¹⁶⁴Er(³He,d) 1974Ch44

History

THIS COLY						
Type	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh and Jun Chen	NDS 194,460 (2024)	31-Oct-2022			

1974Ch44 (also 1975Bu02): E(³He)=24 MeV. Measured E(t), σ(θ) at 50° and 70° using 67.19% enriched targets, with thicknesses of 25 to 45 μg/cm² evaporated on 50 μg/cm² carbon backings. Deuterons were analyzed by Enge split-pole magnetic spectrograph and tracks recorded on photographic emulsion plates at McMaster University FN Tandem van de Graaff generator. FWHM=16-18 keV. Uncertainty in measured cross sections was ≈25%. DWBA analysis. The reaction Q value was measured by 1975Bu02.

$^{165}\mathrm{Tm}$ Levels

See (α,t) dataset for $[d\sigma/d\Omega(^3\text{He,d})(50^\circ)]/[d\sigma/d\Omega(\alpha,t)(60^\circ)]$ ratios.

E(level)	Jπ&	t	Nuclear Structure Factor [‡]	Comments
0 ^a	1/2+	[0]		$d\sigma/d\Omega$ (for g.s.+12 level)=52.1 μb/sr (50°), 26.2 μb/sr (70°).
12 ^a 2	3/2+	[2]	0.48	Nuclear Structure Factor: for doublet $0+12$ levels with $L=[0+2]$.
				$d\sigma/d\Omega$ (for g.s.+12 level)=52.1 μb/sr (50°), 26.2 μb/sr (70°).
81 ^c 2	7/2+	[4]	0.62	$d\sigma/d\Omega = 14.0 \ \mu b/sr \ (50^{\circ}), \ 12.4 \ \mu b/sr \ (70^{\circ}).$
130 ^a 2	5/2+	[2]	0.38	$d\sigma/d\Omega = 48.5 \ \mu b/sr \ (50^{\circ}), \ 26.6 \ \mu b/sr \ (70^{\circ}).$
161 [#] e 2	7/2+&1/2-&7/2-	[4+1+3]	1.19,0.11	$d\sigma/d\Omega = 27.2 \ \mu b/sr \ (50^{\circ}), \ 20.2 \ \mu b/sr \ (70^{\circ}).$
				Nuclear Structure Factor: 1.19 and 0.11 if the total measured cross section of the triplet is assigned to the 7/2 ⁺ member of 1/2[411] band and the 1/2 ⁻ member of the 1/2[541] band, respectively.
183 ^d 2	5/2-	[3]	0.47	$d\sigma/d\Omega = 43.1 \ \mu b/sr \ (50^{\circ}), \ 18.2 \ \mu b/sr \ (70^{\circ}).$
277 ^d 2	3/2-	[1]	0.17	$d\sigma/d\Omega = 47.4 \ \mu b/sr \ (50^{\circ}), \ 15.4 \ \mu b/sr \ (70^{\circ}).$
294 <mark>d</mark> 2	9/2-	[5]	0.94	$d\sigma/d\Omega = 13.2 \ \mu b/sr \ (50^{\circ}), \ 8.0 \ \mu b/sr \ (70^{\circ}).$
317 ^b 2	5/2+	[2]	1.14	$d\sigma/d\Omega = 153.6 \ \mu b/sr \ (50^{\circ}), 62.3 \ \mu b/sr \ (70^{\circ}).$
370 ^{#e} 2	9/2+&11/2-	[4+5]	0.03,1.52	$d\sigma/d\Omega = 30.1 \ \mu b/sr \ (50^{\circ}), \ 19.8 \ \mu b/sr \ (70^{\circ}).$
452 ^d 2	7/2-	[3]	0.17	$d\sigma/d\Omega = 19.7 \ \mu b/sr \ (50^{\circ}), \ 12.3 \ \mu b/sr \ (70^{\circ}).$
≈491		$(2)^{@}$	0.15	$d\sigma/d\Omega \approx 20 \ \mu b/sr \ (50^\circ), \approx 17 \ \mu b/sr \ (70^\circ).$
688 2		$(2)^{@}$	0.15	$d\sigma/d\Omega = 25.0 \ \mu b/sr \ (50^{\circ}), \ 14.7 \ \mu b/sr \ (70^{\circ}).$
917 2	$(1/2^+)$	$(0)^{\textcircled{0}}$		$d\sigma/d\Omega = 66.2 \ \mu b/sr \ (50^{\circ}), \ 39.4 \ \mu b/sr \ (70^{\circ}).$
970 ^f 2	11/2-	[5]	1.50	$d\sigma/d\Omega = 32.0 \ \mu b/sr \ (50^{\circ}), \ 26.3 \ \mu b/sr \ (70^{\circ}).$
1338 2	$(1/2^+)$	$(0)^{@}$		$d\sigma/d\Omega$ =72.5 μ b/sr (50°), 39.9 μ b/sr (70°).

[†] Assumed values consistent with J^{π} assignments from 'fingerprint method'. The (3 He,d)/(α ,t) cross section ratios are generally consistent with these L-transfer assignments.

 $^{^{\}ddagger}$ NSF=Nuclear Structure Factor=[d σ /d Ω (exp)]/[2N((d σ /d Ω)(DWBA))], N=23. Theoretically NSF=[$\Sigma_i C^i_{jl} a_i V_i$]²,where C^i_{jl} =coefficients to describe Nilsson orbitals in terms of spherical states, a_i =Coriolis mixing amplitudes of states with same spin, V_i =fullness factors for the target. The Nuclear Structure Factors are listed under comments; for calculated values, see tables 6 and 7 (listing all experimental data and relevant calculations) of 1974Ch44.

[#] Complex line.

[@] From $[d\sigma/d\Omega(^3\text{He,d}) \text{ at } 50^\circ]/[d\sigma/d\Omega(\alpha,t) \text{ at } 60^\circ].$

[&]amp; The 'fingerprint' method was used to make band assignments. According to this method, the rotational band members based on each single particle state are predicted to exhibit a unique set of cross-sections, characteristic of Nilsson coefficients (C_{jl}) for the state. All the assignments are consistent with those in the Adopted Levels.

¹⁶⁴Er(³He,d) 1974Ch44 (continued)

¹⁶⁵Tm Levels (continued)

- ^a Band(A): π1/2[411] band.
 ^b Band(B): π5/2[402] band.
 ^c Band(C): π7/2[404] band.
 ^d Band(D): π1/2[541] band.
 ^e Band(E): π7/2[523] band.
 ^f Band(F): π9/2[514] band.

¹⁶⁴ Er(³ He.d)	1974Ch44
rr(ne.a)	19/4CII44

Band(D): π1/2[541] band

7/2 452

 $Band(A): \pi 1/2[411] \ band \\ Band(E): \pi 7/2[523] \ band$

 $9/2^{+} & 11/2^{-}$ 370 $9/2^{+} & 11/2^{-}$ 370

Band(B): $\pi 5/2[402]$ band

5/2⁺ 317

9/2- 294

3/2 277

5/2- 183

 $\frac{7/2^{+} \& 1/2^{-} \& 7/2^{-}}{161} \qquad \frac{7/2^{+} \& 1/2^{-} \& 7/2^{-}}{161} \qquad \frac{7/2^{+} \& 1/2^{-} \& 7/2^{-}}{161} \qquad \frac{7/2^{+} \& 1/2^{-} \& 7/2^{-}}{161} \qquad \frac{7}{2} + \frac{1}{2} + \frac{$

Band(C): π7/2[404] band

7/2⁺ 81

 3/2+
 12

 1/2+
 0

130

5/2⁺

 $^{165}_{69}\mathrm{Tm}_{96}$

¹⁶⁴Er(³He,d) **1974Ch44** (continued)

Band(F): π9/2[514] band

11/2 970

 $^{165}_{69}\mathrm{Tm}_{96}$