Adopted Levels

History

Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 194,460 (2024)	31-Oct-2022

 $Q(\beta^{-})=-11280 \text{ syst}; S(n)=12180 \text{ syst}; S(p)=-1540 \text{ syst}; Q(\alpha)=6820 \text{ syst}$ 2021Wa16

Estimated uncertainties (2021Wa16): $\Delta Q(\beta^-)=430$, $\Delta S(n)=350$, $\Delta S(p)=\Delta Q(\alpha)=50$ (syst, 2021Wa16).

 $S(2n)=22430 \ 430, S(2p)=170 \ 160, Q(\varepsilon)=10150 \ 260, Q(\varepsilon p)=8590 \ 150 \ (syst, 2021Wa16).$

S(p), $Q(\alpha)$: others: S(p)=-1503 110, (1997Da07, including electron screening), $Q(\alpha)=6776$ 110 (1997Da07), see comment for 327-ms isomer.

1997Da07: 92Mo(⁷⁸Kr,p4n),E=384 MeV; recoil mass separator with PPAC/DSSD detectors at focal plane (FMA) at ATLAS-ANL facility.

2001Ke05: ¹⁰⁶Cd(⁶⁴Zn,p4n), gas-filled recoil separator RITU system.

2014Dr02: 165 Ir nuclei were produced in the fusion-evaporation reaction 92 Mo(78 Kr,p4n) with E=428, 435 and 450 MeV 78 Kr beams from the K130 cyclotron at the Accelerator Laboratory of the University of Jyvaskyla, bombarding an isotopically enriched, self-supporting 92 Mo target foil of 500 μ m/cm² thickness. Evaporation residues were separated and transported using the gas-filled separator ion transport unit (RITU) to the GREAT spectrometer. The ions passed through a multiwire proportional counter (MWPC) and were implanted into two adjacently mounted DSSDs. Measured E α , I α , E(p), I(p), recoil-decay correlations, decay time distribution. Deduced 165 Ir isomer half-life, decay branching ratios. About 270 165 Ir π h_{11/2} isomer proton-decay events and 35 α -decay events were observed and identified from correlations with the α decay of daughter nuclei.

Theoretical calculations: consult Nuclear Science References (NSR) database primary references dealing mostly with various aspects of proton decay of ¹⁶⁵Ir.

¹⁶⁵Ir Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
0?	$(1/2^+)$	<1 μs	%p=?; %α=?
			E(level), J^{π} : the ground state of ¹⁶⁵ Ir has not yet been identified; from systematics, $s_{1/2}$ orbital is expected to lie below $h_{11/2}$ orbital (2021Ko07).
			$T_{1/2}$: <1 μ s from calculations for Q(p)=1503 and J^{π} =1/2 ⁺ , in agreement with lower value from time-of-flight measurement in FMA (1997Da07); 50 ns from systematics (2021Ko07).
0+x	$(11/2^{-})$	327 μs 40	No evidence was found by 2014Dr02 for the ground state decay of 165 Ir. %p=88 2; $%\alpha$ =12 2 (2014Dr02)
	()	,	%p and % α in 2014Dr02 were based on observed 165 Ir α -decay yield with 35 events, and proton-decay yield with 270 events. Values of %p=87 4, % α =13 4 measured by 1997Da07 are nearly the same, but somewhat less precise.
			Deduced reduced proton width=0.30 5 (2014Dr02).
			E(level): $x=230 \ 110 \ (1997Da07)$ from systematics of energy differences between the $s_{1/2}$ and $h_{11/2}$ orbitals in 153 Lu, 157 Ta and 161 Re. Other: 180 50 proposed from systematics (2021Ko07).
			$T_{1/2}$: weighted average of 340 μ s 40 (2014Dr02, maximum likelihood method applied for decay events), 0.39 ms 16 (1997Da07, α decay curve) and 0.29 ms 6 (1997Da07, protons decay curve).
			J^{π} : E(p)=1707 7 (1997Da07), Q(p)=1733 7, %p=87 4, J^{π} =11/2 give calculated $T_{1/2}$ (p)=0.34 ms 7, in agreement with the experimental value.
			Configuration= $\pi h_{11/2}$.
			$E(\alpha)=6715$ 7 (1997Da07) from the decay of ¹⁶⁵ Ir isomer.
			Production $\sigma \approx 0.2 \mu b (1997 \text{Da}07)$ in $^{92} \text{Mo}(^{78} \text{Kr}, \text{p4n}), \text{E}=384 \text{MeV}.$