ Er) (cor	ntinued)	
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.‡	δ	α^{d}	Comments
								$\begin{aligned} \alpha(N) &= 5.09 \times 10^{-6} \ 8; \ \alpha(O) &= 7.37 \times 10^{-7} \ 11; \\ \alpha(P) &= 4.12 \times 10^{-8} \ 6; \ \alpha(IPF) &= 0.000308 \ 5 \\ \delta: \ from \ \gamma\gamma(\theta) \ (1980Bu26). \ Others: \ +9 \ +19 - 4 \\ (1985DaZV), \ +6.0 \ +76 - 24 \ from \ \gamma(\theta, H, t) \\ (1995KrZX). \end{aligned}$ Additional information 18.
2079.53 3	33.3 7	2160.121	3+	80.581 2+	M1+E2	+5.2 +15-5	1.16×10 ⁻³	Mult.: from α (K)exp=0.77×10 ⁻³ 8. α (K)=0.000709 11; α (L)=9.76×10 ⁻⁵ 15; α (M)=2.14×10 ⁻⁵ 4; α (N+)=0.000328 5 α (N)=4.99×10 ⁻⁶ 8; α (O)=7.23×10 ⁻⁷ 11; α (P)=4.04×10 ⁻⁸ 6; α (IPF)=0.000322 5
								Mult.: from α (K)exp=0.72×10 ⁻³ 7. δ : from $\gamma\gamma(\theta)$ (1980Bu26). Others: +10+∞-6 (1985DaZV), +10 +∞-6 from $\gamma(\theta,H,t)$ (1995KrZX). Additional information 21.
2092.13 3	8.26 18	2172.757	3+	80.581 2+	M1+E2	+3.7 +19-7	1.16×10 ⁻³ 2	$\alpha(K)=0.000709 \ 13; \ \alpha(L)=9.74\times10^{-5} \ 18; \\ \alpha(M)=2.14\times10^{-5} \ 4; \ \alpha(N+)=0.000336 \ 6 \\ \alpha(N)=4.98\times10^{-6} \ 10; \ \alpha(O)=7.22\times10^{-7} \ 14; \\ \alpha(P)=4.04\times10^{-8} \ 8; \ \alpha(IPF)=0.000331 \ 6 \\ Mult.: \ from \ \alpha(K)exp=0.99\times10^{-3} \ 44. \\ \delta: \ from \ \gamma\gamma(\theta) \ (1980Bu26). $
x2100.2.6	0.032.9							Additional information 23.
2128.19 5	0.088 6	2393.14	$2^+, 3^+$	264.985 4+				
2135.36 4	0.192 8	2215.972	2-,3-	80.581 2+				
2148.6 3	0.012 3	2413.68	(2,3,4)	264.985 4+				I_{γ} : there is a discrepancy. I_{γ} =0.12 <i>3</i> in table 1 but 0.01 in table 2 of 1989Ad11.
2162.54 5	0.278 11	2243.099	3-	80.581 2+	E1		1.04×10 ⁻³	$\alpha(K)=0.000313 5; \alpha(L)=4.11\times10^{-5} 6; \alpha(M)=8.98\times10^{-6} 13; \alpha(N+)=0.000680 10 \alpha(N)=2.09\times10^{-6} 3; \alpha(O)=3.04\times10^{-7} 5; \alpha(P)=1.730\times10^{-8} 25; \alpha(IPF)=0.000678 10 Mult : from \alpha(K) as p=0.20\times10^{-3} 17$
^x 2176.61 6	0.184 8				M1,E2		0.00128 16	Mult.: from α (K)exp=0.29×10 ~ 17. α (K)=0.00074 10; α (L)=0.000102 14; α (M)=2.2×10 ⁻⁵ 3; α (N+)=0.00041 5 α (N)=5.2×10 ⁻⁶ 7; α (O)=7.6×10 ⁻⁷ 11; α (P)=4.3×10 ⁻⁸ 7; α (IPF)=0.00041 5 Mult : from α (K)exp=0.0015 9
2183.68 7 2192.43 <i>4</i>	0.117 7 1.09 <i>3</i>	2264.31 2273.01	(1,2 ⁺) 3 ⁻	80.581 2 ⁺ 80.581 2 ⁺	Q(+D) E1		1.06×10 ⁻³	Mult.: from Adopted Gammas. $\alpha(K)=0.000307 5; \alpha(L)=4.02\times10^{-5} 6;$ $\alpha(M)=8.78\times10^{-6} 13; \alpha(N+)=0.000700 10$ $\alpha(N)=2.04\times10^{-6} 3; \alpha(O)=2.97\times10^{-7} 5;$

						$\frac{166}{10} \text{Tm } \varepsilon \text{ decay} \qquad 1989 \text{Ad11 (continued)}$						
							γ (¹⁶⁶ Er) (cor	ntinued)				
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^d	Comments				
								α (P)=1.693×10 ⁻⁸ 24; α (IPF)=0.000698 10 Mult.: from α (K)exp=0.40×10 ⁻³ 23. Additional information 26.				
2202.09 6	0.238 10	2282.68	2 ⁽⁺⁾ ,3	80.581	2+	E1,E2		Mult.: from α (K)exp=0.68×10 ⁻³ 37.				
2210.49 6	0.323 12	2290.997 2328 69	$(3)^+$ (1.2)	80.581	2^+ 2^+							
x2254.5 3 x2257.0 3	0.007 <i>3</i> 0.0096 <i>25</i>	2320.09	(1,2)	00.501	2							
2264.34 8	0.038 3	2264.31	$(1,2^+)$	0.0	0^+							
2272.33 15	0.0228 23	2352.91	$2^{(+)},3$	80.581	$2^{+}_{4^{+}}$							
x2284.6.3	0.036 2	2342.88		204.985	4.							
2297.26 10	0.079 4	2377.77	1+	80.581	2+	E2,M1	0.00125 14	$\alpha(K)=0.00066\ 8;\ \alpha(L)=9.1\times10^{-5}\ 11;\ \alpha(M)=1.99\times10^{-5}\ 24;\ \alpha(N+)=0.00048\ 5$				
								α (N)=4.6×10 ⁻⁶ 6; α (O)=6.8×10 ⁻⁷ 9; α (P)=3.8×10 ⁻⁸ 5; α (IPF)=0.00047 5				
X2202.95.9	0 110 10					F2 M1	0.00125.14	Mult.: from α (K)exp=0.0014 8.				
~2302.85 8	0.112 10					E2,M1	0.00125 14	$\alpha(\mathbf{K})=0.000668;\alpha(\mathbf{L})=9.0\times10^{-6}11;\alpha(\mathbf{M})=1.98\times10^{-6}24;$ $\alpha(\mathbf{N}+)=0.000485$				
								$\alpha(N)=4.6\times10^{-6}$ 6; $\alpha(O)=6.7\times10^{-7}$ 9; $\alpha(P)=3.8\times10^{-6}$ 5; $\alpha(IPF)=0.00047$ 5				
x2309 3 3	0.0145 17							Mult.: from $\alpha(K) \exp = 0.9 \times 10^{-5}$ 6.				
2312.57 9	0.082 4	2393.14	2+,3+	80.581	2+	M1	1.38×10^{-3}	α (K)=0.000726 <i>11</i> ; α (L)=9.98×10 ⁻⁵ <i>14</i> ; α (M)=2.19×10 ⁻⁵ <i>3</i> ; α (N+)=0.000532 <i>8</i>				
								α (N)=5.12×10 ⁻⁶ 8; α (O)=7.46×10 ⁻⁷ 11; α (P)=4.27×10 ⁻⁸ 6; α (IPF)=0.000526 8				
								Mult.: from α (K)exp=1.5×10 ⁻³ 9.				
2321.18 18	0.0122 18	2586.07	$(3,4)^+$	264.985	4^+							
2328.72 10 2333.11 10 $x_{2352.7 10}$	0.0223 21 0.0247 25 0.006 3	2328.09	(1,2) (2,3,4)	80.581	2^+							
2354.6 10	0.009 4	2619.6	(2 ⁺)	264.985	4^{+}							
2363.3 4 x2266.6 4	0.0186 22	2444.16		80.581	2+							
2300.0 4	0.0163 24	2377.77	1+	0.0	0^{+}	M1	1.37×10^{-3}	$\alpha(K) = 0.000682, 10; \alpha(L) = 9.36 \times 10^{-5}, 14; \alpha(M) = 2.06 \times 10^{-5}, 3;$				
	0.100 10			5.0	0		1.0 / / / / /	$\alpha(N+)=0.000570 \ 8$				
								α (N)=4.80×10 ⁻⁶ 7; α (O)=6.99×10 ⁻⁷ 10; α (P)=4.00×10 ⁻⁸ 6; α (IPF)=0.000564 8				
2282 01 10	0.066.6	2464 52	1+	80 501	2^+	E2 M1	0 00124 12	Mult.: from $\alpha(K) \exp=0.0010$ 6. $\alpha(K) = 0.00061$ 7: $\alpha(L) = 8.4 \times 10^{-5}$ 10: $\alpha(M) = 1.84 \times 10^{-5}$ 21:				
2363.91 10	0.000 0	2404.32	1	80.381	2.	EZ,IVI I	0.00124 13	$\alpha(N) = 0.000017$, $\alpha(L) = 0.4 \times 10^{-10}$, $\alpha(M) = 1.84 \times 10^{-27}$; $\alpha(N+) = 0.000526$				

						¹⁶⁶ Tm	ε decay 19	89Ad11 (continued)		
$\gamma(^{166}\text{Er})$ (continued)										
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{d}	Comments		
2394.81 8	0.155 7	2475.40	(1,2 ⁺)	80.581	2+	E2,M1	0.00124 13	$\alpha(N)=4.3\times10^{-6} 5; \ \alpha(O)=6.2\times10^{-7} 8; \ \alpha(P)=3.5\times10^{-8} 5; \alpha(IPF)=0.00052 6$ Mult.: from $\alpha(K)\exp=6.5\times10^{-4} 40.$ $\alpha(K)=0.00061 7; \ \alpha(L)=8.3\times10^{-5} 9; \ \alpha(M)=1.82\times10^{-5} 21; \alpha(N+)=0.00053 6$ $\alpha(N)=4.3\times10^{-6} 5; \ \alpha(O)=6.2\times10^{-7} 7; \ \alpha(P)=3.5\times10^{-8} 5; \alpha(IPF)=0.00052 6$ Mult : from $\alpha(K)\exp=0.8\times10^{-3} 4$		
^x 2398.7 4	0.014 4									
$^{x}2403.05\ 25$	0.0096 22									
x2413.0 5 x2423.95 10	0.128 4					E2,M1	0.00123 <i>13</i>	$\alpha(K)=0.00059 \ 6; \ \alpha(L)=8.1\times10^{-5} \ 9; \ \alpha(M)=1.78\times10^{-5} \ 20; \\ \alpha(N+)=0.00054 \ 6 \\ \alpha(N)=4.1\times10^{-6} \ 5; \ \alpha(O)=6.0\times10^{-7} \ 7; \ \alpha(P)=3.4\times10^{-8} \ 4; \\ \alpha(IPF)=0.00054 \ 6 \\ Mult : from \ \alpha(K) avn=0.8\times10^{-3} \ 4$		
^x 2435.8 5	0.019 3							$\frac{1}{2} \frac{1}{2} \frac{1}$		
^x 2438.6 10	0.0110 25									
x2441.3 8	0.016 3	244446			0+					
2444.0 <i>10</i> x2458 51 20	0.0086 25	2444.16		0.0	01					
2462.5.5	0.025 5	2542.88		80.581	2^{+}					
2464.7 5	0.126 10	2464.52	1+	0.0	2 0+	M1	1.35×10 ⁻³	$\alpha(K)=0.000628 \ 9; \ \alpha(L)=8.62\times10^{-5} \ 12; \ \alpha(M)=1.89\times10^{-5} \ 3; \ \alpha(N+)=0.000619 \ 9 \ \alpha(N)=4.42\times10^{-6} \ 7; \ \alpha(O)=6.44\times10^{-7} \ 9; \ \alpha(P)=3.69\times10^{-8} \ 6; \ \alpha(IPF)=0.000614 \ 9 \ Mult.; E2,M1 \ from \ \alpha(K)exp=9\times10^{-4} \ 5; \ \Delta J=1 \ from \ Adopted \ Gammas.$		
^x 2490.4 7	0.0040 9									
x2494.42 20	0.0247 15	2586 07	$(2, 4)^+$	90 591	2^+					
2520.20 10 x2524.6 5	0.0224 78	2600.64	(3,4) 1 ⁺	80.581	2^{+}					
2532.3 <i>3</i> <i>x</i> 2536.7 <i>10</i>	0.0077 <i>13</i> 0.014 <i>3</i>	2613.50		80.581	2+					
2538.8 10	0.0145 26	2619.6	(2^{+})	80.581	2^{+}					
2544.3 <i>3</i>	0.0146 25	2624.8	(1,2)	80.581	2+					
2547.1 10 2552.12 20 *2560 1 5	0.008 <i>3</i> 0.0210 <i>16</i> 0.029 <i>4</i>	2628.5 2632.66	(1,2) $(3,4)^+$	80.581 80.581	2^+ 2^+					
x2562.8 3	0.084 4					E2,M1	0.00123 12	α (K)=0.00053 5; α (L)=7.2×10 ⁻⁵ 7; α (M)=1.58×10 ⁻⁵ 16; α (N+)=0.00061 7		
								$\alpha(N)=3.7\times10^{-6} 4; \ \alpha(O)=5.4\times10^{-7} 6; \ \alpha(P)=3.1\times10^{-8} 4; \ \alpha(IPF)=0.00061 7$		
								Mult.: from $\alpha(K)\exp=1.2\times10^{-3}$ 6.		

From ENSDF

¹⁶⁶Tm ε decay 1989Ad11 (continued)

$\gamma(^{166}\text{Er})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{d}	Comments
2591.4 3	0.013 4	2671.98		80.581	2^{+}			
2598.2 4	0.125 25	2679.05	1+	80.581	2^{+}			
2600.76 20	0.225 25	2600.64	1+	0.0	0^+	M1	1.34×10^{-3}	$\alpha(K)=0.000557 \ 8; \ \alpha(L)=7.63\times10^{-5} \ 11; \ \alpha(M)=1.675\times10^{-5} \ 24;$
								α (N+)=0.000694 10
								$\alpha(N)=3.91\times10^{-6} 6; \alpha(O)=5.69\times10^{-7} 8; \alpha(P)=3.26\times10^{-8} 5;$
								α (IPF)=0.000690 10
								Mult.: E2,M1 from α (K)exp=0.7×10 ⁻³ 4; D from Adopted Gammas.
2613.75 20	0.0188 18	2613.50	(21)	0.0	0^+			
2619.7 8	0.021 14	2619.6	(2^{+})	0.0	0^+			
~2620.8 6	0.042 4	2624.9	(1,2)	0.0	0+			
2024.4 7	0.0130 13	2024.8	(1,2) (1,2)	0.0	0+			
2648 50 2	0.0213 21	2028.5	(1,2) $(3,4)^+$	0.0 80 581	2+	E2 M1	0.00123.12	$\alpha(\mathbf{K}) = 0.00040 \ 4 \ \alpha(\mathbf{L}) = 6.7 \times 10^{-5} \ 6 \ \alpha(\mathbf{M}) = 1.48 \times 10^{-5} \ 13$
2040.30 2	0.092 0	2729.094	(3,4)	00.501	2	12,1011	0.00125 12	$\alpha(\mathbf{N}) = 0.000494$, $\alpha(\mathbf{L}) = 0.7 \times 10^{-0.7}$, $\alpha(\mathbf{N}) = 1.43 \times 10^{-1.43}$, $\alpha(\mathbf{N} + \mathbf{k}) = 0.000667$
								$\alpha(N) = 3.4 \times 10^{-6} 3$; $\alpha(O) = 5.0 \times 10^{-7} 5$; $\alpha(P) = 2.9 \times 10^{-8} 3$;
								$\alpha(\text{IPF})=0.00065.7$
								Mult.: from $\alpha(K) \exp[-0.9 \times 10^{-3}]$ 5.
2671.95 20	0.0262 19	2671.98		0.0	0^{+}			
2679.09 20	0.241 18	2679.05	1^{+}	0.0	0^{+}	M1	1.34×10^{-3}	$\alpha(K)=0.000521 \ 8; \ \alpha(L)=7.13\times10^{-5} \ 10; \ \alpha(M)=1.566\times10^{-5} \ 22;$
								α(N+)=0.000737 11
								$\alpha(N)=3.65\times10^{-6} 6$; $\alpha(O)=5.32\times10^{-7} 8$; $\alpha(P)=3.05\times10^{-8} 5$;
								α (IPF)=0.000733 11
								Mult.: E2,M1 from α (K)exp=0.7×10 ⁻³ 4; D from Adopted Gammas.
								Additional information 29.
*2682.5 7	0.030 3	2702 (0	a ±	00 501	a ±			
2703.1 4	0.0202 25	2783.69	Γ'	80.581	2+			
$\frac{2}{10.84}$	0.0139 10	2191.5	(1,2)	80.581	2			
2728.9.10	0.0102 20	2729 094	$(34)^+$	0.0	0^{+}			
2732.0 10	0.0060 20	2811.99	1	80.581	2+			
^x 2740.26 20	0.0440 25							
x2753.05 20	0.0140 25							
2777.56 18	0.0126 11	2858.17	(1,2)	80.581	2^{+}			
2783.8 <i>3</i>	0.0351 19	2783.69	1+	0.0	0^+	M1		Mult.: E2,M1 from α (K)exp=0.7×10 ⁻³ 4; D from Adopted Gammas.
^x 2795.7 7	0.0057 20							
2798.2 10	0.0043 18	2797.5	(1,2)	0.0	0^{+}			
^x 2801.3 7	0.0042 15							
^2808.5 10	0.0034 12	2011.00	1	0.0	0+	D		
2811./ 10	0.0041 I2 0.0025 I5	2811.99	(1 2)	0.0	0+	D		Mult.: Irom Adopted Gammas.
2020.1 10 x2861 4 10	0.0033 13	2030.17	(1,2)	0.0	0.			
2001.4 10	0.0043 13							

 $\gamma(^{166}\text{Er})$ (continued)

[†] From 1989Ad11, except As noted.

[‡] Deduced from $\alpha(K)\exp=Ce(K)/I\gamma$ normalized to $\alpha(K)(778.90\gamma)=4.79\times10^{-3}$ (E2 theory), Ce(K) from 1979Ad06, I γ from 1989Ad11, except As noted.

[#] Measured E γ =1119.50 4 (I γ =1.35 5) is doublet, I γ divided by 1989Ad11. α (K)exp=0.00089 22 for doublet (1993BaZS).

[@] Measured E γ =194.678 15 (I γ =4.34 13) is doublet, I γ divided by 1989Ad11.

[&] Measured E γ =646.75 4 (I γ =0.117 6) is doublet, I γ divided by 1989Ad11.

 a Ey deviates by At least 5 σ from value expected for this placement. datum excluded from least-squares fit.

^b if the unplaced 1641 γ in ε decay corresponds to the 1641 γ deexciting a 1722 level in $(n,n'\gamma)$, then one should also see a 1456.6 γ in ε decay. From I γ (1456.6 γ)/I γ (1641.2 γ)=0.78 *16* In $(n,n'\gamma)$ and I(1641 γ)=0.127 *15* In ε decay, one expects I γ (1456 γ)=0.099 *24* for a possible 1456.6 *10* transition In ε decay. This could have been masked by the 1457.17 γ , with I γ =0.35 *5*. However, if present, I γ (1457 γ) from the 2243.1 level in ε decay should then be decreased to 0.25 *6*.

^c For absolute intensity per 100 decays, multiply by 0.191 11.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*e*} Multiply placed with undivided intensity.

^f Multiply placed with intensity suitably divided.

^g Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

Decay Scheme

¹⁶⁶₆₈Er₉₈

Decay Scheme (continued)

¹⁶⁶₆₈Er₉₈

Decay Scheme (continued)

¹⁶⁶₆₈Er₉₈

Decay Scheme (continued)

