¹⁶⁹Re α decay (15.1 s) 1992Me10

History

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh and Jun Chen NDS 194,460 (2024) 31-Oct-2022

Parent: 169 Re: E=187 17; J^{π}=(1/2+,3/2+); T_{1/2}=15.1 s 15; Q(α)=5014 13; % α decay≈0.2

 169 Re-Q(α): From 2021Wa16.

1992Me10: 169 Re ions were produced via 141 Pr(32 S,4n) with 235 MeV 32 S beam from the VICKSI accelerator at the Hahn-Meitner-Institut in Berlin and collected with a helium-jet system and a fast transport-tape. α particles were detected with a 450 mm² SB α -detector mounted between a γ /X detector and a γ detector. Measured E α , I α , α (t). Deduced levels, parent $T_{1/2}$. Others: 2004GoZZ, 1984Sc06, 1982De11, 1978Ca11.

165 Ta Levels

E(level) J^{π} Comments

0 $(9/2^{-})$ E(level): 5061α is assumed to feed the g.s. J^{π} : from Adopted Levels.

α radiations

Eα E(level) $Iα^{\ddagger}$ HF^{\dagger} Comments

5061 10 0 100 \approx 9 Eα: from 1992Me10. Others: 5083 (2004GoZZ), 5050 10 (1984Sc06). Iα: assuming no α branches.

¹⁶⁹Re-E: From mass and Eα analysis starting with ¹⁷⁷Au and ^{177m}Au decays (2021Ha32). 0.0+x from Adopted Levels of ¹⁶⁹Re in ENSDF database (2015 update).

¹⁶⁹Re-J^π,T_{1/2}: From ¹⁶⁹Re Adopted Levels in the ENSDF database (March 2015 update). Adopted T_{1/2} is weighted average of 16.3 s 8 (1992Me10) 12.9 s 11 (1984Sc06), but with a reduced χ^2 =6.2. The unweighted average is 14.6 s17.

 $^{^{169}}$ Re-%α decay: %α≈0.2 from 169 Re Adopted Levels in the ENSDF database (March 2015 update).

[†] The nuclear radius parameter $r_0(^{165}\text{Ta})=1.571\ 21$ is deduced from interpolation of radius parameters of the adjacent even-even nuclides in 2020Si16.

[‡] For absolute intensity per 100 decays, multiply by ≈ 0.002 .