Adopted Levels, Gammas

				His	story			
	-	Туре		Author	Citation		Literature Cutoff Date	
]	Full Evaluation		Balraj Singh and Jun Chen		194,460 (2024)	31-Oct-2022	
$Q(\beta^{-}) = -10150$ Estimated uncer $S(2n) = 21550 \ 3c$	<i>syst</i> ; S(n) rtainties (2 60, S(2p)=	9=9390 syst; 2021Wa16): =1420 210, Q	S(p)=1560 $\Delta Q(\beta^{-})=220$ $Q(\varepsilon p)=9200$	0 syst; $Q(\alpha)=6335$ 6 260, $\Delta S(n)=250$, $\Delta(S(p))$ 0 200, $Q(\varepsilon)=8910$ 200 (2021Wa =210. syst, 20	16 21Wa16).		
				¹⁶⁵ Os	Levels			
				Cross Reference	e (XRE	F) Flags		
			A B C	166 Ir p decay (10.5 ms) 166 Ir p decay (15.1 ms) 169 Pt α decay (6.99 ms)) D) E s)	⁹² Mo(⁷⁸ Kr,2p ¹⁰⁶ Cd(⁶⁴ Zn,2	o3nγ) p3nγ)	
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF			Comme	ents	
0.0#	(7/2 ⁻)	71 ms <i>3</i>	ABCDE	$%\alpha$ =90 2 (2008Bi15); $%\alpha$ is measured by 20 α decay chain. Othe $%\varepsilon$ +% β ⁺ is assumed to J ^π : from 1997Da07, ba configuration= $vf_{7/2}$ from timing of α 65 ms +70-30 (198 E(α)=6188 7 (1996Pa0	$\% \varepsilon + \% \beta$ 08Bi15 r: 100 4 to be 100 used on p from system f decay of 1Ho10). 01), 6164	⁺⁺ =10 2 from correlated 0 (1981Ho10). $-$ - $%\alpha$; this decay proton decay fro tematics. of ¹⁶⁵ Os (1996P 4 10 (1981Ho10	α events in ¹⁶⁹ Pt -> ¹⁶⁵ Os -> ¹⁶¹ W y branch has not been observed. m ¹⁶⁶ Ir. Possible a01). Others: 72 ms 8 (1991Se01),), 6200 20 (1978Ca11,1977Ca23).	
95.2 [@] 10	(9/2-)		DE	J ^π : (M1) γ to (7/2 ⁻); p	ossible	configuration=vl	h _{9/2} from systematics.	
499.3 [#] 5	$(11/2^{-})$		DE					
584.8 [@] 12	$(13/2^{-})$		DE					
1096.0# 7	$(15/2^{-})$		DE					
1218.0 ^{^w} 13	$(17/2^{-})$		DE					
1654.6# 9	(19/2-)		DE					
1917.8° <i>14</i>	$(21/2^{-})$		DE					
2247.6'' 14	$(23/2^{-})$		DE					
2609.4 17	$(25/2^{-})$		DE					

 † From a least-squares fit to $\gamma\text{-ray energies.}$

[‡] For excited states, assignments are as proposed in 2013Dr06, based on multipolarity assignments from angular anisotropy data, and band structures.

[#] Band(A): Band built on $vf_{7/2}$.

[@] Band(B): Band built on $\nu h_{9/2}$.

 $\gamma(^{165}\text{Os})$ E_{γ}^{\dagger} $\alpha^{\#}$ Mult.[‡] E_i(level) J_i^{π} I_{γ} E_f J_f^{π} Comments Mult.: from intensity balance arguments. 95.2 95.2 10 100 0.0 (7/2⁻) (M1) 6.48 22 $(9/2^{-})$ E_{γ} : other: 499.7 *3* from (⁶⁴Zn,2p3n γ). E_{γ} : other: 489.9 *3* from (⁶⁴Zn,2p3n γ). E_{γ} : other: 597.3 *4* from (⁶⁴Zn,2p3n γ). 499.3 $(11/2^{-})$ 499.3 5 100 0.0 (7/2⁻) Q 584.8 $(13/2^{-})$ 489.6 5 10095.2 (9/2-) Q 1096.0 $(15/2^{-})$ 596.7 5 100499.3 (11/2⁻) Q

Adopted Levels, Gammas (continued)

$\gamma(^{165}\text{Os})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	$E_f \qquad J_f^{\pi}$	Mult. [‡]	Comments
1218.0 1654.6 1917.8 2247.6	$(17/2^{-}) (19/2^{-}) (21/2^{-}) (23/2^{-}) (25/2^{-})$	633.2 5 558.6 5 699.8 5 593.0 10	100 100 100 100	584.8 (13/2 ⁻) 1096.0 (15/2 ⁻) 1218.0 (17/2 ⁻) 1654.6 (19/2 ⁻)	Q Q	E _γ : other: 633.9 4 from (⁶⁴ Zn,2p3nγ). E _γ : other: 559.2 5 from (⁶⁴ Zn,2p3nγ). E _γ : other: 700.8 4 from (⁶⁴ Zn,2p3nγ). E _γ : other: 593.0 4 from (⁶⁴ Zn,2p3nγ). E _γ : other: 604.1 5 from (⁶⁴ Zn,2p3nγ).

[†] From ${}^{92}Mo({}^{78}Kr,2p3n\gamma)$ (2013Dr06). Corresponding energies in ${}^{106}Cd({}^{64}Zn,2p3n\gamma)$ (2002Ap03) are in general agreement with those in 2013Dr06, but tend to be higher by about 0.5-1 keV or more. Since the two studies were carried out at the same laboratory, evaluator prefers to adopt values from the more recent work of 2013Dr06.

[‡] From angular anisotropy measurements in in-beam γ -ray data. Mult=Q indicates ΔJ =2, quadrupole (most likely E2) transition.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

Adopted Levels, Gammas

¹⁶⁵₇₆Os₈₉