¹⁶⁴Er(α ,t) **1974Ch44**

History						
Type	Author	Citation	Literature Cutoff Da			
Full Evaluation	Balraj Singh and Jun Chen	NDS 194,460 (2024)	31-Oct-2022			

1974Ch44 (also 1975Bu02): E(α)=27 MeV. Measured E(t), σ(θ) at 30° and 60° using 67.19% enriched targets, with thicknesses of 25 to 45 μg/cm² evaporated on 50 μg/cm² carbon backings. Tritons analyzed by Enge split-pole magnetic spectrograph and tracks recorded on photographic emulsion plates at McMaster University FN Tandem van de Graaff generator. FWHM=16-18 keV. Uncertainty in measured cross sections was ≈25%. DWBA analysis. The reaction Q value was measured by 1975Bu02.

$^{165}\mathrm{Tm}$ Levels

 $[d\sigma/d\Omega(^3\text{He,d})(50^\circ)]/[d\sigma/d\Omega(\alpha,t)(60^\circ)]$ ratios are listed under comments.

E(level)	Jπ&	L [‡]	NSF [†]	Comments
0^a	1/2+	[0]	0.63	NSF: for doublet 0+12 levels with L=0+2. $d\sigma/d\Omega$ (for g.s.+12 level)=52.1 μ b/sr (60°). $[d\sigma/d\Omega(^3\text{He,d}) \text{ at } 50^\circ]/[d\sigma/d\Omega(\alpha,t) \text{ at } 60^\circ]=3.9 \text{ for } 0+12 \text{ levels.}$
12 a 2	3/2+	[2]		See comments for g.s. for cross sections.
81 ^c 2	7/2+	[4]	0.83	$d\sigma/d\Omega = 10.0 \ \mu b/sr \ (30^{\circ}), \ 12.5 \ \mu b/sr \ (60^{\circ}).$
				$[d\sigma/d\Omega(^{3}He,d) \text{ at } 50^{\circ}]/[d\sigma/d\Omega(\alpha,t) \text{ at } 60^{\circ}]=1.1.$
130 ^a 2	5/2+	[2]	0.42	$d\sigma/d\Omega = 3.0 \ \mu b/sr (30^{\circ}), 9.1 \ \mu b/sr (60^{\circ}).$
				$[d\sigma/d\Omega(^3\text{He,d}) \text{ at } 50^\circ]/[d\sigma/d\Omega(\alpha,t) \text{ at } 60^\circ]=5.3.$
160 ^{#e} 2	7/2+&1/2-&7/2-	[4+1+3]	0.35,0.21	NSF: 0.35 and 0.21 if the total measured cross section of the triplet is assigned to the $7/2^+$ member of $1/2[411]$ band and the $1/2^-$ member of the $1/2[541]$ band, respectively. $d\sigma/d\Omega=3.2~\mu b/sr~(30^\circ),~5.2~\mu b/sr~(60^\circ).$ $[d\sigma/d\Omega(^3He,d)$ at $50^\circ]/[d\sigma/d\Omega(\alpha,t)$ at $60^\circ]=5.2$.
182 ^d 2	5/2-	[3]	0.33	$d\sigma/d\Omega = 6.6 \ \mu b/sr \ (30^{\circ}), \ 9.4 \ \mu b/sr \ (60^{\circ}).$
	,			$[d\sigma/d\Omega(^{3}He,d) \text{ at } 50^{\circ}]/[d\sigma/d\Omega(\alpha,t) \text{ at } 60^{\circ}]=4.6.$
277 <mark>d</mark> 2	3/2-	[1]	0.16	$d\sigma/d\Omega = 3.0 \ \mu b/sr \ (30^{\circ}), \ 3.7 \ \mu b/sr \ (60^{\circ}).$
	,			$[d\sigma/d\Omega(^3\text{He,d}) \text{ at } 50^\circ]/[d\sigma/d\Omega(\alpha,t) \text{ at } 60^\circ]=12.8.$
293 <mark>d</mark> 2	9/2-	[5]	0.73	$d\sigma/d\Omega = 10.5 \ \mu b/sr \ (30^{\circ}), \ 11.1 \ \mu b/sr \ (60^{\circ}).$
	- /	E- 3		$[d\sigma/d\Omega(^3\text{He,d}) \text{ at } 50^\circ]/[d\sigma/d\Omega(\alpha,t) \text{ at } 60^\circ]=1.2.$
316 <mark>b</mark> 2	5/2+	[2]	1.25	$d\sigma/d\Omega = 10.1 \ \mu \text{b/sr} (30^\circ), 23.0 \ \mu \text{b/sr} (60^\circ).$
	-7-	[-]		$[d\sigma/d\Omega(^3\text{He,d}) \text{ at } 50^\circ]/[d\sigma/d\Omega(\alpha,t) \text{ at } 60^\circ]=6.7.$
369 [#] e 2	9/2+&11/2-	[4+5]	0.02,1.02	$d\sigma/d\Omega = 15.9 \ \mu b/sr (30^{\circ}), \ 20.3 \ \mu b/sr (60^{\circ}).$
	71- 27-1-	[]		$[d\sigma/d\Omega(^3\text{He,d}) \text{ at } 50^\circ]/[d\sigma/d\Omega(\alpha,t) \text{ at } 60^\circ]=1.5.$
451 ^d 2	7/2-	[3]	0.29	$d\sigma/d\Omega = 3.0 \ \mu b/sr (30^{\circ}), 7.7 \ \mu b/sr (60^{\circ}).$
131 2	7/2	[2]	0.25	$[d\sigma/d\Omega(^3\text{He,d}) \text{ at } 50^\circ]/[d\sigma/d\Omega(\alpha,t) \text{ at } 60^\circ]=2.6.$
≈491		(2) [@]		$d\sigma/d\Omega \approx 2 \mu b/sr (30^\circ)$, $\approx 3 \mu b/sr (60^\circ)$.
~471		(2)		$[d\sigma/d\Omega(^3\text{He,d}) \text{ at } 50^\circ]/[d\sigma/d\Omega(\alpha,t) \text{ at } 60^\circ] \approx 7.$
688 2		(2) [@]		$d\sigma/d\Omega = 2.0 \ \mu b/sr (30^\circ), 2.1 \ \mu b/sr (60^\circ).$
088 2		(2)		$[d\sigma/d\Omega(^3\text{He,d}) \text{ at } 50^\circ]/[d\sigma/d\Omega(\alpha,t) \text{ at } 60^\circ]=11.9.$
≈917	(1/2+)	(0) [@]		$d\sigma/d\Omega \approx 1 \mu b/sr (30^\circ), \approx 1 \mu b/sr (60^\circ).$
~917	(1/2)	(0)		$[d\sigma/d\Omega(^3\text{He,d}) \text{ at } 50^\circ]/[d\sigma/d\Omega(\alpha,t) \text{ at } 60^\circ]\approx 66.$
969 ^f 2	11/2-	[5]	0.00	$d\sigma/d\Omega = 5.6 \ \mu \text{b/sr} \ (30^\circ), \ 10.7 \ \mu \text{b/sr} \ (60^\circ).$
909 2	11/2-	[5]	0.88	$d\sigma/d\Omega = 5.0 \ \mu \text{b/sr} (50), \ 10.7 \ \mu \text{b/sr} (60).$ [$d\sigma/d\Omega(^3\text{He,d}) \ \text{at} \ 50^\circ$]/[$d\sigma/d\Omega(\alpha,t) \ \text{at} \ 60^\circ$]=3.0.
1220	(1/2+)	(0) [@]		
≈1338	$(1/2^+)$	(0)		$d\sigma/d\Omega < 1 \mu b/sr (30^{\circ} \text{ and } 60^{\circ}).$ [$d\sigma/d\Omega(^{3}\text{He,d}) \text{ at } 50^{\circ}]/[d\sigma/d\Omega(\alpha,t) \text{ at } 60^{\circ}] > 72.5.$
				[uv/usz(11c,u) at 3v]/[uv/usz(u,t) at 0v] > 12.3.

 $^{^{\}dagger} \ NSF = Nuclear \ Structure \ Factor = [d\sigma/d\Omega(exp)]/[2N((d\sigma/d\Omega)(DWBA))], \ N = 23. \ Theoretically \ NSF = [\Sigma_i C^i_{il} a_i V_i]^2, where \ Theoretically \ NSF = [\Sigma_i C^i_{il} a_i V_i]^2$

¹⁶⁴Er(α ,t) **1974Ch44** (continued)

¹⁶⁵Tm Levels (continued)

 C^{i}_{jl} = coefficients to describe Nilsson orbitals in terms of spherical states, a_{i} = Coriolis mixing amplitudes of states with same spin,

 V_i =fullness factors for the target. The Nuclear Structure Factors are listed under comments; for calculated values, see tables 6 and 7 (listing all experimental data and relevant calculations) of 1974Ch44.

- [‡] Assumed values consistent with J^{π} assignments from "fingerprint method". The (${}^{3}\text{He,d}$)/(α ,t) cross section ratios are generally consistent with these L-transfer assignments.
- # Complex line.
- [@] From $[d\sigma/d\Omega(^3\text{He,d}) \text{ at } 50^\circ]/[d\sigma/d\Omega(\alpha,t) \text{ at } 60^\circ].$
- & The 'fingerprint' method was used to make band assignments. According to this method, the rotational band members based on each single particle state are predicted to exhibit a unique set of cross-sections, characteristic of Nilsson coefficients (C_{jl}) for the state. All the assignments are consistent with those in the Adopted Levels.
- ^a Band(A): $\pi 1/2[411]$ band.
- ^b Band(B): $\pi 5/2[402]$ band.
- ^c Band(C): $\pi 7/2[404]$ band.
- ^d Band(D): $\pi 1/2[541]$ band.
- ^e Band(E): $\pi 7/2[523]$ band.
- ^f Band(F): $\pi 9/2[514]$ band.

164 Er(α ,t) 1974Ch44

Band(D): $\pi 1/2[541]$ band

Band(A): $\pi 1/2[411]$ band Band(E): π 7/2[523] band

9/2+&11/2- 369 9/2+&11/2- 369

Band(B): $\pi 5/2[402]$ band

5/2⁺ 316

> 9/2-293 3/2-277

5/2-

182

 $7/2^+ & 1/2^- & 7/2^ 7/2^+ & 1/2^- & 7/2^-$ 160 7/2+&1/2-&7/2-160 160

 $5/2^{+}$ 130

Band(C): π7/2[404] band

7/2⁺ **81**

 $3/2^{+}$ 12 1/2+

 $^{165}_{69}\mathrm{Tm}_{96}$

$\frac{164}{\text{Er}(\alpha, t)} \qquad \textbf{1974Ch44 (continued)}$

Band(F): π 9/2[514] band

11/2 969

 $^{165}_{69}\mathrm{Tm}_{96}$