¹⁶⁵Yb ε+β⁺ decay (9.8 min) 1978Ad06,1973Ta18

History											
Туре	Author	Citation	Literature Cutoff Date								
Full Evaluation	Balraj Singh and Jun Chen	NDS 194,460 (2024)	31-Oct-2022								

Parent: ¹⁶⁵Yb: E=0.0; $J^{\pi}=5/2^-$; $T_{1/2}=9.8 \text{ min } 5$; $Q(\varepsilon)=2635 \ 27$; $\%\varepsilon+\%\beta^+$ decay=100

 165 Yb-J^{π},T_{1/2}: From 165 Yb Adopted Levels.

¹⁶⁵Yb-Q(ε): From 2021Wa16.

1978Ad06 (also 1985Ad12): measured E γ , I γ , $\gamma\gamma$ -coin, ce, $\gamma\gamma(t)$ using Ge(Li), Si(Li) and NaI(T1) detectors, a toroidal β -spectrometer and magnetic β -spectrographs. Isobarically separated ¹⁶⁵Tm sources were produced by the YASNAPP facility at the JINR-Dubna Institute. Some revisions in the level scheme proposed by 1985Ad12. Deduced levels, J^{π} , β feedings, log *ft* values, band structures, Nilsson configurations.

1973Ta18: measured E γ , I γ , $\gamma\gamma$ -coin. A total of 118 γ rays reported with placements proposed for 73 γ rays amongst 37 excited states, most of which are confirmed by 1978Ad06. ¹⁶⁵Yb sources were produced in ¹⁵⁹Tb(¹¹B,5n),E=60 MeV reaction at the Yale heavy-ion accelerator facility.

1968Ta05: measured $T_{1/2}(^{165}$ Yb isotope), E β , E γ , I γ , ce, (x ray) γ , (x ray) γ (t), (x-ray) γ (ce)(t). The conversion electron measurements were made using Si(Li) detector. The work is by the same author as the first author in 1973Ta18.

Others:

1980AIZE: measured lifetimes by ce(t).

1972Ch23, 1969DeZZ, 1967Pa04 (also 1964Pa07), 1961St05: measured $T_{1/2}$ of ¹⁶⁵Yb decay.

¹⁶⁵Tm Levels

The following levels proposed by 1973Ta18 are not confirmed by 1978Ad06 and are omitted here: 369.8, 609.5, 1424.8; tentative levels at 950.0, 1100.5, 1129.1, 1352.6.

A 1790.4 level proposed in 1978Ad06 is excluded in the reanalysis by 1985Ad12.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	$1/2^{+}$		
11.54 6	$3/2^{+}$	0.75 ns 5	
80.36 6	7/2+		
129.63 5	5/2+	≤0.2 ns	
158.20? 25	$1/2^{-}$		
158.93 6	7/2+	322 ps 20	$T_{1/2}$: adopted value from $\gamma\gamma(t)$ in $(\alpha, 4n\gamma)$. Other: ≤ 0.3 ns from this study.
160.46 6	$7/2^{-}$	$9.0^{@} \ \mu s \ 5$	%IT=100
181.72 6	5/2-	1	
210.61 8	$9/2^{+}$		
252.42 7	9/2-		
275.53 20	3/2-		
293.51 10	9/2-		
315.55 6	5/2+		
362.28 7	$9/2^{+}$		
413.90 11	$11/2^{+}$		
415.94 <mark>&</mark> 8	$(3/2^+)$		
419.81 7	7/2+		
450.32 10	7/2-		
491.24 7	$(5/2^+)$		
552.11 11	9/2+		
592.25 10	$(7/2^+)$		
725.86 10	$(9/2^+)$		
797.34 9	(0.10-)		
830.97 16	$(9/2^{-})$		
889.86 23	(5 0 = 7 0)		
921.38 19	(5/2, 1/2)		
1012.70 14			

¹⁶⁵Yb ε + β ⁺ decay (9.8 min) 1978Ad06,1973Ta18 (continued)

¹⁶⁵Tm Levels (continued)

E(level) [†]	J $^{\pi \ddagger}$	E(level) [†]	J ^π ‡	E(level) [†]	J ^π ‡	E(level) [†]	J ^{π‡}
1037.03 9	(7/2)	1307.73 10	$(7/2^+)$	1466.15 16		1846.56 9	(7/2)
1190.49 8		1315.00 9		1564.76 8	(7/2)	2194.9 <i>3</i>	$(5/2^-, 7/2)$
1250.75 8	$(5/2)^{-}$	1325.97 10		1581.77 7	$(7/2)^{-}$		
1280.93 14		1370.10 9		1595.2? ^{&} 3			

 † From least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

From ce-ce(t) and/or ce- γ (t) (1980AlZE), unless otherwise stated. The same values are adopted in Adopted Levels. @ Adopted T_{1/2} from $\gamma\gamma$ (t) (1978Ad06). & Level proposed by 1985Ad12.

ε, β^+ radiations

av E β : Additional information 1.

E(decay)	E(level)	$\mathrm{I}\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log <i>ft</i>	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(440 27)	2194.9		0.096 13	6.15 14	0.096 13	εK=0.7995 32; εL=0.1510 22; εM+=0.0495 7
(788 27)	1846.56		0.57 5	5.93 9	0.57 5	εK=0.8174 10; εL=0.1381 6; εM+=0.04452 27
(1040 27)	1595.2?	5.21×10^{-13}	0.018 9	7.681 27	0.018 9	av Eβ=6 20; εK=0.8223 7; εL=0.1345 4; εM+=0.04315 19
(1053 27)	1581.77	9×10 ⁻⁹ 9	2.28 14	5.59 7	2.28 14	av Eβ=10 22; εK=0.8225 6; εL=0.1344 4; εM+=0.04309 18
(1070 27)	1564.76	$1.\times 10^{-8}$ 1	0.73 5	6.10 8	0.73 5	av Eβ=25 23; εK=0.8228 6; εL=0.1342 4; εM+=0.04303 18
(1169 27)	1466.15	7.71×10^{-7}	0.113 19	6.99 +12-11	0.113 19	av Eβ=79 13; εK=0.8240 6; εL=0.13333 32; εM+=0.04268 18
(1265 27)	1370.10	4.×10 ⁻⁵ 3	0.50 6	6.42 +10-9	0.50 6	av Eβ=124 13; εK=0.8249 5; εL=0.13260 29; εM+=0.04240 16
(1309 27)	1325.97	1.2×10 ⁻⁴ 7	0.69 5	6.31 7	0.69 5	av Eβ=144 12; εK=0.8253 5; εL=0.13229 27; εM+=0.04229 15
(1320 27)	1315.00	1.6×10 ⁻⁴ 8	0.78 6	6.26 8	0.78 6	av Eβ=149 12; εK=0.8253 5; εL=0.13221 27; εM+=0.04226 15
(1327 27)	1307.73	6.5×10^{-5} 34	0.29 2	6.70 7	0.29 2	av Eβ=153 12; εK=0.8254 5; εL=0.13216 27; εM+=0.04224 15
(1354 27)	1280.93	7.1×10 ⁻⁵ 33	0.218 21	6.84 8	0.218 21	av Eβ=165 12; εK=0.8255 5; εL=0.13199 26; εM+=0.04217 15
(1384 27)	1250.75	0.0017 7	3.6 3	5.64 8	3.6 3	av Eβ=178 12; εK=0.8256 5; εL=0.13179 25; εM+=0.04210 15
(1445 [‡] 27)	1190.49	6.334×10^{-5}	<0.06994	>7.4	< 0.07	av Eβ=206 12; εK=0.8257 5; εL=0.13140 24; εM+=0.04196 14
						$I(\varepsilon + \beta^+)$: 0.02 5 from transition intensity balance.
(1598 27)	1037.03	0.0029 7	0.93 8	6.36 +8-7	0.93 8	av Eβ=273 12; εK=0.8249 7; εL=0.13038 23; εM+=0.04157 13
(1622 27)	1012.76	3.7×10 ⁻⁴ 8	0.101 11	7.34 +9-8	0.101 11	av Eβ=284 12; εK=0.8246 7; εL=0.13021 23; εM+=0.04152 13
(1714 27)	921.38	5.3×10 ⁻⁴ 11	0.083 10	7.47 9	0.084 10	av Eβ=324 12; εK=0.8229 9; εL=0.12952 24; εM+=0.04127 13
(1745 27)	889.86	9.7×10 ⁻⁴ 33	0.13 4	7.30 +20-16	0.13 4	av Eβ=338 12; εK=0.8221 10; εL=0.12925 24; εM+=0.04118 13

Continued on next page (footnotes at end of table)

		165	Yb ε + β^+ dec	ay (9.8 min) 197	8Ad06,19731	Ca18 (continued)
				ϵ, β^+ radiations (continued)	
E(decay)	E(level)	$I\beta^+$ †	$\mathrm{I}arepsilon^\dagger$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(1804 [‡] 27)	830.97					$I(\varepsilon + \beta^+)$: -0.023 15 from transition intensity
(1838 27)	797.34	3.4×10 ⁻⁴ 19	0.029 16	8.0 +4-2	0.029 16	balance. av E β =379 12; ε K=0.8191 13; ε L=0.12841 27; ε M+=0.04090 13
(1909 27)	725.86	$1.6 \times 10^{-4} 6$	0.049 17	8.92 ¹ <i>u</i> +23–18	0.049 17	av $E\beta$ =425 12; ε K=0.8177 6; ε L=0.13550 29;
(2043 27)	592.25	0.0034 6	0.131 21	7.43 +11-10	0.134 21	$\epsilon M += 0.04353 I/$ av E $\beta = 468 I2; \epsilon K = 0.8084 2I; \epsilon L = 0.1261 4;$ $\epsilon M += 0.04011 I4$
(2083 27)	552.11	6.1×10 ⁻⁴ 34	0.09 5	$8.8^{1u} + 4 - 2$	0.09 5	av $E\beta$ =500 12; ε K=0.8163 8; ε L=0.13397 27;
(2144 27)	491.24	0.0052 21	0.14 6	7.43 +26-18	0.15 6	ϵM +=0.04298 15 av E β =512 12; ϵK =0.8009 25; ϵL =0.1246 4; ϵM +=0.03964 15
(2185 27)	450.32	0.0034 7	0.083 17	7.69 +13-11	0.086 17	av Eβ=530 12; εK=0.7974 27; εL=0.1239 4; εM+=0.03943 15
(2215 [‡] 27)	419.81	< 0.005546	<0.12445	>7.5	<0.13	av E β =543 12; ε K=0.7946 28; ε L=0.1234 5; ε M+=0.03925 16
(2219 27)	415.94	0.0101 11	0.225 18	7.27 7	0.235 18	I(ε+β ⁺): 0.05 8 from transition intensity balance av Eβ=545 12; εK=0.7943 29; εL=0.1234 5; εM+=0.03923 16
(2273 [‡] 27)	362.28	$<7.69 \times 10^{-4}$	< 0.05923	>9.2 ^{1u}	< 0.06	av E β =581 12; ϵ K=0.8126 10; ϵ L=0.13221 27; ϵ M=-0.04235 14
						$I(\varepsilon + \beta^+)$: 0.02 4 from γ -transition intensity
(2319 27)	315.55	0.014 5	0.25 9	7.27 +22-16	0.26 9	balance. av E β =589 12; ε K=0.7841 33; ε L=0.1216 5; ε M+=0.03864 17
(2342 [‡] 27)	293.51					$I(\varepsilon + \beta^+)$: 0.005 23 from γ -transition intensity
(2360 27)	275.53	0.0068 13	0.104 20	7.66 +12-11	0.111 20	balance. av E β =607 12; ε K=0.780 3; ε L=0.1208 6; ε M+=0.03839 17
(2383 [‡] 27)	252.42					I($\varepsilon + \beta^+$): -0.01 15 from γ -transition intensity balance.
(2424 27)	210.61	0.0045 22	0.23 11	$8.68^{1u} + 33 - 21$	0.23 11	av $E\beta$ =645 12; ε K=0.8078 13; ε L=0.13065 29; ε M+=0.04181 14
(2453 27)	181.72	0.032 11	0.39 14	7.12 +21-16	0.42 14	av $E\beta$ =648 12; ε K=0.768 4; ε L=0.1188 6;
(2475 27)	160.46	7.5 18	88 22	4.78 +15-13	95 22	av E β =658 12; ε K=0.765 4; ε L=0.1183 6; ε M+=0.03760 19
						E(decay): measured value=2602 20 (1967Pa04). Other: 2722 50 (1968Ta05)
(2476 27)	158.93	0.08 4	0.9 5	6.76 +34-21	1.0 5	av E β =658 12; ε K=0.765 4; ε L=0.1183 6; ε M+=0.03759 19
(2477 [‡] 27)	158.20?	0.00124 20	0.054 8	9.34 +11-10	0.055 8	av Eβ=668 12; εK=0.8057 14; εL=0.13007 30; εM+=0.04161 14
(2505 27)	120 (2					log <i>ft</i> is too low for $\Delta J=2$, no $\beta^+ + \varepsilon$ transition.
(2005* 27)	129.63					$1(\varepsilon + \beta^{-})$: -0.2 / from γ -transition intensity balance.
(2555 [‡] 27)	80.36					I($\varepsilon + \beta^+$): -8 22 from γ -transition intensity balance.

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

$\gamma(^{165}\text{Tm})$

I γ normalization: From $\Sigma I(\gamma+ce)(to g.s.+11.5 \text{ level})=100\%$, and assumed no $\varepsilon+\beta^+$ feeding to levels below 158.2 keV. Note that $I(\varepsilon+\beta^+)(g.s.) < 0.6\%$ from $\log f^{4u}t>8.5$ and $I(\varepsilon+\beta^+)(to \text{ levels up to 129 keV})<8\%$ from $\log ft>5.9$.

The following γ rays with E γ (I γ relative to 100 for 80.11 γ) were reported by 1973Ta18 only: 282.5 5 (weak), 292.2 5 (0.04), 427.0 5 (0.06), 589.3 7 (weak), 675.1 *I* (0.13), 736.8 5 (0.09), 920.0 *IO* (0.04), 944.0 *IO* (0.06), 963 *I* (0.05), 976.8 *IO* (0.04), 1100.6 *IO* (0.1), 1253.2 *IO* (0.01), 1306 *I* (0.04). Placements were proposed for only the 589.3 and 1100.6 γ rays, but the corresponding levels have not been confirmed by 1978Ad06.

E _γ ‡	$I_{\gamma}^{\ddagger C}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. ^b	δ	α^{\dagger}	$I_{(\gamma+ce)}^{c}$	Comments
11.60 10		11.54	3/2+	0.0 1/2+	M1(+E2)	≤0.06	4.3×10 ² 14	1110 70	ce(L)/(γ+ce)=0.77 17; ce(M)/(γ+ce)=0.18 8 ce(N)/(γ+ce)=0.041 19; ce(O)/(γ+ce)=0.0055 24; ce(P)/(γ+ce)=2.1×10 ⁻⁴ 7 α(L)=3.3×10 ² 11; α(M)=76 26 α(N)=18 6; α(O)=2.3 7; α(P)=0.0910 27 I _(γ+ce) : from transition intensity balance. Mult.: from M1:M2:M3=≈860:≤200:≤200 (1978Ad06). δ: δ(E2/M1)≤0.3 from ce data in ¹⁶⁵ Yb decay gives B(E2)(W.u.)<20510, much higher than RUL=1000 which gives δ(E2/M1)<0.06, which is adopted here. Ice(M1)≈860, Ice(M2)≤200, Ice(M3)≤200 (1978Ad06).
(22.78 7)		181.72	5/2-	158.93 7/2+	(E1)		3.48 6	≈2	ce(L)/(γ +ce)=0.605 6; ce(M)/(γ +ce)=0.1381 26 ce(N)/(γ +ce)=0.0305 6; ce(O)/(γ +ce)=0.00337 7; ce(P)/(γ +ce)=8.44×10 ⁻⁵ 17 α (L)=2.71 4; α (M)=0.619 10 α (N)=0.1369 22; α (O)=0.01509 24; α (P)=0.000379 6 I(γ +ce)(52.10 γ +22.78 γ)≈4 (1978Ad06) based on $\gamma\gamma$ -coin data. Evaluators divide equally between the two transitions.
(29.31 5)		158.93	7/2+	129.63 5/2+	[M1+E2]		4×10 ² 4	14 5	ce(L)/(γ +ce)=0.8 5; ce(M)/(γ +ce)=0.19 23 ce(N)/(γ +ce)=0.04 6; ce(O)/(γ +ce)=0.005 6; ce(P)/(γ +ce)=9.E-6 10 α (L)=3.0×10 ² 29; α (M)=7.E1 7 α (N)=16 16; α (O)=1.9 18; α (P)=0.0036 22 I _(γ+ce) ; from $\gamma\gamma$ -coin (1978Ad06).
30.80 10	11.8 20	160.46	7/2-	129.63 5/2+	E1		1.517 25		$\alpha(L)=1.183 20; \ \alpha(M)=0.268 4$ $\alpha(N)=0.0598 10; \ \alpha(O)=0.00697 11; \ \alpha(P)=0.0001969 31$ Ice(L1)<100 (1978Ad06). $\alpha(L)\exp < 2.8 \ K/L=7 + 8-4 \ \alpha(K)\exp = 1.0.4 (1968Ta05).$
(52.10 7)		181.72	5/2-	129.63 5/2+	[E1]		0.352 5	≈2	$ce(L)/(\gamma+ce)=0.2033 \ 24; \ ce(M)/(\gamma+ce)=0.0456 \ 7 \\ ce(N)/(\gamma+ce)=0.01033 \ 15; \ ce(O)/(\gamma+ce)=0.001294 \ 19; \\ ce(P)/(\gamma+ce)=4.39\times10^{-5} \ 7$

From ENSDF

4

					¹⁶⁵ Yb	$\varepsilon + \beta^+$ decay	(9.8 min)	1978Ad06,1	973Ta18 (continued)
							γ ⁽¹⁶⁵ Tm) (continued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	J_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^b	δ	$lpha^{\dagger}$	Comments
68.86 <i>5</i>	70 4	80.36	7/2+	11.54	3/2+	E2		13.56 <i>19</i>	α(L)=0.275 4; α(M)=0.0616 9 α(N)=0.01397 20; α(O)=0.001750 25; α(P)=5.94×10-5 9 I(γ+ce)(52.10γ+22.78γ)≈4 (1978Ad06) based on γγ-coin data. Evaluators divide equally between the two transitions. α(K)=1.853 26; α(L)=8.95 13; α(M)=2.197 32 α(N)=0.498 7; α(O)=0.0571 8; α(P)=9.95×10-5 14 Mult.: from K:L1:L2:L3=≈400:≤70:770:800 (1978Ad06). Others:
80.11 2	374 20	160.46	7/2-	80.36	7/2+	E1+M2	0.14 3	1.9 6	L2/L3≈0.91 (1967Pa04), α (L)exp=7.6 20 (1968Ta05). Ice(K)≈400, Ice(L1)≤70, Ice(L2)=770, Ice(L3)=800 (1978Ad06). α (K)=1.4 4; α (L)=0.38 14; α (M)=0.090 33 α (N)=0.021 8; α (O)=0.0029 11; α (P)=1.3×10 ⁻⁴ 5
91.97 5	2.6 3	252.42	9/2-	160.46	7/2-	M1+E2		4.09 16	Mult., δ : from α (K)exp=1.42 with uncertainty of 0.50 assumed by evaluators. Others: K:L1:L2= \approx 1600:180: \approx 40 (1978Ad06). K/L \approx 5.5, α (K)exp \approx 0.88 (1967Pa04). Ice(K) \approx 1600, Ice(L1)=180, Ice(L2) \approx 40 (1978Ad06). α (K)=2.3 <i>10</i> ; α (L)=1.4 <i>9</i> ; α (M)=0.34 <i>22</i> α (N)=0.08 <i>5</i> ; α (O)=0.009 <i>5</i> ; α (P)=1.3 \times 10 ⁻⁴ <i>7</i> Mult.: M1+E2 from α (K)exp=2.01.
104.26 7	1.21 15	419.81	7/2+	315.55	5/2+	M1		2.75 4	$\begin{array}{l} \alpha(K) = 16 \ (1978 A d 06). \\ \alpha(K) \exp = 2.74 \\ \alpha(K) = 2.303 \ 33; \ \alpha(L) = 0.349 \ 5; \ \alpha(M) = 0.0778 \ 11 \\ \alpha(N) = 0.01820 \ 26; \ \alpha(O) = 0.00261 \ 4; \ \alpha(P) = 0.0001415 \ 20 \\ 10 \ (1020 \ 10) \ 10 \ (1020 \ 10) \ 10 \ (1020 \ 10) \ $
118.06 <i>5</i>	18.4 <i>10</i>	129.63	5/2+	11.54	3/2+	(M1)		1.928 27	Ice(K)=10 (19/8Ad06). α (K)=1.615 23; α (L)=0.2441 34; α (M)=0.0544 8 α (N)=0.01273 18; α (O)=0.001830 26; α (P)=9.91×10 ⁻⁵ 14 Ice(K)=45 (1978Ad06). Mult.: E2 or M1+E2 from α (K)exp=0.81; M1+E2 from level
129.59 6	3.0 5	129.63	5/2+	0.0	1/2+	(E2)		1.173 17	scheme, most fikely M1. $\alpha(K)=0.551 \ 8; \ \alpha(L)=0.477 \ 7; \ \alpha(M)=0.1161 \ 16$ $\alpha(N)=0.0264 \ 4; \ \alpha(O)=0.00311 \ 4; \ \alpha(P)=2.350\times10^{-5} \ 33$ Mult.: D or E2 from $\alpha(K)\exp\leq1.3; E2$ from ΔJ^{π} . $\log(K)\leq12 \ (1028 \ AdO)$
130.26 7	2.2 5	210.61	9/2+	80.36	7/2+	(M1+E2)	+1.00 12	1.305 27	$\alpha(K) \le 12$ (19/8Ad00). $\alpha(K) = 0.88 \ 4; \ \alpha(L) = 0.325 \ 18; \ \alpha(M) = 0.077 \ 5$ $\alpha(N) = 0.0177 \ 11; \ \alpha(O) = 0.00221 \ 11; \ \alpha(P) = 4.90 \times 10^{-5} \ 34$ Mult.: from the Adopted Gammas. Other: E2 or E1 from $\alpha(K) \exp \le 0.75$. Ice(K) <5 (1978Ad06).
132.32 10	0.80 20	552.11	9/2+	419.81	7/2+	[M1+E2]		1.24 15	$\alpha(K) = 0.84 \ 32; \ \alpha(L) = 0.31 \ 13; \ \alpha(M) = 0.073 \ 33 \ \alpha(N) = 0.017 \ 7; \ \alpha(O) = 0.0021 \ 8; \ \alpha(P) = 4.7 \times 10^{-5} \ 25$
134.60 8	0.75 15	293.51	9/2-	158.93	7/2+	(E1)		0.1520 <i>21</i>	$\alpha(K) = 0.1267 \ 18; \ \alpha(L) = 0.01973 \ 28; \ \alpha(M) = 0.00439 \ 6$ $\alpha(N) = 0.001010 \ 14; \ \alpha(O) = 0.0001363 \ 19; \ \alpha(P) = 5.89 \times 10^{-6} \ 8$

L

S

					165 Yb 8	$\approx +\beta^+$ decay	(9.8 min) 1	978Ad06,1973Ta18 (continued)
							γ ⁽¹⁶⁵ Tm) (c	continued)
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger C}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^b	$lpha^\dagger$	Comments
147.29 5	7.9 4	158.93	7/2+	11.54	3/2+	E2	0.743 10	$\alpha(K)=0.389\ 5;\ \alpha(L)=0.271\ 4;\ \alpha(M)=0.0657\ 9$ $\alpha(N)=0.01498\ 21;\ \alpha(O)=0.001781\ 25;\ \alpha(P)=1.701\times10^{-5}\ 24$ Mult.: E2 or M1+E2 from $\alpha(K)$ exp=0.46; E2 from ΔJ^{π} . Ice(K)=11 (1978Ad06).
156.51 <i>15</i>	1.05 10	315.55	5/2+	158.93	7/2+	M1	0.867 12	$\alpha(K) \exp=0.63$ $\alpha(K) = 0.727 \ 10; \ \alpha(L) = 0.1095 \ 16; \ \alpha(M) = 0.02439 \ 35$ $\alpha(N) = 0.00571 \ 8; \ \alpha(O) = 0.000821 \ 12; \ \alpha(P) = 4.45 \times 10^{-5} \ 6$ Ice(K)=2 (1978Ad06).
158.20 25	0.56 7	158.20?	$1/2^{-}$	0.0	1/2+	[E1]	0.0992 14	$\alpha(\mathbf{K}) = 0.0829 \ 12; \ \alpha(\mathbf{L}) = 0.01269 \ 19; \ \alpha(\mathbf{M}) = 0.00282 \ 4 \\ \alpha(\mathbf{N}) = 0.000651 \ 10; \ \alpha(\mathbf{O}) = 8.85 \times 10^{-5} \ 13; \ \alpha(\mathbf{P}) = 3.94 \times 10^{-6} \ 6$
170.25 5	4.45 22	181.72	5/2-	11.54	3/2+	(E1)	0.0817 11	$\alpha(K)=0.0684 \ 10; \ \alpha(L)=0.01041 \ 15; \ \alpha(M)=0.002312 \ 32 \ \alpha(N)=0.000534 \ 7; \ \alpha(O)=7.29\times10^{-5} \ 10; \ \alpha(P)=3.29\times10^{-6} \ 5 \ Mult.: E1 \ or \ (E2) \ from \ \alpha(K)exp=0.11. \ Ice(K)=1.5 \ (1978Ad06).$
185.88 6	4.45 22	315.55	5/2+	129.63	5/2+	E2	0.332 5	α (K)exp=0.19 α (K)=0.2019 28; α (L)=0.1002 14; α (M)=0.02412 34 α (N)=0.00551 8; α (O)=0.000668 9; α (P)=9.30×10 ⁻⁶ 13 Ice(K)=2.5 (1978Ad06).
203.32 7	2.81 15	362.28	9/2+	158.93	7/2+	M1	0.418 6	α (K)exp=0.35 α (K)=0.351 5; α (L)=0.0526 7; α (M)=0.01171 16 α (N)=0.00274 4; α (O)=0.000394 6; α (P)=2.142×10 ⁻⁵ 30 Ice(K)=3 (1978Ad06).
$x_{208.5}$ 5	0.17 4							
232.61 8	0.22 3 1.87 <i>10</i>	362.28	9/2+	129.63	5/2+	E2	0.1584 22	α (K)exp=0.09 α (K)=0.1061 <i>15</i> ; α (L)=0.0403 <i>6</i> ; α (M)=0.00960 <i>14</i> α (N)=0.002199 <i>31</i> ; α (O)=0.000272 <i>4</i> ; α (P)=5.15×10 ⁻⁶ <i>7</i> Lce(K)=0.5 (1978Ad06)
235.21 9	0.73 6	315.55	5/2+	80.36	7/2+	M1	0.280 4	$\alpha(K) \exp = 0.27$ $\alpha(K) = 0.2351 \ 33; \ \alpha(L) = 0.0351 \ 5; \ \alpha(M) = 0.00782 \ 11$ $\alpha(N) = 0.001830 \ 26; \ \alpha(O) = 0.000263 \ 4; \ \alpha(P) = 1.433 \times 10^{-5} \ 20$ Ice(K) = 0.6 (1978Ad06).
255.00 10	0.41 5	413.90	11/2+	158.93	7/2+	[E2]	0.1181 17	$\alpha(K)=0.0816\ 11;\ \alpha(L)=0.0281\ 4;\ \alpha(M)=0.00668\ 9$ $\alpha(N)=0.001531\ 22;\ \alpha(O)=0.0001913\ 27;\ \alpha(P)=4.05\times10^{-6}\ 6$
260.87 9	0.75 8	419.81	7/2+	158.93	7/2+	[M1,E2]	0.16 5	$\alpha(K)=0.13 5; \alpha(L)=0.0261 5; \alpha(M)=0.00600 14$ $\alpha(N)=0.001389 23; \alpha(O)=0.000187 12; \alpha(P)=7.3\times10^{-6} 35$
^x 263.89 20 275.53 20	0.16 <i>4</i> 1.2 <i>2</i>	275.53	3/2-	0.0	1/2+	E1	0.02373 33	α (K)exp<0.04

¹⁶⁵₆₉Tm₉₆-6

L

				¹⁶⁵ Y	b ε + β ⁺	decay (9.8 r	nin) 1978	Ad06,1973Ta18 (continued)
						<u>γ(</u>	¹⁶⁵ Tm) (conti	nued)
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^b	α^{\dagger}	Comments
								$\alpha(K)=0.01998\ 28;\ \alpha(L)=0.00293\ 4;\ \alpha(M)=0.000649\ 9$ $\alpha(N)=0.0001506\ 21;\ \alpha(O)=2.095\times10^{-5}\ 30;\ \alpha(P)=1.014\times10^{-6}\ 14$ $E_{\gamma},I_{\gamma}:\ total\ intensity\ of\ 275.53\ 7\ doublet=1.50\ 8.$ Ice(K) $\leq 0.2\ (1978Ad06).$
275.70 20	≈0.3	1466.15		1190.49				
286.03 [@] 15	0.24 3	415.94	(3/2+)	129.63	5/2+	[M1,E2]	0.12 4	α (K)=0.10 4; α (L)=0.0194 12; α (M)=0.00444 15 α (N)=0.00103 4; α (O)=0.000139 15; α (P)=5.7×10 ⁻⁶ 27
290.32 16	0.41 4	419.81	7/2+	129.63	5/2+	M1,E2	0.12 4	$\alpha(K)=0.09\ 4;\ \alpha(L)=0.0185\ 13;\ \alpha(M)=0.00423\ 18$ $\alpha(N)=0.00098\ 5;\ \alpha(O)=0.000133\ 15;\ \alpha(P)=5.5\times10^{-6}\ 26$ Mult.: D or E2 from $\alpha(K)\exp\leq 0.24;\ M1,E2$ from ΔJ^{π} .
304.03 6	8.3 5	315.55	5/2+	11.54	3/2+	(E2)	0.0686 10	Ice(K) \leq 0.3 (1978Ad06). α (K)=0.0498 7; α (L)=0.01453 20; α (M)=0.00342 5 α (N)=0.000787 11; α (O)=0.0001001 14; α (P)=2.56×10 ⁻⁶ 4 Mult.: E2 or M1+E2 from α (K)exp=0.064. Ice(K)=16 (1078Ad06)
312.2 3	0.31 5	725.86	(9/2+)	413.90	11/2+	[M1,E2]	0.097 33	$\alpha(K)=0.078 \ 32; \ \alpha(L)=0.0147 \ 15; \ \alpha(M)=0.00336 \ 26 \ \alpha(N)=0.00078 \ 7; \ \alpha(Q)=0.000106 \ 15; \ \alpha(P)=4.5\times10^{-6} \ 21$
314.3 <i>3</i> 320.68 <i>8</i>	0.37 <i>5</i> 1.70 <i>10</i>	1564.76 450.32	(7/2) 7/2 ⁻	1250.75 129.63	(5/2) ⁻ 5/2 ⁺	(E1)	0.0163 2	α (K)exp≤0.04 α (K)=0.01377 <i>19</i> ; α (L)=0.001999 28; α (M)=0.000443 6 α (N)=0.0001028 <i>14</i> ; α (O)=1.437×10 ⁻⁵ 20; α (P)=7.08×10 ⁻⁷ <i>10</i>
332.30 20	1.0 3	491.24	(5/2+)	158.93	7/2+	(E2)	0.0527 7	Ice(K) ≤ 0.2 (1978Ad06). α (K)=0.0390 5; α (L)=0.01055 15; α (M)=0.002475 35 α (N)=0.000569 8; α (O)=7.32×10 ⁻⁵ 10; α (P)=2.036×10 ⁻⁶ 29 Mult.: E1 or E2 from α (K)exp ≤ 0.07 ; ΔJ^{π} requires E2.
339.67 20	0.54 18	419.81	7/2+	80.36	7/2+	[M1,E2]	0.077 27	Ice(K) ≤ 0.2 (1978Ad06). α (K)=0.062 25; α (L)=0.0113 16; α (M)=0.00258 30 (R)=0.002057, α (L)=0.0113 16; α (M)=0.00258 16
361.59 10	2.00 14	491.24	(5/2+)	129.63	5/2+	[M1,E2]	0.065 23	$\alpha(N)=0.00060$ /; $\alpha(O)=8.2\times10^{-5}$ 15; $\alpha(P)=3.6\times10^{-6}$ 17 $\alpha(K)=0.053$ 22; $\alpha(L)=0.0094$ 15; $\alpha(M)=0.00213$ 30 $\alpha(N)=0.00050$ 7; $\alpha(O)=6.8\times10^{-5}$ 14; $\alpha(P)=3.1\times10^{-6}$ 14
363.6 3	0.71 10	725.86	(9/2+)	362.28	9/2+	[M1,E2]	0.064 23	$\alpha(N)=0.000507; \alpha(O)=0.8\times10714; \alpha(P)=3.1\times10714$ $\alpha(K)=0.05221; \alpha(L)=0.009215; \alpha(M)=0.0021030$ $\alpha(N)=0.000497; \alpha(O)=67\times10^{-5}14; \alpha(P)=3.0\times10^{-6}14$
x382.49 [#] 20	0 24 3							
x389.9 [#] 5	0.35 20							
391.40 8	2.3 3	1581.77	$(7/2)^{-}$	1190.49				
404.47 [@] 10	1.08 7	415.94	(3/2 ⁺)	11.54	3/2+	[M1,E2]	0.048 18	α (K)=0.039 <i>16</i> ; α (L)=0.0068 <i>14</i> ; α (M)=0.00153 <i>28</i> α (N)=0.00036 <i>7</i> ; α (O)=4.9×10 ⁻⁵ <i>11</i> ; α (P)=2.3×10 ⁻⁶ <i>10</i>
404.57 [@]	≈0.4	1595.2?		1190.49				
416.03 [@] 13	1.26 10	415.94	$(3/2^+)$	0.0	1/2+	[M1,E2]	0.044 17	α (K)=0.036 <i>15</i> ; α (L)=0.0062 <i>13</i> ; α (M)=0.00141 <i>27</i> α (N)=0.00033 <i>6</i> ; α (O)=4.6×10 ⁻⁵ <i>11</i> ; α (P)=2.1×10 ⁻⁶ <i>10</i>

 \neg

From ENSDF

¹⁶⁵Yb ε+β⁺ decay (9.8 min) 1978Ad06,1973Ta18 (continued)

γ (¹⁶⁵Tm) (continued)

${\rm E}_{\gamma}^{\ddagger}$	Ι _γ ‡ <i>с</i>	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. ^b	α^{\dagger}	Comments
422.26 25	0.29 3	552.11	9/2+	129.63 5/2+	[E2]	0.0267 4	α (K)=0.02069 29; α (L)=0.00469 7; α (M)=0.001086 15 α (N)=0.0002508 35; α (O)=3.30×10 ⁻⁵ 5; α (P)=1.119×10 ⁻⁶ 16
^x 430.8 [#] 5 433.35 10	0.13 <i>3</i> 1.44 <i>10</i>	592.25	(7/2 ⁺)	158.93 7/2+	[M1,E2]	0.040 15	α (K)=0.033 <i>13</i> ; α (L)=0.0055 <i>12</i> ; α (M)=0.00125 <i>25</i> α (N)=0.00029 <i>6</i> ; α (O)=4.1×10 ⁻⁵ <i>10</i> ; α (P)=1.9×10 ⁻⁶ <i>9</i>
^x 446.1 <i>3</i> 462.63 <i>15</i>	0.26 <i>3</i> 0.83 <i>9</i>	592.25	(7/2 ⁺)	129.63 5/2+	[M1,E2]	0.034 13	$\alpha(K)=0.028 \ 11; \ \alpha(L)=0.0046 \ 11; \ \alpha(M)=0.00104 \ 23 \ \alpha(N)=0.00024 \ 5; \ \alpha(O)=3.4\times10^{-5} \ 9; \ \alpha(P)=1.6\times10^{-6} \ 7$
479.72 7	2.68 20	491.24	(5/2+)	11.54 3/2+	[M1,E2]	0.031 12	$\alpha(K) = 0.0024 \ 5, \ \alpha(C) = 0.4410 \ \ 9, \ \alpha(I) = 1.0410 \ \ 7$ $\alpha(K) = 0.025 \ 10; \ \alpha(L) = 0.0042 \ 10; \ \alpha(M) = 0.00094 \ 21$ $\alpha(N) = 0.00022 \ 5; \ \alpha(O) = 3.1 \times 10^{-5} \ 8; \ \alpha(P) = 1.5 \times 10^{-6} \ 7$
^x 492.9 [#] 6 ^x 522.76 20	0.26 9 0.26 7						
$527.5^{d} 3$ $527.5^{d} 3$	$0.15^{d} 3$ $0.15^{d} 3$	889.86 1564.76	(7/2)	362.28 9/2 ⁺ 1037.03 (7/2)			
545.24 20	0.12 4 0.44 6	797.34		252.42 9/2-			
558.0 ^{w} 4 566.90 10	0.18 <i>6</i> 0.97 <i>8</i>	1595.2? 725.86	(9/2+)	1037.03 (7/2) 158.93 7/2 ⁺	[M1,E2]	0.020 7	$\alpha(K)=0.017$ 7; $\alpha(L)=0.0026$ 7; $\alpha(M)=5.9\times10^{-4}$ 15 $\alpha(K)=1.4\times10^{-4}$ 4; $\alpha(Q)=1.0\times10^{-5}$ 6; $\alpha(R)=1.0\times10^{-6}$ 4
578.58 <i>16</i> *597.2 <i>3</i>	0.51 <i>5</i> 0.38 <i>8</i>	830.97	(9/2-)	252.42 9/2-			$u(1) = 1.4 \times 10^{-4}, u(0) = 1.9 \times 10^{-6}, u(1) = 1.0 \times 10^{-4}$
$599.6^{@} 3$ 606.24 25	0.38 <i>8</i> 0.38 <i>6</i>	2194.9 921.38	(5/2 ⁻ ,7/2) (5/2 ⁻ ,7/2)	1595.2? 315.55 5/2 ⁺			
$x^{609.4}$ 3 $x^{613.52} 20$	0.20 6 0.36 5						
628.1 6 636.79 <i>10</i>	0.12 <i>4</i> 1.48 <i>10</i>	921.38 797.34	(5/2 ⁻ ,7/2)	293.51 9/2 ⁻ 160.46 7/2 ⁻			
644.2 <i>J</i> 3 650.0 3	0.20 <i>4</i> 0.18 <i>4</i>	1370.10 1012.76		$\begin{array}{c} 725.86 (9/2^+) \\ 362.28 9/2^+ \end{array}$)		
656.00 7 ×675.75 20	2.89 <i>16</i> 0.49 <i>6</i>	1846.56	(7/2)	1190.49			
708.1 4 722.3 5 728.8 2	0.25 8	889.80 1315.00 2104.0	(5/0- 7/0)	$\begin{array}{c} 181.72 & 5/2 \\ 592.25 & (7/2^+) \\ 1466 & 15 \end{array}$)		
739.0 <i>3</i> 744.6 <i>8</i>	0.29 8 0.43 5 0.12 6	2194.9 921.38 1037.03	(5/2, 7/2) $(5/2^{-}, 7/2)$ (7/2)	$\begin{array}{c} 1400.13 \\ 181.72 5/2^{-} \\ 293.51 9/2^{-} \end{array}$			
^x 772.61 20 784.43 10	0.51 7 1.60 <i>12</i>	1581.77	(7/2)-	797.34			
^x 796.2 4	0.26 5						

 ∞

$^{165}_{69}\mathrm{Tm}_{96}$ -8

From ENSDF

γ (¹⁶⁵Tm) (continued)

E _γ ‡	$I_{\gamma}^{\ddagger C}$	E_i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	E_{γ}^{\ddagger}	Ι _γ ‡ <i>C</i>	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
^x 820.9 <i>4</i> 826.33 <i>10</i> 831.12 <i>13</i>	0.29 <i>14</i> 1.44 <i>12</i> 0.94 9	1037.03 1012.76	(7/2)	210.61 9/2 ⁺ 181.72 5/2 ⁻	1148.56 <i>10</i> 1154.54 8 1161.78 <i>1</i> 8	1.49 <i>15</i> 3.52 <i>25</i> 0.74 <i>9</i>	1307.73 1315.00 1581.77	$(7/2^+)$ $(7/2)^-$	158.93 160.46 419.81	7/2 ⁺ 7/2 ⁻ 7/2 ⁺
838.83 20 x853.05 20 856.00 20	0.48 8 0.68 7 0.77 7	1564.76 1581.77	(7/2) $(7/2)^{-}$	725.86 (9/2 ⁺) 725.86 (9/2 ⁺)	$ \begin{array}{c} 1165.53 \ 10 \\ 1172.7^{f} \ 5 \\ 1188.40 \ 13 \end{array} $	1.90 <i>15</i> 0.28 <i>9</i> 1.05 <i>10</i>	1325.97 1466.15 1370.10		160.46 293.51 181.72	7/2 ⁻ 9/2 ⁻ 5/2 ⁻
877.0 6 878.6 ^d 5	$0.8 \ 4$ $1.0^{d} \ 4$	1037.03 889.86	(7/2)	160.46 $7/2^{-1}$ 11.54 $3/2^{+1}$	x1193.47 <i>15</i> 1202.54 <i>14</i>	0.60 <i>15</i> 0.97 <i>10</i>	1564.76	(7/2)	362.28	9/2+ 7/2-
878.6 ^a 5 892.9 ^f 6 895.21 20	1.04 <i>4</i> 0.44 <i>20</i> 1.06 <i>25</i>	1370.10 1307.73 1315.00	$(7/2^+)$	$\begin{array}{r} 491.24 \\ 413.90 \\ 11/2^+ \\ 419.81 \\ 7/2^+ \end{array}$	^{1209.4} 5 ^x 1212.3 5 1219.41 8	0.52 20 0.63 20 3.9 3	1370.10	(7/2)-	362.28	9/2 ⁺
906.10 <i>17</i> 935.17 8 937 96 25	0.50 20 3.21 20 0.71 8	1325.97 1250.75 1190.49	(5/2)-	419.81 7/2 ⁺ 315.55 5/2 ⁺ 252.42 9/2 ⁻	$x1229.3^{\#} 8$ 1239.56 ^f 9 1249 5 10	0.18 <i>10</i> 2.28 <i>15</i> 0.29 <i>15</i>	1250.75 1564 76	$(5/2)^{-}$	11.54	$3/2^+$ $5/2^+$
x946.8 7 956.68 7	0.21 <i>10</i> 8.3 <i>5</i> 0.70 <i>10</i>	1037.03	(7/2)	80.36 7/2+	$\begin{array}{c} 1269.87^{f} \\ 1269.87^{f} \\ 1282.65 \\ 1282.65 \\ 1282.65 \\ 1$	1.66 <i>12</i> 1.14 <i>11</i>	1581.77 1280.93	$(7/2)^{-}$	315.55 11.54	5/2 ⁺ 3/2 ⁺
^x 973.10 [#] 22 990.0 3	0.43 <i>10</i> 0.61 <i>14</i>	1581.77	(7/2)-	592.25 (7/2+)	$\begin{array}{c} 1282.03 \ 12 \\ 1289.65 \ 12 \\ 1294.5^{f} \ 5 \end{array}$	1.22 10 1.22 10 0.59 20	1370.10 1846.56	(7/2)	80.36 552.11	7/2 ⁺ 9/2 ⁺
998.38 8 999.46 10	≈1.0 ≈3.9	1250.75 1315.00	(5/2)-	252.42 9/2 ⁻ 315.55 5/2 ⁺	^x 1296.81 20 1296.81 ^f	1.68 20	1307.73	$(7/2^+)$	11.54	3/2+
$1009.3^{d} 8$ $1009.3^{d} 8$ 1012.4 4 $1015.7^{d} 3$	$\begin{array}{c} 0.18^{d} \ 9 \\ 0.18^{d} \ 9 \\ 0.47 \ 15 \\ 0.77^{d} \ 15 \end{array}$	1190.49 1325.97 1564.76 1466.15	(7/2)	181.72 5/2 315.55 5/2 ⁺ 552.11 9/2 ⁺ 450.32 7/2 ⁻	$x_{1308.75}$ 1312.12 <i>11</i> 1329.36 8 $x_{1339.9}$ 5	0.36 7 1.08 8 2.82 20 0.14 7	1564.76 1581.77	(7/2) $(7/2)^{-}$	252.42 252.42	9/2 ⁻ 9/2 ⁻
$1015.7^{d} 3$ 1030.05 7 1032 3 f 8	0.77^{d} 15 5.2 3 0.29 15	1846.56 1190.49 1325.97	(7/2)	830.97 (9/2 ⁻) 160.46 7/2 ⁻ 293.51 9/2 ⁻	x1351.9 3 x1356.05 25 x1367 57 12	0.23 <i>4</i> 0.32 <i>4</i> 1.13 <i>1</i> 0				
$1032.3^{e} \ 0$ $1073.54^{e} \ 10$ $1073.56^{e} \ 13$ $1090.28^{a} \ 8$ $1000.54^{e} \ 0$	$\approx 2.4^{e}$ ≈4.8 ^e 33.9 20	1325.97 1564.76 1325.97 1250.75	(7/2) $(5/2)^{-}$ $(7/2)^{-}$	$\begin{array}{c} 293.51 & 9/2 \\ 491.24 & (5/2^+) \\ 252.42 & 9/2^- \\ 160.46 & 7/2^- \\ 401.24 & (5/2^+) \end{array}$	1307.57 12 1371.33 12 1386.0 4 x1390.47 14	1.12 <i>10</i> 1.12 <i>10</i> 0.20 <i>5</i> 0.71 <i>8</i>	1581.77 1466.15	(7/2)-	210.61 80.36	9/2+ 7/2+
1090.34 9 1117.74 <i>10</i> 1122.00 <i>12</i> 1126.34 <i>12</i> 1145.3 <i>3</i>	~ 0.7 1.55 15 1.28 15 1.25 15 0.84 12	1370.10 1280.93 1307.73 1564.76	$(7/2^+)$ $(7/2^+)$	491.24 (5/2*) 252.42 9/2 ⁻ 158.93 7/2 ⁺ 181.72 5/2 ⁻ 419.81 7/2 ⁺	1401.41 <i>10</i> 1404.7 <i>3</i> 1421.35 <i>10</i> 1426.91 <i>12</i> 1435.28 <i>16</i>	0.08 8 0.30 5 2.46 15 0.95 12 0.81 12	1564.76 1581.77 1846.56 1564.76	(7/2) $(7/2)^{-}$ (7/2) (7/2)	160.46 160.46 419.81 129.63	7/2 ⁻ 7/2 ⁻ 7/2 ⁺ 5/2 ⁺
					1					

γ (¹⁶⁵Tm) (continued)

E_{γ}^{\ddagger}	Ι _γ ‡ <i>c</i>	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	E_{γ} ‡	$I_{\gamma}^{\ddagger c}$	E_i (level)	J_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
1452.06 11	2.20 15	1581.77	$(7/2)^{-}$	129.63	$5/2^{+}$	^x 1802.8 8	0.20 5				
1501.31 8	4.5 <i>3</i>	1581.77	$(7/2)^{-}$	80.36	$7/2^{+}$	^x 1827.0 15	0.15 7				
1531.10 17	0.65 7	1846.56	(7/2)	315.55	$5/2^{+}$	^x 1881.0 10	0.15 6				
1686.0 4	0.47 8	1846.56	(7/2)	160.46	7/2-	x1916.5 10	0.25 10				
^x 1709.0 ^{&} 4	0.28 6					1942.6 10	0.40 6	2194.9	$(5/2^-, 7/2)$	252.42	9/2-
^x 1726.1 4	0.32 6					^x 1957.4 10	0.44 6				
^x 1784.8 5	0.29 7					^x 1978.0 15	0.20 8				
^x 1788.9 5	0.37 7					^x 2204.5 15	0.20 8				

[†] Additional information 2.

10

[‡] From 1978Ad06. [#] Assignment to ¹⁶⁵Yb decay is uncertain.

[@] Placement from 1985Ad12.
[&] Placement proposed by 1978Ad06 is excluded by 1985Ad12.

^{*a*} 1090.28+1090.54 are unresolved.

^b From ce data. The $\alpha(K)$ exp were normalized to $\alpha(K)(68.86\gamma)=1.89$ for E2. Electron intensities given by 1978Ad06 for 21 transitions are normalized to γ -ray intensities and assuming that 68.86y is pure E2 from L-subshell ratios measured by 1978Ad06.

^c For absolute intensity per 100 decays, multiply by 0.090 5.

^d Multiply placed with undivided intensity.

^e Multiply placed with intensity suitably divided.

^f Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

$^{165}\mathbf{Yb}\ \varepsilon$ decay (9.8 min) 1978Ad06,1973Ta18

11

¹⁶⁵Yb ε decay (9.8 min) 1978Ad06,1973Ta18

¹⁶⁵Yb ε decay (9.8 min) 1978Ad06,1973Ta18

¹⁶⁵₆₉Tm₉₆

¹⁶⁵Yb ε decay (9.8 min) 1978Ad06,1973Ta18

Decay Scheme (continued)

