Adopted Levels, Gammas

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh and Jun Chen	NDS 194,460 (2024)	31-Oct-2022			

 $Q(\beta^{-}) = -6987\ 29$; $S(n) = 10640\ 30$; $S(p) = 1318\ 20$; $Q(\alpha) = 4290\ 30$ 2021Wa16 Q(\varepsilon)=5790 30, Q(\varepsilonp)=1510 30, S(2n)=19460 40, S(2p)=5630 30 (2021Wa16).

¹⁶⁵Ta isotope produced and identified by 1982Li17 in reaction Lu(³He,xn) at 280 MeV; and by 1982Br15 in ¹⁵¹Eu(²⁰Ne,6n) at 154-156 MeV. ¹⁶⁵Ta is also the daughter product of ¹⁶⁹Re α decay (1978Ca11,1982De11,1984Sc06,1992Me10).

Additional information 1.

¹⁶⁵Ta Levels

Cross Reference (XREF) Flags

 165 W ε decay (5.1 s) A

¹⁶⁹Re α decay (8.1 s) В

¹⁶⁹Re α decay (15.1 s) ¹⁴²Nd(²⁷Al,4nγ), С

D

E(level) [†]	$J^{\pi \#}$	T _{1/2}	XREF	Comments		
0.0 [@]	$(9/2^{-})$	31.0 s 15	CD	$\%\varepsilon + \%\beta^+ = 100$		
				E(level): assumed as the g.s. From α decay of low-spin isomer of ¹⁶⁹ Re, there is the possibility of existence of a low-lying low-spin state with $J^{\pi} = (1/2^+, 3/2^+)$ as suggested by 2004GoZZ.		
				J^{π} : proposed by 2001Ro01 in (²⁷ Al,4n γ), based on systematics of yrast states in neighboring odd-A Ta isotopes and theoretical calculations.		
				$T_{1/2}$: from ¹⁶⁵ Ta decay (1982Li17). Other: 35 s 10 (1982Br15).		
25?‡ 18			В			
70.60 24	$(11/2^{-})$		D			
200? [‡] 18			В			
297.30 [@] 24	$(13/2^{-})$		D			
470.1 ^{&} 3	$(15/2^{-})$		D			
793.9 [@] 3	$(17/2^{-})$		D			
997.9 ^{&} 4	$(19/2^{-})$		D			
1399.2 [@] 4	$(21/2^{-})$		D			
1618.4 ^{&} 4	$(23/2^{-})$		D			
2071.0 [@] 5	$(25/2^{-})$		D			
2294.8 <mark>&</mark> 5	$(27/2^{-})$		D			
2655.7 [@] 5	$(29/2^{-})$		D			
2790.5 ^{&} 5	$(31/2^{-})$		D			
2974.3 [@] 6	$(33/2^{-})$		D			
3174.5 <mark>&</mark> 6	$(35/2^{-})$		D			
3412.8 [@] 6	$(37/2^{-})$		D			
3683.0 ^{&} 6	$(39/2^{-})$		D			
3969.8 [@] 6	$(41/2^{-})$		D			
4291.7 <mark>&</mark> 6	$(43/2^{-})$		D			
4622.2 [@] 7	$(45/2^{-})$		D			
4983.1 ^{&} 7	$(47/2^{-})$		D			
5355.5 [@] 7	$(49/2^{-})$		D			

¹⁶⁵Ta Levels (continued)

E(level) [†]	J ^{π#}	XREF	
5752.5 ^{&} 7	(51/2-)	D	
6168.2 [@] 8	$(53/2^{-})$	D	

- [†] From a least-squares fit to $E\gamma$ data. [‡] Tentative level from ¹⁶⁹Re α decay (8.1 s). [#] As proposed by 2001Ro01 in ¹⁴²Nd(²⁷Al,4n γ), based on $\gamma\gamma(\theta)$ (DCO) data and band assignments.

[@] Band(A): $\pi 9/2[514]$, $\alpha = +1/2$. The alignment of the first pair of $i_{13/2}$ neutrons occurs at $\hbar\omega \approx 0.25$ MeV between spins 29/2 and 33/2. A=14.3.

& Band(a): $\pi 9/2[514]$, $\alpha = -1/2$. The alignment of the first pair of $i_{13/2}$ neutrons occurs at $\hbar\omega \approx 0.25$ MeV between spins 27/2 and 31/2. A=14.5.

 $\gamma(^{165}\text{Ta})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]
70.60	$(11/2^{-})$	70.6.3	100	0.0	$(9/2^{-})$	
297.30	$(13/2^{-})$	22673	100 14	70.60	$(11/2^{-})$	M1
271.00	(10/2)	297.3.3	12.5	0.0	$(9/2^{-})$	1,11
470.1	$(15/2^{-})$	172.8.3	70 13	297.30	$(13/2^{-})$	M1
	(10/=)	399.5 3	100 20	70.60	$(11/2^{-})$	(E2)
793.9	$(17/2^{-})$	323.8 3	100 24	470.1	$(15/2^{-})$	M1
		496.6 3	58 6	297.30	$(13/2^{-})$	E2
997.9	$(19/2^{-})$	204.0 3	23 <i>3</i>	793.9	$(17/2^{-})$	D
		527.8 <i>3</i>	100 <i>3</i>	470.1	$(15/2^{-})$	E2
1399.2	$(21/2^{-})$	401.3 3	100 22	997.9	$(19/2^{-})$	(M1)
		605.3 <i>3</i>	90 21	793.9	$(17/2^{-})$	· /
1618.4	$(23/2^{-})$	219.2 3	11.2 11	1399.2	$(21/2^{-})$	D
		620.5 <i>3</i>	100 <i>3</i>	997.9	$(19/2^{-})$	E2
2071.0	$(25/2^{-})$	452.5 <i>3</i>	100 14	1618.4	$(23/2^{-})$	M1
		671.7 <i>3</i>	88 28	1399.2	$(21/2^{-})$	
2294.8	$(27/2^{-})$	224.0 <i>3</i>	15.7 14	2071.0	$(25/2^{-})$	
		676.5 <i>3</i>	100 13	1618.4	$(23/2^{-})$	E2
2655.7	$(29/2^{-})$	361.0 <i>3</i>	100 24	2294.8	$(27/2^{-})$	M1
		584.5 <i>3</i>	88 12	2071.0	$(25/2^{-})$	E2
2790.5	$(31/2^{-})$	134.5 <i>3</i>	72 6	2655.7	$(29/2^{-})$	D
		496.0 <i>3</i>	100 9	2294.8	$(27/2^{-})$	E2
2974.3	$(33/2^{-})$	183.8 <i>3</i>	100 8	2790.5	$(31/2^{-})$	M1
		319 [#] 1	≤4	2655.7	$(29/2^{-})$	
3174.5	$(35/2^{-})$	200.2 3	100 7	2974.3	$(33/2^{-})$	M1
		384.0 <i>3</i>	29 5	2790.5	$(31/2^{-})$	
3412.8	$(37/2^{-})$	238.4 <i>3</i>	100 <i>3</i>	3174.5	$(35/2^{-})$	M1
		438.4 <i>3</i>	55 11	2974.3	$(33/2^{-})$	(E2)
3683.0	$(39/2^{-})$	270.3 <i>3</i>	100 7	3412.8	$(37/2^{-})$	M1
		508.4 <i>3</i>	62 22	3174.5	$(35/2^{-})$	(E2)
3969.8	$(41/2^{-})$	286.7 <i>3</i>	100 40	3683.0	$(39/2^{-})$	M1
		557.0 <i>3</i>	82 11	3412.8	$(37/2^{-})$	E2
4291.7	$(43/2^{-})$	322.1 <i>3</i>	100.0 21	3969.8	$(41/2^{-})$	M1
		608.8 <i>3</i>	72 15	3683.0	$(39/2^{-})$	
4622.2	$(45/2^{-})$	330.3 <i>3</i>	100 6	4291.7	$(43/2^{-})$	M1
		652.3 <i>3</i>	100 14	3969.8	$(41/2^{-})$	E2
4983.1	$(47/2^{-})$	360.5 3	100 21	4622.2	$(45/2^{-})$	M1
		691.8 <i>3</i>	53 21	4291.7	$(43/2^{-})$	(E2)
5355.5	$(49/2^{-})$	372.4 <i>3</i>	100 10	4983.1	$(47/2^{-})$	

Continued on next page (footnotes at end of table)

2

Adopted Levels, Gammas (continued)

γ ⁽¹⁰⁵ Ta) (continued

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]
5355.5	$(49/2^{-})$	733.2 <i>3</i>	65 15	4622.2	$(45/2^{-})$	Q
5752.5	$(51/2^{-})$	769.4 <i>3</i>	100	4983.1	$(47/2^{-})$	
6168.2	$(53/2^{-})$	812.7 3	100	5355.5	$(49/2^{-})$	

[†] From ¹⁴²Nd(²⁷Al,4n γ).

[‡] From $\gamma\gamma(\theta)$ (DCO) and/or $\gamma(\text{lin pol})$ in ¹⁴²Nd(²⁷Al,4n γ). For mult=M1 (Δ J=1) transitions, small E2 admixture cannot be ruled out. The mult=D indicates ΔJ =1 transition. [#] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁶⁵₇₃Ta₉₂

Adopted Levels, Gammas

¹⁶⁵₇₃Ta₉₂