⁹²Mo(⁷⁸Kr,2p3nγ) 2013Dr06

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh and Jun Chen	NDS 194,460 (2024)	31-Oct-2022					

2013Dr06: E=357 MeV ⁷⁸Kr beam was produced from the K130 cyclotron at JYFL facility. Targets were 0.5 and 1.0 mg/cm² 92 Mo. Evaporation residues were separated by the RITU gas-filled separator and implanted into the DSSDs of the GREAT spectrometer. γ rays were detected with the JUROGAM array consisting of 43 escape-suppressed HPGe detectors. Measured E γ , I γ , $\gamma(\theta)$, $\gamma\gamma$ -coin, (recoil) γ -coin correlated with following α decay of ¹⁶⁵Os. Deduced levels, J, π , γ -ray multipolarities. Recoil-decay tagging technique used to identify γ rays in specific nuclides.

¹⁶⁵Os Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0#	$(7/2^{-})$	71 ms 3	$T_{1/2}$: from Adopted Levels.
95.2 [@] 10	$(9/2^{-})$		
499.3 [#] 5	$(11/2^{-})$		
584.8 [@] 12	$(13/2^{-})$		
1096.0 [#] 7	$(15/2^{-})$		
1218.0 [@] 13	$(17/2^{-})$		
1654.6 [#] 9	$(19/2^{-})$		
1917.8 [@] 14	$(21/2^{-})$		
2247.6 [#] 14	$(23/2^{-})$		
2609.4 [@] 17	$(25/2^{-})$		

 † From a least-squares fit to $\gamma\text{-ray energies.}$

[‡] As proposed in 2013Dr06, based on angular anisotropy data and band structures.

[#] Band(A): Band built on $vf_{7/2}$.

[@] Band(B): Band built on $\nu h_{9/2}$.

 $\gamma(^{165}\text{Os})$

 α -correlated angular intensity ratio R(θ)=[I γ (158°)+I γ (134°)]/[I γ (94°)+I γ (86°)]. Typical values are 1 for stretched quadrupoles and 0.6 for stretched dipoles (2013Dr06).

E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Comments
95.2 10	14 3	95.2	(9/2 ⁻)	0	(7/2 ⁻)	(M1)	6.48 22	Mult.: from intensity balance at 95.2-keV level. $R(\theta)=0.6 \ 3.$
^x 384.3 10	13 2							
^x 388.7 10	10 2							
489.6 5	79 <i>3</i>	584.8	$(13/2^{-})$	95.2	$(9/2^{-})$	Q		$R(\theta)=0.9$ 1.
499.3 5	100 3	499.3	$(11/2^{-})$	0	$(7/2^{-})$	Q		$\mathbf{R}(\theta) = 1.1 \ I.$
^x 518.0 5	33 <i>3</i>							
^x 539.8 10	13 <i>3</i>							
558.6 5	38 <i>3</i>	1654.6	$(19/2^{-})$	1096.0	$(15/2^{-})$	Q		$\mathbf{R}(\theta) = 1.3 \ 4.$
^x 584.9 5	25 4							
593.0 10	19 4	2247.6	$(23/2^{-})$	1654.6	$(19/2^{-})$			
596.7 <i>5</i>	97 5	1096.0	$(15/2^{-})$	499.3	$(11/2^{-})$	Q		$R(\theta)=0.9\ 2.$
^x 604.5 10	16 2							
633.2 5	64 4	1218.0	$(17/2^{-})$	584.8	$(13/2^{-})$	Q		$R(\theta)=0.9\ 2.$
^x 656.1 5	24 <i>3</i>							$R(\theta)=0.9 \ 3.$

Continued on next page (footnotes at end of table)

⁹²Mo(⁷⁸Kr,2p3nγ) 2013Dr06 (continued)

$\gamma(^{165}\text{Os})$ (continued)

Eγ [†]	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
691.6 <i>10</i>	15 2	2609.4	$(25/2^{-})$	1917.8	$(21/2^{-})$
699.8 5	43 <i>3</i>	1917.8	$(21/2^{-})$	1218.0	$(17/2^{-})$

[†] Uncertainty of 0.5 keV assigned for γ rays with I $\gamma \ge 20$, and 1.0 keV for others based on a general comment by 2013Dr06.

[‡] Except for 95.2 γ , all others are stretched quadrupoles (assumed E2) transitions based on angular intensity ratios for some of the γ rays.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

¹⁶⁵₇₆Os₈₉

⁹²Mo(⁷⁸Kr,2p3nγ) 2013Dr06

¹⁶⁵₇₆Os₈₉