Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh and Jun Chen	NDS 194,460 (2024)	31-Oct-2022		

 $Q(\beta^{-})=5797\ 5;\ S(n)=5568\ 6;\ S(p)=10093\ 7;\ Q(\alpha)=-3067\ 10$ 2021Wa16

2008Os02 (also 2006SaZS,2006SaZZ): ¹⁶⁵Eu was identified in U(p,X) at E(p)=36 MeV on target of natural uranium in the form of uranium carbide. The fission fragments were mass separated as metallic ions and implanted on to a tape transport system using surface ionization type ion source. Measured β , $\beta\gamma$ -coin, $\gamma\gamma$ -coin. The ¹⁶⁵Eu isotope identified by observing K-x rays of Gd, and its half-life was measured from Gd K_{α} x-ray decay curves.

- 2014Ha38, 2010Ha38, 2007Ha57 (also 2006HaZT): source was prepared by 238 U(p,F) at E(p)=32 MeV at JAEA facility. Fission products were ionized and separated online using Tokai-ISOL mass separator. Measured Q(β^-) using total absorption gamma-ray spectrometer of BGO detector.
- 2017Wu04: ¹⁶⁵Eu was produced in ⁹Be(²³⁸U,F), E(²³⁸U)=345 MeV/nucleon reaction, followed by separation of fragments based on B ρ - Δ E-TOF method using the BigRIPS separator at RIBF-RIKEN facility, optimized for the transmission of ¹⁵⁸Nd and ¹⁷⁰Dy ions. The reaction products were transported through the ZeroDegree spectrometer and implanted into the decay counting system WAS3ABi, surrounded by the EURICA array of 84 HPGe detectors for γ detection. Typical implantation rate was ≈ 100 ions/s. Measured time distribution of (implanted ion) β^- , (implanted ion) $\beta^-\gamma$ and (implanted ions) γ correlated events, and half-life of decay of ¹⁶⁵Sm g.s.

2017Pa25: possible μ s isomer from observation of 124.2 γ , 156 γ and 244 γ , following the decay of this isomer.

2022Ki23: ¹⁶⁵Eu nuclide was produced at the RIBF-RIKEN facility using the ⁹Be(²³⁸U,F),E(²³⁸U)=345 MeV/nucleon, followed by separation of fission fragments by measuring the energy loss (Δ E), magnetic rigidity (B ρ) and time-of-flight (tof) of the ions using the BigRIPS separator, multisampling ionization chambers (MUSIC), and parallel-plate avalanche counters (PPACs), and plastic scintillators. The radioactive ions were implanted in the Advanced Implantation Detector Array (AIDA) consisting of a stack of six double-sided silicon strip detectors (DSSSDs), and centered in the BRIKEN neutron detector consisting of 140 ³He-filled proportional counters embedded in a large polyethylene moderator matrix. For γ and n γ -coin detection, two CLARION-type clover HPGe detectors were used, but γ data were not analyzed in the present experiment. Measured (implanted ions)(β^-) correlations, and (implanted ions)(β^-)(neutron) correlations. Deduced half-life and $\%\beta^-$ n for the decay of ¹⁶⁵Eu.

Mass measurements: 2020Vi04, 2022Or02.

2009Co21: theory: calculated half-life of ¹⁶⁵Eu decay using artificial neural network (ANN) statistical model.

¹⁶⁵Eu Levels

Cross Reference (XREF) Flags

${}^{9}\text{Be}({}^{238}\text{U},\text{F}\gamma)$

E(level)	T _{1/2}	XREF	Comments	
0	2.24 s <i>14</i>		 %β⁻=100; %β⁻n≤0.4 (2022Ki23) E(level): the reported activity and half-life may include both the g.s. and an isomeric state of ¹⁶⁵Eu. J^π: π5/2[413] Nilsson orbital, based on systematics of known structures in neighboring, well-deformed nuclei (evaluators). T_{1/2}: weighted average of 2.16 s +14-12 (2022Ki23, (implant)β(t)), 2.14 s 45 (2017Wu04, 	
0+x		A	 (implants)β⁻ decay curve); 2.7 s 3 (2008Os02, Gd K_α x-ray decay curves). Additional information 1. Only the β⁻ decay mode is expected, followed by possible β⁻-delayed neutron decay. %β⁻n deduced from neutron-gated β⁻-decay events, fitted by an exponential function of the background subtracted time distribution of (implants)(β⁻)(neutron)-correlations (2022Ki23). For further details of the analysis method, consult 2020ToZY. 124.2γ, 156γ and 244γ were found to follow a decay of a μs isomer, but no γ ray was assigned to a decay scheme. 	

S(2n)=10298 5, S(2p)=22350 400 (syst), $Q(\beta^{-}n)=893 5$ (2021Wa16).