¹⁶⁵Dy β^- decay (2.331 h) 1972Ma06,2004Mi18

	His	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 194,460 (2024)	31-Oct-2022

Parent: ¹⁶⁵Dy: E=0.0; $J^{\pi}=7/2^+$; $T_{1/2}=2.331$ h 4; $Q(\beta^-)=1285.7$ 8; $\%\beta^-$ decay=100

 165 Dy-J^{π},T_{1/2}: From 165 Dy Adopted Levels.

¹⁶⁵Dy-Q(β^{-}): From 2021Wa16.

1972Ma06: measured $E\gamma$, $I\gamma$, $\gamma\gamma$, ce; magnetic spectrometer for ce.

2014Mi01: measured conversion data for 361.7-keV transition using a magnetic β spectrometer; deduced M2+E3 mixing ratio. Additional information 1.

2004Mi18: measured E γ , I γ ; emission probability of 94.7 γ ; relative intensities of 19 γ rays from 94.7 to 1079.6 keV.

1991Mi26: measured ce data for 94.7 γ , 279.8 γ , 361.7 γ and 633.4 γ using high-resolution magnetic spectrometer.

Others:

γ: 1971Lu08, 1965Sc09, 1964Re09, 1963Ma08, 1962Ni11, 1962Ha46, 1956An34.

ce: 1963Pe11, 1962No07, 1962Vo02.

 $\gamma(\theta,T)$ from oriented ¹⁶⁵Dy: 1982HaYO.

β: 1963Pe11, 1959Cr73, 1955Ro57, 1947S114.

 $\gamma\gamma(\theta)$: 1964Si24, 1959Gr01.

γ(t): 1967Ba27, 1964Ha19, 1959Gr01, 1959Cr80, 1958Ka10, 1951Wr13.

βγ: 1959Bo52.

¹⁶⁵Ho Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	7/2-	stable	
94.700 3	9/2-	22.2 ps 8	$T_{1/2}$: value from this dataset: 25 ps 10, from $\gamma\gamma(t)$ (1967Ba27).
209.805 11	11/2-	12.7 ps 14	
361.674 11	3/2+	1.512 μs 4	%IT=100
			$T_{1/2}$: adopted value from $\gamma(t)$ in 1959Cr80. Other: 1.65 μ s 20 ($\gamma(t)$,1958Ka10).
419.543 11	5/2+		
429.387 11	1/2+		
449.258 11	3/2+		
491.046 14	7/2+		
515.475 11	3/2-	10.4 ps 11	$T_{1/2}$: value from this dataset: <0.1 ns from γ (t) (1964Ha19).
539.010 <i>13</i>	5/2+		
565.719 20	$(5/2)^{-}$	27 ps 10	
589.801 <i>18</i>	7/2+		
715.331 11	7/2+	<0.1 µs	$T_{1/2}$: $\gamma(t)$ (1958Ka10).
			J^{π} : $\gamma(\theta)$ from oriented ¹⁶⁵ Dy β decay for 620 γ and 715 γ agree only with $J^{\pi}=5/2^+$, not with 7/2 ⁺ ; however, 620 γ to 9/2 ⁻ disfavors 5/2 ⁺ ; L=4 and analyzing powers in (pol t, α) strongly favor 7/2 ⁺ .
820.108 16	$(9/2^+)$		
995.094 <i>11</i>	$5/2^{+}$		
1055.761 25	5/2+		
1079.621 17	7/2+		
1140.36 5	7/2+		
1186.59 6	9/2+		

[†] From least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

$^{165}\mathrm{Dy}\,\beta^-$ decay (2.331 h) 1972Ma06,2004Mi18 (continued)

β^- radiations

av E β : Additional information 2.

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(99.1 13)	1186.59	0.0018 2	7.24 6	av E β =25.49 22
(145.3 13)	1140.36	0.0020 2	7.70 5	av $E\beta = 38.17 \ 22$
(206.1 13)	1079.621	0.167 3	6.253 14	av $E\beta = 55.58\ 23$
(229.9 13)	1055.761	0.0469 10	6.954 15	av $E\beta = 62.60\ 24$
(290.6 13)	995.094	1.80 3	5.693 12	av Eβ=81.03 25
				Measured $E\beta = 305 \ 10 \ (1959Bo52)$.
(465.6 13)	820.108	0.012 2	8.54 +8-7	av E β =137.87 27
(570.4 13)	715.331	0.069 6	8.07 4	av E β =174.18 28
(695.9 [#] 13)	589.801			$I\beta = -0.0082$ 9.
(720.0 13)	565.719	0.0012 8	10.2 + 5 - 2	av E β =228.46 30
(746.7 [#] <i>13</i>)	539.010			$I\beta = -0.019 \ 4.$
(770.2 [#] 13)	515.475	0.0025 22	$10.3^{1u} + 9 - 3$	av Eβ=255.03 29
(794.7 13)	491.046	0.015 4	9.23 +14-10	av $E\beta = 256.49 \ 30$
(866.2 [#] 13)	419.543	< 0.03	>9.1	av E <i>β</i> =283.82 <i>31</i>
``´´´				$I\beta = -0.02 5.$
				E(decay): 880 from 1955Ro57, 1947S114. Other: 1000 30 (1959Bo52).
				I β^- : observation of this β^- transition is not compatible with very small I β^- <0.05% expected from the balance of I(γ +ce).
(924.0 [#] 13)	361.674			I β =0.09 8 is consistent with expected no feeding for Δ J=2, $\Delta \pi$ =no.
(1075.9 13)	209.805	0.016 2	$10.25^{1u} + 6 - 5$	av $E\beta = 367.6 \ 3$
(1191.0 13)	94.700	15.3 4	6.857 13	av $E\beta = 413.07 \ 33$
				Measured $E\beta = 1190 (1959Cr73), 1215 20 (1959Bo52).$
				$I\beta^{-}$: measured %I β =14 (1959Cr73), 16 (1959Bo52).
(1285.7 16)	0.0	82.6 4	6.248 4	av Eβ=452.03 33
				Measured Eβ=1285 10 (1963Pe11), 1280 (1959Cr73), 1305 20 (1959Bo52).
				$I\beta^-$: measured % $I\beta$ =83 2 (1963Pe11), 84 (1959Cr73), 80 (1959Bo52).

[†] ce(K)(94.7γ)/β⁻=0.093 10 (1963Pe11).
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

$\gamma(^{165}\text{Ho})$

I γ normalization: from I γ (94.7 γ)/100 decays of ¹⁶⁵Dy=3.80 5 (2004Mi18).

ω

E_{γ}^{\dagger}	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α^{a}	Comments
29.715 [#] 3	0.12 6	449.258	3/2+	419.543	5/2+	M1		14.61 20	% $I\gamma$ =0.0046 23 α (L)=11.42 16; α (M)=2.522 35 α (N)=0.585 8; α (O)=0.0849 12; α (P)=0.00474 7 Mult.: α (L1)exp=12.9 69; L1:L2:L3=100 20:80.1 32:<5.7 (1972Ma06).
57.864 [#] 5	0.39 6	419.543	5/2+	361.674	3/2+	M1+E2	0.130 +46-30	12.77 24	%Iγ=0.0148 23 α (K)=10.37 18; α (L)=1.87 22; α (M)=0.42 5 α (N)=0.097 12; α (O)=0.0136 13; α (P)=0.000657 12 Mult.: L1:L2:L3=100 20:14.8 59:12.0 48; α (L1)exp=1.32 33 (1972Ma06).
67.712 [#] 4	0.40 20	429.387	1/2+	361.674	3/2+	M1		8.03 11	%Iγ=0.015 8 α (K)=6.74 9; α (L)=1.011 14; α (M)=0.2232 31 α (N)=0.0518 7; α (O)=0.00753 11; α (P)=0.000421 6 Mult.: α (K)exp=6.3 37; K/L=7.4 32 (1972Ma06).
71.502 [#] 10	0.066 10	491.046	7/2+	419.543	5/2+	M1(+E2)	<0.41	7.12 27	%I γ =0.0025 4 α (K)=5.50 27; α (L)=1.3 4; α (M)=0.29 10 α (N)=0.066 22; α (O)=0.0089 25; α (P)=0.000340 19 Mult.: α (K)exp=4.4 15, K/L=5.0 21 (1972Ma06).
87.585 [#] 4	0.40 4	449.258	3/2+	361.674	3/2+	M1(+E2)	<0.32	3.86 7	%Iγ=0.0152 $\overline{15}$ α(K)=3.13 9; α(L)=0.57 9; α(M)=0.128 23 α(N)=0.030 5; α(O)=0.0041 6; α(P)=0.000193 7 Mult.: α(K)exp=3.3 7, K/L=7.2 26 (1972Ma06).
89.753 [#] 8	0.080 16	539.010	5/2+	449.258	3/2+	M1(+E2)	<0.5	3.63 9	% $I\gamma$ =0.0030 6 α (K)=2.83 16; α (L)=0.62 17; α (M)=0.14 4 α (N)=0.032 10; α (O)=0.0044 11; α (P)=0.000173 13 Mult.: α (K)exp=2.7 10, K/L>3 (1972Ma06).
94.700 [#] 3	100.0 [‡] 6	94.700	9/2-	0.0	7/2-	M1+E2	0.160 5	3.06 4	%Iγ=3.80 5 $\alpha(K)=2.53 4$; $\alpha(L)=0.414 6$; $\alpha(M)=0.0924 14$ $\alpha(N)=0.02138 32$; $\alpha(O)=0.00305 4$; $\alpha(P)=0.0001565 22$ E _γ : from 1965Sc09. Others: 94.692 3 (1971Lu08), 94.705 3 (1964Re09), 94.697 5 (1963Ma08), 94.697 4 (1962Ni11), 94.702 10 (1962Ha46). δ : weighted average of 0.168 9 from subshell ratios (1991Mi26) and +0.157 5 from E2 and M1 matrix elements in Coulomb excitation (2003Iw01). $\alpha(K)exp=2.62 20, K:L1:L2:L3=1000 150:120 6:22 4:8.6 20$

	¹⁶⁵ Dy β^- decay (2.331 h)					ecay (2.331 h) 1972Ma06	,2004Mi18 (c	continued)		
γ ⁽¹⁶⁵ Ho) (continued)											
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α^{a}	Comments		
									(1963Pe11). Others: α (K)exp=2.5 2, K:L1:L2:L3=1000 30:128:19.7 6:9.6 3 (1962No07); α (K)exp=2.60, K:L1:L2:L3=1000:133 7:17.8 18:8.2 8 (1972Ma06); for L:M:N+O and L:M1:N1 see 1970Mi15, 1963Pe11, 1962Vo02. δ =0.168 9 (1991Mi26) from L1/L2/L3=100.0 5/14.2 3/8.0 2.		
95.931 [#] 4	0.026 4	515.475	3/2-	419.543	5/2+	[E1]		0.354 5	%I γ =0.00099 15 α (K)=0.294 4; α (L)=0.0466 7; α (M)=0.01029 14 α (N)=0.002342 33; α (O)=0.000315 4; α (P)=1.334×10 ⁻⁵ 19		
98.80 <i>15</i>	0.023 5	589.801	7/2+	491.046	7/2+				$\%1\gamma = 0.00087/19$		
109.59''' 3	0.016 5	539.010	5/2*	429.387	1/2*				$\%1\gamma = 0.00061 \ 19$		
115.104" 10	0.199 14	209.805	11/2-	94.700	9/2-	M1+E2	+0.17 +1-3	1.744 24	$%1\gamma$ =0.0076 5 α (K)=1.448 21; α (L)=0.231 5; α (M)=0.0514 13 α (N)=0.01190 29; α (O)=0.001704 35; α (P)=8.93×10 ⁻⁵ 14 δ; from the Adopted Gammas.		
119.47 3	0.200 14	539.010	5/2+	419.543	5/2+	M1(+E2)	<0.6	1.556 26	%I γ =0.0076 5 α (K)=1.24 8; α (L)=0.25 5; α (M)=0.056 13 α (N)=0.0129 29; α (O)=0.00177 32; α (P)=7.5×10 ⁻⁵ 7 Mult.: α (K)exp=1.44 31, K/L>3.3 (1972Ma06).		
129.39 [#] 3	0.014 5	491.046	7/2+	361.674	$3/2^{+}$				%Iy=0.00053 <i>19</i>		
140.544 [#] 20	0.059 6	589.801	7/2+	449.258	$3/2^{+}$				%Iy=0.00224 23		
153.803 [#] 6	0.160 <i>13</i>	515.475	3/2-	361.674	3/2+	[E1]		0.1006 14	%I γ =0.0061 5 α (K)=0.0844 12; α (L)=0.01264 18; α (M)=0.00278 4 α (N)=0.000637 9; α (O)=8.80×10 ⁻⁵ 12; α (P)=4.09×10 ⁻⁶ 6		
170.22 [#] 3	0.085 9	589.801	7/2+	419.543	$5/2^{+}$				%Iy=0.00323 <i>34</i>		
174.96 [#] 3 209.70 25	0.031 <i>6</i> 0.028 <i>14</i>	995.094 209.805	5/2+ 11/2-	820.108 0.0	(9/2 ⁺) 7/2 ⁻	E2		0.2084 <i>30</i>	%I γ =0.00118 23 %I γ =0.0011 5 α (K)=0.1396 20; α (L)=0.0531 8; α (M)=0.01252 19 α (N)=0.00284 4; α (O)=0.000356 5; α (P)=6.69×10 ⁻⁶ 10		
228.3 3	0.012 6	589.801	$7/2^{+}$	361.674	$3/2^{+}$				$\%$ I γ =0.00046 23		
259.53 5	0.41 [‡] 1	1079.621	7/2+	820.108	$(9/2^+)$				%Iy=0.0156 4		
266.80 15	0.031 8	361.674	3/2+	94.700	9/2-	[E3]		0.446 6	%I γ =0.00118 30 α (K)=0.2155 30; α (L)=0.1767 25; α (M)=0.0432 6 α (N)=0.00982 14; α (O)=0.001202 17; α (P)=1.246×10 ⁻⁵ 18		
279.763 [#] 12	14.06 [‡] 8	995.094	5/2+	715.331	7/2+	M1+E2	-0.38 +3-1	0.1398 23	%I γ =0.534 8 α (K)=0.1166 20; α (L)=0.01807 25; α (M)=0.00401 6 α (N)=0.000929 13; α (O)=0.0001335 19; α (P)=7.08×10 ⁻⁶ 13 Mult.: α (K)exp=0.126 36; K/L=5.4 7 (1991Mi26). Others:		

4

				165	$\mathbf{D}\mathbf{y}\beta^-\mathbf{d}$	ecay (2.331	h) 1972Ma06,	2004Mi18 (co	ontinued)
						<u> </u>	(¹⁶⁵ Ho) (continued	<u>1)</u>	
$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α^{a}	Comments
^x 356.90 25	0.023 12								 >5.5 (1963Pe11), K/L=4.3 6 (1962Vo02). L1/L2/L3=100 6/15 4/<7 (1991Mi26). E_γ: from 1965Sc09. Others: 279.759 20 (1971Lu08), 279.784 41 (1964Re09), 279.755 30 (1962Ni11). δ: γ(θ,T) (1982HaYO) gives -0.38 +3-1 or +5.3 4. The ce data of 1991Mi26 gives 0.55 16 from K/L and L1/L2, which supports lower δ of 1982HaYO. %Iγ=0.0009 5
361.68 [#] 2	23.79 [‡] 12	361.674	3/2+	0.0	7/2-	M2+E3	0.33 4	0.265 5	%Iγ=0.904 <i>13</i> K:L1:L2:L3=643 8:100:17.9 8:6.9 8 (2014Mi01) α (K)=0.212 4; α (L)=0.0406 6; α (M)=0.00925 <i>13</i> α (N)=0.002148 <i>30</i> ; α (O)=0.000305 4; α (P)=1.527×10 ⁻⁵ <i>33</i> E _γ : from 1965Sc09. Others: 361.676 <i>30</i> (1971Lu08), 361.699 <i>25</i> (1964Re09). Mult.,δ: from ce data in 2014Mi01 (earlier values from the same experimental group reported in 1991Mi26: K/L=5.2 <i>3</i> ; L/M=8.1 <i>14</i> ; L1:L2:L3=100.0 9:12.2 7:5.5 8). Others: K/L=6.3 <i>18</i> (1965Bo40). α (K)exp=0.22 4, K/L=4.8 <i>12</i> (1963Pe11). The δ (E3/M2) value is deduced by evaluators by fitting ce data in 2014Mi01 using BrIccMixing code. 2014Mi01 give δ (E3/M2)=0.329 <i>22</i> using a somewhat different procedure. Inclusion of ce data from 1965Bo40 and 1963Pe11 gives δ (E3/M2)=0.33 6. Fitting with all the ce data, including those from 1991Mi26 gives δ (E3/M2)=0.28 6, with a large and unacceptable reduced χ^2 =12, with L/M, L1/L2 and L1/L3 data from 1991Mi26 poorly fitted.
405.25 <i>3</i> 456.093 <i>25</i>	$0.298\ 15$ $1.19^{\ddagger}\ 2$	995.094 995.094	5/2* 5/2*	539.010	5/2+	M1+E2	-0.52 +14-26	0.0364 <i>35</i>	%1 γ =0.0113 6 %1 γ =0.0452 10 α (K)=0.0305 31; α (L)=0.00458 29; α (M)=0.00101 6 α (N)=0.000235 14; α (O)=3.39×10 ⁻⁵ 24; α (P)=1.84×10 ⁻⁶ 20
472.11 15	0.040 8	565.719	(5/2)-	94.700	9/2-				δ: from $\gamma(\theta)$, may also be δ≥+29.4 (1982HaYO). %Iγ=0.00152 30 E _γ : poor fit; level-energy difference=471.05. Eγ not used in fitting
479.622 25 489.90 <i>10</i> 504.10 <i>15</i> 512.57 ^c 25	1.22 [‡] 2 0.096 <i>10</i> 0.031 <i>8</i> 0.089 <i>18</i>	995.094 1079.621 995.094 1079.621	5/2+ 7/2+ 5/2+ 7/2+	515.475 589.801 491.046 565.719	3/2 ⁻ 7/2 ⁺ 7/2 ⁺ (5/2) ⁻				%I γ =0.0464 <i>10</i> %I γ =0.0036 <i>4</i> %I γ =0.00118 <i>30</i> %I γ =0.0034 <i>7</i> E $_{\gamma}$: poor fit; level-energy difference=513.87; E γ not used in the fitting procedure.

S

From ENSDF

¹⁶⁵₆₇Ho₉₈-5

Т

 $^{165}_{67}\mathrm{Ho}_{98}$ -5

				¹⁶⁵ E	yβ [−] de	cay (2.331 h)	1972Ma06,20	04Mi18 (conti	inued)		
$\gamma(^{165}\text{Ho})$ (continued)											
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α^{a}	Comments		
515.467 25	1.06 5	515.475	3/2-	0.0	7/2-	(E2)		0.0146 2	%Iγ=0.0403 20		
540.52 <i>5</i> 545.834 <i>20</i>	0.157 <i>16</i> 4.53 <i>14</i>	1079.621 995.094	7/2 ⁺ 5/2 ⁺	539.010 449.258	5/2 ⁺ 3/2 ⁺	M1+E2	+0.14 6	0.0255 4	$\alpha(\mathbf{K})=0.01172 \ 16; \ \alpha(\mathbf{L})=0.002234 \ 31; \ \alpha(\mathbf{M})=0.000506 \ 7 \ \alpha(\mathbf{N})=0.0001162 \ 16; \ \alpha(\mathbf{O})=1.592\times10^{-5} \ 22; \ \alpha(\mathbf{P})=6.54\times10^{-7} \ 9 \ \% \mathrm{Iy}=0.0060 \ 6 \ \% \mathrm{Iy}=0.0060 \ 6 \ \% \mathrm{Iy}=0.172 \ 6 \ \alpha(\mathbf{K})=0.0215 \ 4; \ \alpha(\mathbf{L})=0.00308 \ 5; \ \alpha(\mathbf{M})=0.000678 \ 11 \ \alpha(\mathbf{N})=0.0001574 \ 25; \ \alpha(\mathbf{O})=2.30\times10^{-5} \ 4; \ \alpha(\mathbf{P})=1.306\times10^{-6} \ 23 \ \mathrm{I_y}: \ 4.72 \ 4 \ \mathrm{for} \ 540.5+545.8 \ (2004\mathrm{Mi18}). \ \delta; \ \mathrm{from} \ \gamma(\theta), \ \mathrm{may} \ \mathrm{also} \ \mathrm{be} \ \delta=+10.5 \ +36-53 \ (1982\mathrm{Ha}\mathrm{YO})$		
565.718 ^b 20	≈0.08 ^b	565.719	(5/2)-	0.0	7/2-				%I $\gamma \approx 0.00304$ I $_{\gamma}$: deduced from branching ratios in Coul. ex. and (n,n' γ).		
565.718 ^b 20	3.59 ^{b‡} 3	995.094	5/2+	429.387	1/2+				% $I\gamma$ =0.1364 21 I_{γ} : other: 3.69 11 (1972Ma06).		
575.558 20	2.13 [‡] 2	995.094	5/2+	419.543	5/2+	M1+E2	-0.35 +6-4	0.0212 5	%Iγ=0.0809 13 $\alpha(K)=0.0179 4$; $\alpha(L)=0.00259 5$; $\alpha(M)=0.000570 11$ $\alpha(N)=0.0001324 25$; $\alpha(O)=1.93\times10^{-5} 4$; $\alpha(P)=1.082\times10^{-6} 25$ I _γ : other: 2.20 7 (1972Ma06). δ: from $\gamma(\theta)$, may also be $\delta=+4.9 + 8-10$ (1924LeVO)		
588.57 5	0.092 9	1079.621	7/2+	491.046	7/2+				$\%$ I γ =0.00350 35		
610.29 5 620.635 20	$0.148\ 15$ $2.64^{\ddagger}\ 2$	820.108 715 331	$(9/2^{+})$ $7/2^{+}$	209.805	$11/2^{-}$ 9/2 ⁻				$\%_{1\gamma}=0.0056\ 6$ $\%_{1\gamma}=0.1003\ 15$		
520.000 20		, 10.001	• , =	2 11700	-,-				I_{γ} : other: 2.72 11 (1972Ma06).		
633.415 20	16.12 [∓] <i>10</i>	995.094	5/2+	361.674	3/2+	M1+E2	+0.18 1	0.01738 25	%Iγ=0.613 9 α (K)=0.01471 21; α (L)=0.002094 29; α (M)=0.000460 δ α (N)=0.0001069 15; α (O)=1.560×10 ⁻⁵ 22; α (P)=8.89×10 ⁻⁷ 13 I _γ : other: 15.87 32 (1972Ma06). Mult.,δ: $\gamma(\theta,T)$ (1982HaYO) gives +0.18 1 or +9.9 +11-9. α (K)exp=0.018 7 (1963Pe11); 0.014 3 (1991Mi26) support lower δ .		
660.08 <i>3</i>	0.74 [‡] 1	1079.621	7/2+	419.543	5/2+	M1(+E2)	+0.37 +11-99	0.0150 13	% $I_{\gamma}=0.02815$ $\alpha(K)=0.0126$ 11; $\alpha(L)=0.00181$ 13; $\alpha(M)=0.000399$		

6

¹⁶⁵H0₉₈-6

I.

¹⁶⁵ Dy β^- decay (2.331 h) 19) 1972Ma06,2	004Mi18 (continued)					
		γ ⁽¹⁶⁵ Ho) (continued)											
	E_{γ}^{\dagger}	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.@	$\delta^{@}$	Comments				
	694.08 4	0.324 16	1055.761	5/2+	361.674	3/2+			27 $\alpha(N)=9.3\times10^{-5} 6; \alpha(O)=1.35\times10^{-5} 10; \alpha(P)=7.6\times10^{-7} 7$ I_{γ} : other: 0.74 4 (1972Ma06). δ : from $\gamma(\theta)$, may also be ≤ -6.1 (1982HaYO). $\%$ I $\gamma=0.0123 6$				
	715.328 20	15.21^{\ddagger} 10	715.331	$7/2^+$	0.0	$7/2^{-}$			%Iy=0.578 9				
									α (K)exp<0.008 I _y : other: 14.9 <i>3</i> (1972Ma06).				
	725.39 <i>3</i>	0.39 4	820.108	$(9/2^+)$	94.700	9/2-			%Iγ=0.0148 15				
	820.106 25	0.225 15	820.108	$(9/2^+)$	0.0	$7/2^{-}$			%Iγ=0.0085 6				
	900.41 5	0.070 7	995.094	$5/2^{+}$	94.700	9/2-			%Iy=0.00266 27				
	976.74 20	0.0063 13	1186.59	9/2+	209.805	$11/2^{-}$			%Iy=0.00024 5				
	984.92 <i>4</i>	0.178 13	1079.621	7/2+	94.700	9/2-			%Iy=0.0068 5				
	995.089 25	1.66 [‡] 2	995.094	5/2+	0.0	$7/2^{-}$			%Iy=0.0631 <i>11</i>				
	1045.60 15	0.0141 21	1140.36	7/2+	94.700	9/2-			V_{γ} : other: 1.34 5 (1972Ma06). %I γ =0.00054 8				
	1055.76 <i>3</i>	0.91 [‡] 1	1055.761	$5/2^{+}$	0.0	$7/2^{-}$	D+Q	+0.32 +32-18	%Iy=0.0346 6				
				,					I_{γ} : other: 0.87 5 (1972Ma06).				
									Mult.: M1+E2 for 1055.76 γ inconsistent with adopted ΔJ^{π} which requires E1+M2.				
									δ : from $\gamma(\theta)$, may also be $\delta \ge +2.1$ (1982HaYO).				
	1079.63 3	2.63 [‡] 3	1079.621	$7/2^{+}$	0.0	$7/2^{-}$			%Iy=0.0999 17				
		2.00 0		.,_	0.0	.,_			$I_{\rm v}$: other: 2.56 8 (1972Ma06).				
	1091.91 8	0.028 3	1186.59	$9/2^{+}$	94.700	$9/2^{-}$			$\%$ I γ =0.00106 11				
	1140.36 5	0.038 3	1140.36	$7/2^+$	0.0	$7/2^{-}$			$\%$ I γ =0.00144 12				
	1186.56 10	0.0129 13	1186.59	$9/2^{+}$	0.0	$7/2^{-}$			%Iy=0.00049 5				

[†] From 1972Ma06, except where noted otherwise. The intensities quoted by 1972Ma06 have been divided by a factor of 42.6 so that the two sets of intensities (from 1972Ma06 and 2004Mi18) are on the same scale.

[‡] From 2004Mi18, corresponding value in 1972Ma06 is in agreement but much less precise.

[#] From 1965Sc09 (curved-crystal spectrometer).

^(a) Deduced from conversion coefficients, unless otherwise noted. $\alpha(K)$ exp were deduced from I γ (1972Ma06), ce (1972Ma06,1963Pe11) and normalized to $\alpha(K)(94.7\gamma)=2.59$ (for M1+E2, $\delta=0.168$ 9). From ce data, mixing ratios are deduced using the BrIccMixing program. γ rays with significant $\delta>0.1$ are interpreted as M1+E2, based on Weisskopf estimates for transition probabilities.

[&] For absolute intensity per 100 decays, multiply by 0.0380 5.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Multiply placed with intensity suitably divided.

From ENSDF

¹⁶⁵Dy β^- decay (2.331 h) 1972Ma06,2004Mi18 (continued)

 $\gamma(^{165}$ Ho) (continued)

^c Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

6