¹⁶⁵Tm ε + β ⁺ decay (30.06 h) 1982Vy03,1980Ab18

	His	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 194,460 (2024)	31-Oct-2022

Parent: ¹⁶⁵Tm: E=0.0; $J^{\pi}=1/2^+$; $T_{1/2}=30.06$ h 3; $Q(\varepsilon)=1591.3$ 15; $\%\varepsilon+\%\beta^+$ decay=100

 165 Tm-J^{π},T_{1/2}: From 165 Tm Adopted Levels.

¹⁶⁵Tm-Q(ε): From 2021Wa16.

1982Vy03: measured E γ , I γ , E β , I β , (ce)(γ) coin. The γ radiation measured by Ge(Li), conversion electrons by Si(Li) and β spectra by iron-free toroidal magnetic spectrometer.

1980Ab18 (also 1970Ab18 and analysis in 1980Ab22): measured E γ , I γ , ce. Conversion electrons measured by a magnetic spectrometer.

1983Mo10: analyzed I γ , ce, $\gamma\gamma(\theta)$ data. Analysis of E γ , I γ , mult, δ for γ rays from doublet of levels at 589.760 (3/2⁺) and 589.869 (1/2⁻).

1988U102: Measured $\gamma\gamma(\theta)$ using Ge(Li) and NaI(Tl) detectors for $\gamma\gamma$ -coincidences.

Others:

γ: 1987BaZB, 1976Gu02, 1973St22, 1972Ma40 (also 1971Ma74), 1968Ku14, 1968Ku02, 1967Co26, 1967Co20, 1966Bo07, 1963Gr15, 1963Ra15, 1961Ka30, 1961Bj02, 1960Gr27, 1959Kh32, 1957Go78, 1953Ha43.

ce: 1991GaZZ, 1987BaZB, 1974An04, 1972Ma40 (also 1971Ma74), 1968Ku14, 1967Co26, 1964Ch22, 1963Gr15, 1962Ha24, 1961Ka30, 1961Bj02, 1960Gr27, 1959Bo57, 1957Gr74.

γγ: 1972Ma40 (also 1971Ma74), 1968Ku14, 1968Ku02, 1967Dz07, 1963Gr15, 1963Dz06, 1958An39.

(ce)(γ) coin: 1968Ku14, 1968Ku02.

(ce)(ce) coin: 1967Dz07.

(ce) γ (t): 1974An04, 1972Af03, 1970Ba71, 1968Ad05. The last three references and 1974An04 have some common authors. $\gamma\gamma(\theta)$: 1975Fu13, 1978EgZY.

β: 1965Pr02.

¹⁶⁵Tm isotope T_{1/2}: 1970Ka23, 1967Co20, 1964Ch22, 1963Ra15, 1961Bj02, 1957Gr74, 1954Mi01, 1953Ha43. Additional information 1.

¹⁶⁵Er Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	5/2-		
47.158 4	$5/2^+$	4.0 ns 1	$T_{1/2}$: others: 3.25 ns 20 (1964Ja09) from γ (ce)(t).
62.672 4	7/2+		-, ,
77.258 4	$7/2^{-}$	0.96 ns 8	$T_{1/2}$: weighted average of 0.90 ns 9 (1974An04) and 1.10 ns 13 (1970Ba71).
97.958 9	$9/2^{+}$		
175.82 <i>3</i>	9/2-		
242.929 4	3/2-	0.31 ns 4	μ =+0.62 21 (1978EgZY)
			$T_{1/2}$: weighted average of 0.30 ns 5 (1974An04) and 0.321 ns 51 (1968Ad05).
296.124 4	$5/2^{-}$	≤0.24 ns	
297.367 5	$1/2^{-}$	0.70 ns 8	$T_{1/2}$: other: ≤ 1.0 ns (1970BaYN).
356.525 4	$3/2^{-}$	0.35 ns 6	
372.716 14	$7/2^{-}$		
384.341 7	$5/2^{-}$		
477.758 8	$5/2^{-}$		
507.421 5	$1/2^{+}$	0.70 ns 12	
519.144 6	$5/2^{+}$		
534.571 10	$3/2^{+}$		
589.759 5	$3/2^{+}$		
589.882 8	$1/2^{-}$	≤0.6 ns	
605.486 8	$(3/2^+)$		
608.502 7	3/2-		
745.946 9	$1/2^{+}$	1.00 ns 15	
853.538 8	$3/2^{+}$		
920.716 9	1/2-		

Continued on next page (footnotes at end of table)

¹⁶⁵Tm ε+β⁺ decay (30.06 h) 1982Vy03,1980Ab18 (continued)

¹⁶⁵Er Levels (continued)

E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	J ^{π‡}	
962.422 <i>12</i> 999.853 <i>20</i>	$\frac{3/2^{-}}{3/2^{+}}$	1289.094 <i>15</i> 1339.41 <i>5</i>	3/2 ⁻ 5/2 ⁻	1416.72 <i>5</i> 1427.411 <i>10</i>	3/2 ⁻ 3/2 ⁺	
1103.501 11	3/2+	1411.92 7	3/2+	1528.12 6	$(3/2^+)$	

[†] From least-squares fit to $E\gamma$ data, with uncertainties adjusted upwards, as specified in comments, for 23 $E\gamma$ values out of a total of 151 γ rays placed in the decay scheme. With this adjustment reduced $\chi^2=2.0$ as compared to $\chi^2=1.3$ at 95% confidence level, and only ten γ rays deviating between 2σ and 3σ . Without this adjustment reduced $\chi^2=18$, much too large, with 14 γ rays deviating by more than 5σ , three γ rays deviating between 4σ and 5σ , and ten γ rays between 3σ and 4σ .

[‡] From the Adopted Levels.

[#] From $(\gamma)(ce)(t)$ (1974An04, also 1972Af03), unless otherwise noted. The same values are adopted in Adopted Levels.

ε, β^+ radiations

av E β : Additional information 2.

Measured $E\beta^+=329.25$ (2.1×10⁻³ 2)%, 272 2 (5.6×10⁻³ 7)% (1982Vy03). Other : $E\beta^+=330 \ 20 \ (6.5×10^{-3} \ 20)\% \ (1965Pr02)$. Intensity balance gives apparent $\varepsilon+\beta^+$ feeding for the following low-lying levels, which are not likely due to highly forbidden β transitions from 1/2⁺ parent state: 1.3% *12* for 47.16, 5/2⁺ level; 1.8% *4* for 77.26, 7/2⁻ level; 0.25% *6* for 97.96, 9/2⁺ level; and 0.036% *4* for 175.8, 9/2⁻ level. These imbalance are probably due to some unresolved issues in the decay scheme, for example accurate and precise information about multipolarities of very low-energy transitions, and a few doubly-placed transitions with undivided intensities.

E(decay)	E(level)	$I\beta^+$ [†]	Ιε [†]	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(63.2 18)	1528.12		0.083 5	5.98 6	0.083 5	εK=0.061 26; εL=0.664 17; εM+=0.274 7
(163.9 18)	1427.411		7.0 4	5.46 4	7.0 4	εK=0.7083 22; εL=0.2166 14; εM+=0.0752 6
(174.6 18)	1416.72		0.116 9	7.32 +5-4	0.116 9	εK=0.7201 19; εL=0.2081 12; εM+=0.0718 5
(179.4 18)	1411.92		0.46 3	6.75 4	0.46 3	εK=0.7248 18; εL=0.2047 11; εM+=0.0705 5
(251.9 [‡] <i>18</i>)	1339.41		0.155 12	6.86 ¹ <i>u</i> 5	0.155 12	ε K=0.6134 27; ε L=0.2850 17; ε M+=0.1016 7 Value of log <i>ft</i> is inconsistent with expected value of >8.5 for first-forbidden unique transition
(302.2 18)	1289.094		0.385 21	7.400 +31-30	0.385 21	εK =0.7822 7; εL =0.1635 4; εM +=0.05421 21
(487.8 18)	1103.501		0.78 5	7.569 +33-31	0.78 5	εK=0.8066 4; εL=0.14596 18; εM+=0.04740 14
(591.5 18)	999.853		0.293 19	8.179 +33-31	0.293 19	εK=0.81282 34; εL=0.14149 15; εM+=0.04569 13
(628.9 18)	962.422		0.88 4	7.759 +24-23	0.88 4	εK=0.81449 33; εL=0.14028 15; εM+=0.04522 13
(670.6 18)	920.716		3.83 22	7.181 +29-28	3.83 22	εK=0.81612 32; εL=0.13910 14; εM+=0.04478 13
(737.8 18)	853.538		10.1 6	6.849 +30-28	10.1 6	εK=0.81831 31; εL=0.13752 13; εM+=0.04418 13
(845.4 18)	745.946		6.0 <i>3</i>	7.201 +25-24	6.0 <i>3</i>	εK=0.82104 29; εL=0.13554 12; εM+=0.04342 11
(982.8 18)	608.502		1.53 8	7.932 +26-25	1.53 8	εK=0.82359 28; εL=0.13369 11; εM+=0.04271 11
(985.8 18)	605.486		0.85 21	8.19 +13-10	0.85 21	εK=0.82364 28; εL=0.13366 11; εM+=0.04269 11
(1001.4 18)	589.882		6.1 <i>3</i>	7.349 +25-24	6.1 <i>3</i>	εK=0.82388 28; εL=0.13349 11; εM+=0.04263 11
(1001.5 18)	589.759		4.05 21	7.527 +26-25	4.05 21	εK=0.82388 28; εL=0.13348 11; εM+=0.04263 11
(1056.7 18)	534.571	2.5×10 ⁻⁹ 8	1.26 6	8.083 +24-23	1.26 6	av Eβ=14.8 14; εK=0.82467 28; εL=0.13291 11;
						$\varepsilon M + = 0.04242 \ 11$

1982Vy03,1980Ab18 (continued)

balance.

¹⁶⁵Tm ε + β ⁺ decay (30.06 h)

				ϵ, β^+ radiations (co	ontinued)	
E(decay)	E(level)	I β^+ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log <i>ft</i>	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(1072.2 [‡] 18)	519.144	1.5×10 ⁻¹⁰ 10	0.15 9	9.6 +4-2	0.15 9	av E β =29.4 9; ε K=0.80816 33; ε L=0.14488 14; ε M+=0.04695 13 I(ε + β ⁺): no ε feeding is expected to this level from Δ J=2, $\Delta\pi$ =no.
(1083.9 18)	507.421	3.9×10 ⁻⁷ 6	5.8 <i>3</i>	7.443 +26-25	5.8 <i>3</i>	av Eβ=35.5 8; εK=0.82503 27; εL=0.13265 11; εM+=0.04232 11
(1113.5 18)	477.758	2.8×10 ⁻⁹ 17	0.07 4	$10.0^{1u} + 4 - 2$	0.07 4	av Eβ=53.2 8; εK=0.80947 32; εL=0.14394 14; εM+=0.04659 13
(1207.0 [‡] 18)	384.341	1.049×10 ⁻⁷	0.05	>10.3 ¹ <i>u</i>	<0.05	av E β =102.4 8; ε K=0.81205 31; ε L=0.14207 13; ε M+=0.04589 13 I(ε + β^+): -0.01 6 from γ -transition intensity balance.
(1234.8 18)	356.525	5.5×10 ⁻⁴ 4	11.7 7	7.257 +29-28	11.7 7	av Eβ=109.7 7; εK=0.82667 27; εL=0.13143 11; εM+=0.04185 11
(1293.9 18)	297.367	0.00502 29	34.4 17	6.831 +25-24	34.4 17	av Eβ=137.1 7; εK=0.82713 27; εL=0.13102 11; εM+=0.04170 11
(1295.2 [‡] 18)	296.124	7.94×10 ⁻⁶	0.49999	>9.4 ¹ <i>u</i>	<0.5	av E β =146.6 7; ε K=0.81408 30; ε L=0.14059 13; ε M+=0.04532 13 I(ε + β^+): 0.0 5% from γ -transition intensity balance.
(1348.4 18)	242.929	8×10 ⁻⁴ 4	2.4 13	8.02 +34-19	2.4 13	av Eβ=161.9 7; εK=0.82744 26; εL=0.13067 11; εM+=0.04156 11
(1591.3 [‡] 21)	0.0	0.001580	2.9984	9.0 ¹ ^u	<3	av E β =284.8 7; ε K=0.81866 28; ε L=0.13689 11; ε M+=0.04392 11 I(ε + β ⁺): -2 5 from γ -transition intensity

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

$\gamma(^{165}\text{Er})$

I γ normalization: From I γ /I(K x ray) (1982Vy03). I(K_{$\alpha2$})=77.4 *18*, I(K_{$\alpha1$})=133 *3*, I(K_{$\beta1$})=43.3 *10*, I(K_{$\beta2$})=10.7 *3* relative to I γ =100 for 242.9 γ (1982Vy03). Ice(K) values from 1982Vy03 are normalized to Ice(K)=100 for 242.9 γ . For some of the transitions, ce data are available from 1980Ab18 only. The Ice(K) values

from 1980A	Ab18 are also	normalized	to Ice(K)=100 for	r 242.9)γ.				
E _γ ‡	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ#	α^{\dagger}	$I_{(\gamma+ce)}^{c}$	Comments
11.60 ^b 2		384.341	5/2-	372.716	7/2-	M1		262 4	0.5 1	ce(L)/(γ +ce)=0.775 8; ce(M)/(γ +ce)=0.1741 33 ce(N)/(γ +ce)=0.0406 8; ce(O)/(γ +ce)=0.00584 12; ce(P)/(γ +ce)=0.000319 7 α (L)=203.6 30; α (M)=45.7 7 α (N)=10.65 16; α (O)=1.534 23; α (P)=0.0838 13 I(γ +ce): from γ -transition intensity balance at 384.3 level. Mult.: small E2 admixture is also possible (1980Ab18). Ice(M1):Ice(M2):Ice(M3)=0.66 25:0.41 16:0.33 16 (1980Ab18).
14.56 ^b 2	0.26 ^{&}	77.258	7/2-	62.672	7/2+	(E1)		11.47 <i>17</i>		$\alpha(L)=8.91 \ 13; \ \alpha(M)=2.068 \ 30$ $\alpha(N)=0.447 \ 6; \ \alpha(O)=0.0448 \ 6; \ \alpha(P)=0.000961 \ 14$ $\% I\gamma=0.092$ Ice(M1):Ice(M2):Ice(M3)=0.25 \ 12:0.25 \ 12:0.33 \ 16 (1980Ab18).
15.512 10	0.008 ^{&} 4	62.672	7/2+	47.158	5/2+	M1+E2	0.27 7	1.2×10 ³ 6	9.4 3	% Iγ=0.0028 <i>14</i> ce(L)/(γ+ce)=0.77 <i>25</i> ; ce(M)/(γ+ce)=0.18 <i>11</i> ce(N)/(γ+ce)=0.041 <i>27</i> ; ce(O)/(γ+ce)=0.0048 <i>32</i> ; ce(P)/(γ+ce)=2.8×10 ⁻⁵ <i>14</i> α (L)=10×10 ² <i>5</i> ; α (M)=2.3×10 ² <i>11</i> α (N)=51 <i>25</i> ; α (O)=6.0 <i>28</i> ; α (P)=0.0351 <i>5</i> I _(γ+ce) : from γ-transition intensity balance. I _γ : from I(γ+ce) and α (total). Other: ≈0.05 (1980Ab18). Ice(M1):Ice(M2):Ice(M3)=0.49 <i>16</i> :2.5 <i>5</i> :2.9 <i>6</i> (1980Ab18). M1:M2:M3=<37.5:60:100 (1970Ab18).
20.71 ^b 2	0.08 ^{&}	97.958	9/2+	77.258	7/2-	(E1)		4.39 6		α (L)=3.42 5; α (M)=0.779 <i>11</i> α (N)=0.1711 24; α (O)=0.01876 27; α (P)=0.000466 7 %I γ =0.028 Ice(L1):Ice(L2)=0.66 <i>16</i> :0.41 <i>16</i> (1980Ab18).

24.6 18

%I γ =0.0025

384.341 5/2⁻ 356.525 3/2⁻ M1+E2 0.077 12

4

27.879 *15* 0.007[&]

From ENSDF

					¹⁶⁵ Tn	$\epsilon + \beta^+$ decay	y (30.06 h) 1982	Vy03,1980A	b18 (continued)
							γ (¹⁶⁵ Er) (conti	nued)	
E_{γ}^{\ddagger}	I_{γ} ‡ c	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
			_						$\begin{array}{l} \alpha(L)=19.1 \ 14; \ \alpha(M)=4.33 \ 33 \\ \alpha(N)=1.00 \ 7; \ \alpha(O)=0.138 \ 8; \ \alpha(P)=0.00617 \ 9 \\ \text{Uncertainty in } E\gamma \text{ increased to } 0.030 \ \text{keV for least-squares} \\ \text{fitting.} \\ \text{Mult.: } M1 \ \text{in } 1982 \text{Vy03.} \\ \text{Ice}(L1): \text{Ice}(L2): \text{Ice}(L3)=0.41 \ 8:0.11 \ 3:0.070 \ 16 \ (1980 \text{Ab18}). \end{array}$
30.106 8	0.25	77.258	7/2-	47.158	5/2+	E1		1.565 22	L1:L2:L3=100:58:116 (1970Ab18) α (L)=1.222 <i>17</i> ; α (M)=0.275 <i>4</i> α (N)=0.0612 <i>9</i> ; α (O)=0.00721 <i>10</i> ; α (P)=0.0002076 <i>29</i> %I γ =0.089 Ice(L1):Ice(L2):Ice(L3)=0.57 8:0.30 5:0.66 8 (1980Ab18).
35.280 18	0.06 ^{&}	97.958	9/2+	62.672	7/2+	M1+E2	0.173 +26-19	17.5 25	$\alpha(L)=13.6\ 19;\ \alpha(M)=3.1\ 5$ $\alpha(N)=0.72\ 10;\ \alpha(O)=0.094\ 12;\ \alpha(P)=0.00301\ 5$ $\%I\gamma=0.021$ L1:L2:L3=100:33:67; M1:M2:M3=100: \approx 33: \approx 59 (1970Ab18). Leg(L1):Leg(L2):Leg(L3)=1.0.3:0.05\ 12:1.05\ 12 (1980Ab18));
47.155 6	47.5 12	47.158	5/2+	0.0	5/2-	E1		0.450 6	Ce(L1).1ce(L2).1ce(L3)=1.9 5.0.95 12.1.05 12 (1980Ab18), %Iγ=16.9 8 L1:L2:L3=100:33:67 (1970Ab18); M1:M2:M3=100:33:67 (1970Ab18) α (N)=0.01767 25; α (O)=0.002213 31; α (P)=7.48×10 ⁻⁵ 10 α (L)=0.351 5; α (M)=0.0784 11 Mult.: E1 in 1982Vy03. Ice(L1):Ice(L2):Ice(L3)=46 4:18.3 13:26.9 16 (1980Ab18). δ : <0.024 from L1:L2:L3 (1980Ab18). Other: δ =-0.14 +5-6 ($\gamma\gamma(\theta)$) (1988U102). However RUL=1 for B(M2)(W.u.) does not permit any M2 admixture, thus pure E1 is assigned.
50.77 ^b 2	0.003 ^{&}	97.958	9/2+	47.158	5/2+	E2		46.9 7	α (L)=36.0 5; α (M)=8.76 12 α (N)=1.975 28; α (O)=0.2271 32; α (P)=0.0001887 26 %I γ =0.0011 Ice(L1):Ice(L2):Ice(L3)=<0.022:0.25 8:0.22 7 (1980Ab18).
53.182 <i>15</i>	1.60 12	296.124	5/2-	242.929	3/2-	M1+E2	0.148 12	3.63 13	$\label{eq:second} \begin{split} & & \sim (1) \ (1$
54.415 11	20.3 5	297.367	1/2-	242.929	3/2-	M1(+E2)	<0.017	2.70 4	%Iγ=7.2 4 L1:L2:L3=100:9.2:1.4 (1970Ab18); M1:M2:M3=100:9.2:1.4 (1970Ab18) α (L)=2.110 30; α (M)=0.468 7 α (N)=0.1091 15; α (O)=0.01575 22; α (P)=0.000863 12

S

					¹⁶⁵ Tm	$\varepsilon + \beta^+$ decay	(30.06 h) 1982	Vy03,1980Ab	o18 (continued)
							$\gamma(^{165}\text{Er})$ (contin	nued)	
E _γ ‡	Ι _γ ‡ <i>C</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ#	α^{\dagger}	Comments
59.129 22	0.164 <i>13</i>	356.525	3/2-	297.367	1/2-	M1+E2	0.77 8	17.1 6	Mult.: M1 in 1982Vy03. Ice(L1):Ice(L2):Ice(L3)=189 13:23.6 15:7.6 5 (1980Ab18). $\delta = -0.16 4 (\gamma \gamma(\theta))$ (1988Ul02). δ : from L1, L2, M1, M2 and M3 electron intensity ratios. $\% I\gamma = 0.058 5$ L1:L2:L3=100:375:250 (1970Ab18) $\alpha(K)=7.4 4$; $\alpha(L)=7.4 8$; $\alpha(M)=1.79 19$ $\alpha(N)=0.41 4$; $\alpha(O)=0.048 5$; $\alpha(P)=0.000476 28$
60.399 <i>4</i>	2.00 4	356.525	3/2-	296.124	5/2-	M1+E2	0.044 +14-19	12.13 <i>17</i>	Mult.: M1 in 1982Vy03. M1:M2:M3=100: \approx 333: \approx 256 (1970Ab18). Ice(L1):Ice(L2):Ice(L3)=0.90 8:2.7 3:3.0 3 (1980Ab18). α (K)=10.11 14; α (L)=1.578 30; α (M)=0.351 7 α (N)=0.0817 16; α (O)=0.01175 21; α (P)=0.000635 9 %I γ =0.710 33 Mult.: M1 in 1982Vy03.
62.676 5	1.44 3	62.672	7/2+	0.0	5/2-	E1		1.099 <i>15</i>	L1:L2:L3=100:11:<2.1; M1:M2=100:11 (1970Ab18). Ice(L1):Ice(L2):Ice(L3)=14.4 <i>16</i> :1.44 <i>16</i> :0.36 <i>8</i> (1980Ab18). δ : from ce ratios (1980Ab18). Other: -0.20 2 ($\gamma\gamma(\theta)$) (1988U102). $\alpha(K)=0.896$ <i>13</i> ; $\alpha(L)=0.1587$ <i>22</i> ; $\alpha(M)=0.0353$ <i>5</i> $\alpha(N)=0.00801$ <i>11</i> ; $\alpha(O)=0.001033$ <i>14</i> ; $\alpha(P)=3.81\times10^{-5}$ <i>5</i> $\alpha(N)=0.511$ 24
70.610 <i>5</i>	0.595 17	589.759	3/2+	519.144	5/2+	M1+E2	0.05 +4-3	7.77 11	%1γ=0.511 24 Ice(L2):Ice(L3)=0.62 8:0.23 3 (1980Ab18). %Iγ=0.211 11 α (K)exp=4.5 5 α (K)=6.49 9; α (L)=1.00 4; α (M)=0.222 9 α (N)=0.0517 21; α (O)=0.00744 24; α (P)=0.000403 6 Mult.: (M1) in 1982Vy03. K:L1:L2:L3=≈714:100:10:≈2.3; M1:M2=100:≤12 (1970Ab18).
76.56 ^b 2	0.005 ^{&}	372.716	7/2-	296.124	5/2-	M1(+E2)	<0.3	6.23 13	Ice(L1):Ice(L2):Ice(L3)=2.7 3:0.27 3:0.066 16 (1980Ab18). Ice(K)=13.8 17. α (K)=5.01 15; α (L)=0.95 17; α (M)=0.22 4 α (N)=0.050 10; α (O)=0.0069 11; α (P)=0.000309 11 %Iy=0.0018 Ice(K):Ice(L1):Ice(L2)=0.12 4:0.016 8:<0.006 (1980Ab18).
77.253 5	2.05 5	77.258	7/2-	0.0	5/2-	M1+E2	2.3 4	7.70 16	$ \begin{aligned} & & \approx (L_1) \cdot (C(L_2) = 0.12 + 0.010 + 0.5000 + 0.5000 + 0.000 + $

From ENSDF

 $^{165}_{68}{
m Er}_{97}$ -6

				16	¹⁶⁵ Tm ε+ $β^+$ decay (30.06 h) 1982Vy03				18 (continued)
							$\gamma(^{165}\text{Er})$ (contin	ued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
									 Ice(K):Ice(L1):Ice(L2):Ice(L3)=25.5 25:2.9 3:23.0 22:17.8 17 (1980Ab18). Ice(K)=18.2 19 Penetration parameter is deduced as ≈0 (1991GaZZ) from α(L3)exp. δ: from subshell ratios. Others: -23.4 to +25.8 (γγ(θ)) (1988Ul02); 6 +∞-3 (1991GaZZ) from α(L3)exp.
82.33 ^b 1	0.012 ^{&}	589.759	3/2+	507.421	1/2+	M1+E2	<0.23	5.01 8	%Iγ=0.0043 α (K)=4.11 9; α (L)=0.70 7; α (M)=0.158 18 α (N)=0.037 4; α (O)=0.0051 5; α (P)=0.000253 6 K:L1:L2=735:100:<24 (1970Ab18). Ice(K):Ice(L1):Ice(L2)=0.25 8:0.033 8:<0.008 (1980Ab18).
86.93 ^b 1	0.10 ^{&}	384.341	5/2-	297.367	1/2-	E2		5.03 7	%Iγ=0.036 K:L1:L2=1200:100:800 (1970Ab18) α (K)=1.456 20; α (L)=2.74 4; α (M)=0.667 9 α (N)=0.1509 21; α (O)=0.01761 25; α (P)=6.17×10 ⁻⁵ 9 Uncertainty in Eγ increased to 0.02 keV for least-squares fitting. Ice(K):Ice(L1):Ice(L2):Ice(L3)=0.74 16:0.066 16:0.49 8:0.49 8 (1980Ab18).
88.205 <i>15</i>	0.133 14	384.341	5/2-	296.124	5/2-	M1+E2	0.12 2	4.09 6	%Iγ=0.047 5 α (K)exp=3.8 8 α (K)=3.39 5; α (L)=0.544 13; α (M)=0.1214 31 α (N)=0.0282 7; α (O)=0.00403 8; α (P)=0.0002094 30 Mult.: M1 in 1982Vy03. K:L1:L2=600:100:≤17 (1970Ab18). Ice(K):Ice(L1):Ice(L2):Ice(L3)=2.3 3:0.39 4:0.049 8:0.020 2 (1980Ab18). δ: from ce ratios (1980Ab18). Other: +0.44 +16-15 ($\gamma\gamma(\theta)$,1988U102). Ice(K)=2.6 3.
98.60 ^b 5	0.013	175.82	9/2-	77.258	7/2-	[M1+E2]		3.03 8	$\alpha(K)\exp=12.6$ $\alpha(K)=1.8.7$; $\alpha(L)=0.9.6$; $\alpha(M)=0.23.14$ $\alpha(N)=0.052.32$; $\alpha(O)=0.0063.35$; $\alpha(P)=1.0\times10^{-4}.5$ %I $\gamma=0.0046$ $\alpha(K)\exp$ from Ice(K)=0.082.16 (1980Ab18) and I γ , with assumed 50% uncertainty for I γ is much larger than $\alpha(K)(M1)=2.5$ and $\alpha(K)(F2)=1.1$
113.599 4	4.40 9	356.525	3/2-	242.929	3/2-	M1+E2	0.081 +24-33	1.974 28	$%I\gamma = 1.567$ $\alpha(K) \exp = 1.51 \ 15$ $\alpha(K) = 1.652 \ 23; \ \alpha(L) = 0.252 \ 4; \ \alpha(M) = 0.0560 \ 10$

 $^{165}_{68}\mathrm{Er}_{97}$ -7

				¹⁶⁵ Tm ε + β ⁺ decay (30.06 h)			30.06 h)	1982Vy03,1980Ab18 (continued)			
							$\gamma(^{165}\text{Er})$	(continued)			
E_{γ}^{\ddagger}	I_{γ} ‡ c	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments		
120.34 ^b 4	0.015&	206 124	5/2-	175.82	0/2-	(F2)		1 470 21	α(N)=0.01304 23; α(O)=0.001878 30; α(P)=0.0001017 15 Mult.: M1 in 1982Vy03. K:L1:L2:L3=778:100:11:≤1.9 (1970Ab18). Ice(K):Ice(L1):Ice(L2):Ice(L3)=37 4:5.1 5:0.52 5:0.115 16 (1980Ab18). Ice(K)=45 4. δ: from ce ratios (1980Ab18). Other: +0.26 2 (γγ(θ)) (1988U102). α(K)=xp=0.66 30		
120.34 4	0.015	290.124	5/2	175.62	5/2	(E2)		1.4/9 21	$\alpha(K) \exp (0.0050)$ $\alpha(K) = 0.677 \ 10; \ \alpha(L) = 0.615 \ 9; \ \alpha(M) = 0.1490 \ 21$ $\alpha(N) = 0.0338 \ 5; \ \alpha(O) = 0.00401 \ 6; \ \alpha(P) = 2.86 \times 10^{-5} \ 4$ $\% I\gamma = 0.0053$ For $\alpha(K) \exp, 20\%$ uncertainty assumed in I γ value. $Ice(K) = 0.052 \ (1980 \Delta b18)$		
^x 125.17 ^b 4	0.04 ^{&}								%Iy=0.014 Ice(K)=0.14 3 (1980Ab18). E _w : placed from a 1044 level in 1980Ab18.		
127.69 ^b 4	0.06 ^{&}	605.486	(3/2 ⁺)	477.758	5/2-	[E1]		0.1699 24	%I γ =0.021 α (K)=0.1419 20; α (L)=0.02193 31; α (M)=0.00485 7 α (N)=0.001113 16; α (O)=0.0001511 21; α (P)=6.62×10 ⁻⁶ 9 Ice(K)=0.04 2 (1980Ab18).		
129.82 ^b 4	0.02 ^{&}	372.716	7/2-	242.929	3/2-	[E2]		1.124 <i>16</i>	$\alpha(K)=0.553 \ 8; \ \alpha(L)=0.438 \ 6; \ \alpha(M)=0.1059 \ 15$ $\alpha(N)=0.02402 \ 34; \ \alpha(O)=0.00286 \ 4; \ \alpha(P)=2.363\times10^{-5} \ 33$ %Iy=0.007 Ice(K)=0.06 2 (1980Ab18)		
141.36 7	0.083 13	384.341	5/2-	242.929	3/2-	M1+E2	0.47 10	1.019 <i>21</i>	α (K)exp=0.81 <i>I5</i> (1980Ab18) α (K)=0.809 <i>31</i> ; α (L)=0.163 <i>11</i> ; α (M)=0.0373 <i>28</i> α (N)=0.0086 <i>6</i> ; α (O)=0.00117 <i>7</i> ; α (P)=4.84×10 ⁻⁵ <i>24</i> %Iy=0.030 <i>5</i> Ice(K):Ice(L1):Ice(L2):Ice(L3)=0.34 <i>5</i> :0.046 <i>9</i> :0.013 <i>2</i> :0.011 <i>2</i> (1080Ab18)		
141.36 7		1103.501	3/2+	962.422	3/2-	[E1]		0.1297 18	$\alpha(K)=0.1085 \ 15; \ \alpha(L)=0.01658 \ 23; \ \alpha(M)=0.00367 \ 5 \ \alpha(N)=0.000843 \ 12; \ \alpha(O)=0.0001149 \ 16; \ \alpha(P)=5.13\times10^{-6} \ 7 \ Uncertainty in E\gamma$ increased to 0.14 keV for least-squares fitting.		
^x 144.08 ^{<i>p</i>} 4 149.65 6	0.082 15	534.571	3/2+	384.341	5/2-	E1		0.1115 <i>16</i>	%Iγ=0.029 6 α (K)exp=0.08 2 (1980Ab18) α (K)=0.0933 13; α (L)=0.01419 20; α (M)=0.00314 4 α (N)=0.000721 10; α (O)=9.87×10 ⁻⁵ 14; α (P)=4.45×10 ⁻⁶ 6 Poor fit in the level scheme. Uncertainty in Eγ increased to 0.24 keV for least-squares fitting.		
150.894 <i>5</i>	1.59 4	507.421	1/2+	356.525	3/2-	E1		0.1090 15	$\alpha(K)$ exp=0.087 8 $\alpha(K)$ =0.0913 13; $\alpha(L)$ =0.01387 19; $\alpha(M)$ =0.00307 4		

 ∞

				165	165 Tm ε + β^+ decay (30.06 h)		1982Vy03,1	1980Ab18 (continued)	
							γ (¹⁶⁵ Er) (continued)	
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
							_		$\begin{split} &\alpha(\mathrm{N}){=}0.000705 \ 10; \ \alpha(\mathrm{O}){=}9.65{\times}10^{-5} \ 14; \ \alpha(\mathrm{P}){=}4.36{\times}10^{-6} \ 6 \\ &\%\mathrm{I}\gamma{=}0.565 \ 28 \\ &\mathrm{K:L1:L2:L3}{=}1333{:}100{:}{\leq}25{:}{\approx}33 \ (1970\mathrm{Ab18}). \\ &\mathrm{Ice}(\mathrm{K}){:}\mathrm{Ice}(\mathrm{L1}){:}\mathrm{Ice}(\mathrm{L2}){:}\mathrm{Ice}(\mathrm{L3}){=}0.72 \ 2{:}0.082 \ 8{:}0.0164 \ 16{:}0.0164 \ 16 \\ &(1980\mathrm{Ab18}). \ \mathrm{Other:} \ \mathrm{E1}({+}\mathrm{M2}) \ \mathrm{with} \ {-}0.25{<}\delta{<}{+}0.01 \ (\gamma\gamma(\theta)) \\ &(1988\mathrm{Ul}02). \\ &\mathrm{Ice}(\mathrm{K}){=}0.95 \ 8. \end{split}$
156.10 [@] 3	0.033 [@] 16	745.946	1/2+	589.882	1/2-	E1 [@]		0.0997 14	$\alpha(K)=0.0835 \ 12; \ \alpha(L)=0.01264 \ 18; \ \alpha(M)=0.00280 \ 4$ $\alpha(N)=0.000643 \ 9; \ \alpha(O)=8.81\times10^{-5} \ 12; \ \alpha(P)=4.01\times10^{-6} \ 6$ %I γ =0.012 6
156.21 [@] 3	0.049 [@] 16	745.946	1/2+	589.759	3/2+	M1 [@]		0.801 11	%Iγ=0.017 6 α (K)exp=0.22 5 (1980Ab18); K:L1=1.1 2:0.15 2 α (K)=0.672 9; α (L)=0.1002 14; α (M)=0.02223 31 α (N)=0.00518 7; α (O)=0.000750 11; α (P)=4.14×10 ⁻⁵ 6 Mult : F2 for a complex line (1980Ab18)
162.60 <i>3</i>	0.18 4	519.144	5/2+	356.525	3/2-	E1		0.0895 <i>13</i>	$\begin{array}{l} \alpha(\text{K}) \exp = 0.073 \ 15 \ (1980 \text{Ab18}) \\ \alpha(\text{K}) = 0.0750 \ 11; \ \alpha(\text{L}) = 0.01132 \ 16; \ \alpha(\text{M}) = 0.002502 \ 35 \\ \alpha(\text{N}) = 0.000575 \ 8; \ \alpha(\text{O}) = 7.90 \times 10^{-5} \ 11; \ \alpha(\text{P}) = 3.62 \times 10^{-6} \ 5 \\ \mathcal{W}_{17} = 0.064 \ 15 \\ \text{Le}(\text{V}) = 0.066 \ 15 \end{array}$
165.659 <i>15</i>	0.44 6	242.929	3/2-	77.258	7/2-	E2		0.477 7	$\begin{aligned} \alpha(K) &= 0.106 \ 10 \ (1930Ab18). \\ \alpha(K) &= 0.244; \ K:L1:L2:L3 = 875:100:313:250 \ (1970Ab18) \\ \alpha(K) &= 0.2804; \ \alpha(L) = 0.151521; \ \alpha(M) = 0.03645 \\ \alpha(N) &= 0.0082612; \ \alpha(O) = 0.00100314; \ \alpha(P) = 1.258 \times 10^{-5}18 \\ \% I\gamma = 0.15622 \\ Ice(K):Ice(L1):Ice(L2):Ice(L3) = 0.668: 0.0668: 0.16416: 0.13116 \end{aligned}$
175.86 7	0.063 7	175.82	9/2-	0.0	5/2-	(E2)		0.388 5	(1980Ab18). Ice(K)=0.70 5. α (K)exp=0.26 16 α (K)=0.2354 33; α (L)=0.1177 17; α (M)=0.0282 4 α (N)=0.00641 9; α (O)=0.000781 11; α (P)=1.075×10 ⁻⁵ 15 %I γ =0.0224 27 Ice(K)=0.11 6. Ice(K)=0.074 16 (1980Ab18)
181.61 4	0.049 5	477.758	5/2-	296.124	5/2-	M1(+E2)	<1.2	0.47 5	%ly=0.0174 <i>19</i> α (K)exp=0.39 <i>8</i> (1980Ab18) α (K)=0.37 <i>7</i> ; α (L)=0.077 <i>11</i> ; α (M)=0.0175 <i>30</i> α (N)=0.0040 <i>7</i> ; α (O)=0.00055 <i>6</i> ; α (P)=2.2×10 ⁻⁵ <i>5</i> Mult.: (M1,E2) in 1982Vy03. Lce(K)=0.097 <i>16</i> Lce(K)=0.10 <i>2</i> (1980Ab18)
195.773 7	1.62 4	242.929	3/2-	47.158	5/2+	E1		0.0550 8	$\begin{array}{l} \alpha(K) = 0.040 \ 5 \\ \alpha(K) = 0.0462 \ 6; \ \alpha(L) = 0.00686 \ 10; \ \alpha(M) = 0.001515 \ 21 \\ \alpha(N) = 0.000349 \ 5; \ \alpha(O) = 4.83 \times 10^{-5} \ 7; \ \alpha(P) = 2.280 \times 10^{-6} \ 32 \end{array}$

				165-	Γm ε+μ	3 ⁺ decay (30	0.06 h) 1	982Vy03,198	80Ab18 (continued)
							$\gamma(^{165}\text{Er})$ (c	ontinued)	
${\rm E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ#	α^{\dagger}	Comments
×107.70 ^b 4									%Iγ=0.575 28 K:L1:L2=833:100:<33 (1970Ab18)\$. Ice(K):Ice(L1):Ice(L2)=0.37 6: \approx 0.05: \leq 0.016 (1980Ab18). Ice(K)=0.44 5. δ(M2/E1)=+0.22 +13-10 (γγ(θ)) (1988UI02).
205.402 11	1.20 3	589.759	3/2+	384.341	5/2-	E1		0.0485 7	α (K)exp=0.067 <i>19</i> (1982Vy03); α (K)exp=0.04 <i>2</i> (1980Ab18) α (K)=0.0408 <i>6</i> ; α (L)=0.00604 <i>8</i> ; α (M)=0.001333 <i>19</i> α (N)=0.000307 <i>4</i> ; α (O)=4.26×10 ⁻⁵ <i>6</i> ; α (P)=2.025×10 ⁻⁶ <i>28</i> %I γ =0.426 <i>21</i> Ice(K)=0.55 <i>16</i> .
210.053 7	2.36 5	507.421	1/2+	297.367	1/2-	E1		0.0458 6	α (K)exp=0.032 <i>11</i> α (K)=0.0385 <i>5</i> ; α (L)=0.00569 <i>8</i> ; α (M)=0.001256 <i>18</i> α (N)=0.000290 <i>4</i> ; α (O)=4.02×10 ⁻⁵ <i>6</i> ; α (P)=1.916×10 ⁻⁶ <i>27</i> %Iy=0.84 <i>4</i> Lce(K)=0.52 <i>19</i>
218.859 6	9.4 5	296.124	5/2-	77.258	7/2-	M1+E2	-0.26 7	0.306 6	%Iy=3.34 23 %Iy=3.34 23 α (K)exp=0.208 15 α (K)=0.255 6; α (L)=0.0396 6; α (M)=0.00883 16 α (N)=0.002055 35; α (O)=0.000294 4; α (P)=1.55×10 ⁻⁵ 4 Mult.: M1 in 1982Vy03. K:L1:L2:L3=666:100:11:<3.3 (1970Ab18). Ice(K):Ice(L1):Ice(L2):Ice(L3)=12.2 16:1.64 16:0.181 16:0.066 16 (1980Ab18). Ice(K)=13.3 6. δ : from ce and δ =-0.30 10 (γγ(θ)) (1988UI02); sign from γ γ(θ).
221.15 ^b 5	0.66 ^{&}	605.486	(3/2 ⁺)	384.341	5/2-	[E1]		0.0401 6	%I γ =0.234 α (K)=0.0337 5; α (L)=0.00496 7; α (M)=0.001096 15 α (N)=0.0002528 35; α (O)=3.52×10 ⁻⁵ 5; α (P)=1.688×10 ⁻⁶ 24 Ice(K)=0.11 (1980Ab18).
224.02 8	0.078 15	608.502	3/2-	384.341	5/2-	M1		0.294 4	%Iγ=0.028 6 α (K)exp=0.23 4 (1980Ab18) α (K)=0.2474 35; α (L)=0.0366 5; α (M)=0.00812 11 α (N)=0.001893 27; α (O)=0.000274 4; α (P)=1.516×10 ⁻⁵ 21 Mult : some E2 admixture is also possible (1980Ab18)
233.280 13	0.290 9	589.759	3/2+	356.525	3/2-	E1		0.0349 5	%I γ =0.103 6 α (K)exp=0.033 7 (1980Ab18) α (K)=0.0294 4; α (L)=0.00431 6; α (M)=0.000952 13 α (N)=0.0002197 31; α (O)=3.06×10 ⁻⁵ 4; α (P)=1.481×10 ⁻⁶ 21 Uncertainty in E γ increased to 0.026 keV for least-squares fitting.
234.789 22	0.183 7	477.758	5/2-	242.929	3/2-	M1(+E2)	<1.2	0.226 33	$\alpha(K)\exp[0.20\ 5\ (1980Ab18)]$

From ENSDF

 $^{165}_{68}\mathrm{Er}_{97}$ -10

Т

 $^{165}_{68}\mathrm{Er}_{97}$ -10

					¹⁶⁵ Tr	n ε + β ⁺	+ decay (30.0	6 h) 1982 V	y03,1980Ab1	18 (continued)
							γ	(¹⁶⁵ Er) (contin	ued)	
	E_{γ}^{\ddagger}	Ι _γ ‡ <i>с</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ #	α^{\dagger}	Comments
										$\alpha(K)=0.183 \ 34; \ \alpha(L)=0.0334 \ 13; \ \alpha(M)=0.0076 \ 4$ $\alpha(N)=0.00175 \ 9; \ \alpha(O)=0.000242 \ 4; \ \alpha(P)=1.09\times10^{-5} \ 25$ %Iy=0.065 4 Ice(K)=0.18 3 (1980Ab18).
	238.471 ^{<i>a</i>} 18	0.45" 4	534.571	3/2+	296.124	5/2-	(E1)		0.0330 5	$\alpha(K)\exp=0.035 \ 7 \ (1980Ab18) \\ \alpha(K)=0.0278 \ 4; \ \alpha(L)=0.00407 \ 6; \ \alpha(M)=0.000899 \ 13 \\ \alpha(N)=0.0002074 \ 29; \ \alpha(O)=2.89\times10^{-5} \ 4; \ \alpha(P)=1.404\times10^{-6} \\ 20 \\ \%I_{X}=0.160 \ 16 $
	238.471 ^{<i>d</i>} 18	0.45 ^{<i>d</i>} 4	745.946	1/2+	507.421	1/2+	[M1]		0.2481 <i>35</i>	%Iγ=0.160 16 α (K)=0.2086 29; α (L)=0.0308 4; α (M)=0.00683 10 α (N)=0.001593 22; α (O)=0.0002306 32; α (P)=1.277×10 ⁻⁵ 18 Uncertainty in Eγ increased to 0.036 keV for least-squares fitting.
11	242.917 7	100.0 20	242.929	3/2-	0.0	5/2-	M1+E2	0.12 +5-7	0.234 4	Mult.: (E1) listed by 1980Ab18 is inconsistent with $1/2^+$ to $1/2^+$ transition. K:L1:L2:L3=686:100:9.2:1.6 (1970Ab18) α (K)=0.1968 31; α (L)=0.0293 4; α (M)=0.00651 9 α (N)=0.001517 21; α (O)=0.0002192 31; α (P)=1.203×10 ⁻⁵ 20
										%Iγ=35.5 17 M1:M2:M3=100:9.1:≈1.8 (1970Ab18). α (K)=0.197 4 from BrIcc was used for normalization of α (K)exp for other transitions. Ice(K):Ice(L1):Ice(L2):Ice(L3)=100:14.6:1.34:0.24 (1980Ab18). Ice(K)=100.0 19. δ (E2/M1)=0.12 +5-7 from L- and M-subshell data.
	248.962 ^{<i>d</i>} 7	2.25 ^d 6	296.124	5/2-	47.158	5/2+	(E1+M2)	0.08 +4-7	0.036 8	$\begin{aligned} &\alpha(\text{K})\exp=0.0300\ 26;\ \text{K:L1:L2:L3}=714:100:13:14\ (1970\text{Ab18})\\ &\%\text{I}\gamma=0.80\ 4\\ &\alpha(\text{K})=0.030\ 6;\ \alpha(\text{L})=0.0047\ 13;\ \alpha(\text{M})=1.04\times10^{-3}\ 29\\ &\alpha(\text{N})=2.4\times10^{-4}\ 7;\ \alpha(\text{O})=3.4\times10^{-5}\ 10;\ \alpha(\text{P})=1.7\times10^{-6}\ 5\\ &\text{Ice}(\text{K}):\text{Ice}(\text{L1}):\text{Ice}(\text{L2})=0.29\ 3:0.06\ 1:0.082\ 8\ (1980\text{Ab18}).\\ &\text{Ice}(\text{K})=0.54\ 5\ \text{for doublet.}\\ &\delta(\text{M2/E1})=+0.42\ 2\ (\gamma\gamma(\theta))\ (1988\text{U102}). \end{aligned}$
	248.962 ^{<i>d</i>} 7	<2.25 ^d	605.486	(3/2+)	356.525	3/2-	(E1+M2)	0.08 +4-7	0.036 8	$\begin{aligned} &\alpha(\text{K}) \exp[=0.030 \ 3 \ (1982\text{Vy03}); \ \alpha(\text{K}) \exp[=0.026 \ 6 \ (1980\text{Ab18}) \\ &\text{K:L1:L2=714:100:14} \ (1970\text{Ab18}) \\ &\% \text{Iy} < 0.80 \\ &\alpha(\text{K}) = 0.030 \ 6; \ \alpha(\text{L}) = 0.0047 \ 13; \ \alpha(\text{M}) = 1.04 \times 10^{-3} \ 29 \\ &\alpha(\text{N}) = 2.4 \times 10^{-4} \ 7; \ \alpha(\text{O}) = 3.4 \times 10^{-5} \ 10; \ \alpha(\text{P}) = 1.7 \times 10^{-6} \ 5 \\ &\text{Ice}(\text{K}):\text{Ice}(\text{L1}):\text{Ice}(\text{L2}) 0.29 \ 3:0.06 \ 1:0.08 \ 1 \ (1980\text{Ab18}). \end{aligned}$

					16	⁵⁵ Τm ε	+ β^+ decay	(30.06 h)	1982Vy03,1980Ab18 (continued)
								$\gamma(^{165}\text{Er})$	(continued)
	${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
	249.83 4	0.40 4	1103.501	3/2+	853.538	3/2+	M1,E2	0.17 5	%Iγ=0.142 <i>16</i> α (K)exp=0.130 (1980Ab18) α (K)=0.13 <i>5</i> ; α (L)=0.0278 <i>8</i> ; α (M)=0.0064 <i>4</i> α (N)=0.00147 <i>7</i> ; α (O)=0.000198 <i>6</i> ; α (P)=7.7×10 ⁻⁶ <i>35</i> Uncertainty in Eγ increased to 0.08 keV for least-squares fitting. Ice(K)=0.28 3 (1980Ab18).
	251.7 ^b 3	0.033 ^{&}	608.502	3/2-	356.525	3/2-	(M1)	0.2142 <i>31</i>	$\alpha(K)=0.1801\ 26;\ \alpha(L)=0.0266\ 4;\ \alpha(M)=0.00589\ 8$ $\alpha(N)=0.001374\ 20;\ \alpha(O)=0.0001989\ 29;\ \alpha(P)=1.102\times10^{-5}\ 16$ $\%I\gamma=0.0117$ $Ica(K)=0\ 030\ 1\ (1080\ Ab18)$
	^x 253.45 5	0.18 4					E1	0.0283 4	$\begin{array}{l} \alpha(K) = 0.030 \ 1 \ (1980A016), \\ \alpha(K) = 0.023 \ 2 \ 3 \ (1980A018), \\ \alpha(K) = 0.02382 \ 33; \ \alpha(L) = 0.00347 \ 5; \ \alpha(M) = 0.000767 \ 11 \\ \alpha(N) = 0.0001771 \ 25; \ \alpha(O) = 2.475 \times 10^{-5} \ 35; \ \alpha(P) = 1.211 \times 10^{-6} \ 17 \\ \Re_{IY} = 0.064 \ 15 \\ \text{Lee}(K) = 0.020 \ 4 \ (1980Ab18) \end{array}$
5	264.492 7	1.56 4	507.421	1/2+	242.929	3/2-	E1	0.0254 4	$\begin{array}{l} \alpha(K) = 0.320 + (1900 \text{ MO10}), \\ \alpha(K) = 0.02140 \ 30; \ \alpha(L) = 0.00311 \ 4; \ \alpha(M) = 0.000687 \ 10 \\ \alpha(N) = 0.0001586 \ 22; \ \alpha(O) = 2.220 \times 10^{-5} \ 31; \ \alpha(P) = 1.092 \times 10^{-6} \ 15 \\ \% \text{Iy} = 0.554 \ 27 \\ \text{Other: E1+M2 with } \delta = -0.33 \ +6-7 \ (1988 \text{U102}), \\ \text{Leg}(K) = 0.33 \ 3 \ \text{Leg}(K) = 0.16 \ 3 \ (1980 \text{Ab18}) \end{array}$
	^x 275.7	0.6							%Iy=0.21 F : observed only in 1970Ab18: by is from Ice(K)
	^x 277.655 <i>33</i>	0.109 5					M1	0.1642 23	$\begin{array}{l} \alpha(\text{K}) = 0.15 \ 3 \ (1980\text{Ab18}) \\ \alpha(\text{K}) = 0.1381 \ 19; \ \alpha(\text{L}) = 0.02034 \ 28; \ \alpha(\text{M}) = 0.00451 \ 6 \\ \alpha(\text{N}) = 0.001051 \ 15; \ \alpha(\text{O}) = 0.0001521 \ 21; \ \alpha(\text{P}) = 8.44 \times 10^{-6} \ 12 \\ \% \text{Iy} = 0.0387 \ 24 \\ \text{Lee}(\text{K}) = 0.082 \ 16 \ (1980\text{Ab18}) \end{array}$
	279.264 7	1.69 5	356.525	3/2-	77.258	7/2-	E2	0.0860 12	$\begin{aligned} &\alpha(K) = 0.041 \ 5; \ K:L1:L2:L3 = 700:100:80:50 \ (1970Ab18) \\ &\alpha(K) = 0.0619 \ 9; \ \alpha(L) = 0.01862 \ 26; \ \alpha(M) = 0.00437 \ 6 \\ &\alpha(N) = 0.001000 \ 14; \ \alpha(O) = 0.0001275 \ 18; \ \alpha(P) = 3.14 \times 10^{-6} \ 4 \\ &\% I\gamma = 0.600 \ 31 \\ Ice(K):Ice(L1):Ice(L2):Ice(L3) = 0.53 \ 12:0.074 \ 8:0.056 \ 8:0.041 \ 8 \ (1980Ab18). \\ Ice(K) = 0.50 \ 6. \end{aligned}$
	286.30 ^b 15	0.025 ^{&}	384.341	5/2-	97.958	9/2+	[M2]	0.643 9	α (K)=0.515 7; α (L)=0.0992 14; α (M)=0.02274 32 α (N)=0.00532 8; α (O)=0.000757 11; α (P)=3.91×10 ⁻⁵ 6 %Iy=0.0089 Lea(K)=0.077 16 (1080Ab18)
	292.410 <i>14</i>	3.58 11	589.882	1/2-	297.367	1/2-	(M1)	0.1428 20	$%I\gamma = 0.07770$ (1980AD18). %I $\gamma = 1.2777$ α (K)exp=0.093; K:L1:L2:L3=667:100:13:13 (1970Ab18)

I.

				16	¹⁶⁵ Tm ε + β ⁺ decay (30.06 h)			1982Vy03,19	280Ab18 (continued)
							γ ⁽¹⁶⁵ Er)	(continued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger c}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ#	$lpha^{\dagger}$	Comments
									 α(K)=0.1202 17; α(L)=0.01767 25; α(M)=0.00391 5 α(N)=0.000913 13; α(O)=0.0001322 19; α(P)=7.34×10⁻⁶ 10 Poor fit in the level scheme. Uncertainty in Eγ increased to 0.056 keV for least-squares fitting. Mult.: (M1) in 1982Vy03, M1+E2 in 1980Ab18; ΔJ^π requires M1. Ice(K):Ice(L1):Ice(L2):Ice(L3)=1.8 3:0.24 3:0.033 8:0.033 8 (1980Ab18). Ice(K)=2.2 8.
296.119 9	10.92 24	296.124	5/2-	0.0	5/2-	M1+E2	<0.40	0.134 5	%Iγ=3.88 19 α (K)exp=0.050 11 α (K)=0.112 5; α (L)=0.01693 28; α (M)=0.00376 6 α (N)=0.000877 13; α (O)=0.0001261 25; α (P)=6.79×10 ⁻⁶ 32 Mult.: E2 in 1982Vy03. K:L1:L2=677:100:≈10:≤3.1 (1970Ab18). Ice(K):Ice(L1):Ice(L2)=6.8 12:1.00 12:0.10 2 (1980Ab18). Ice(K)=3.7 9. δ: from K, L1 and L2 intensities.
297.369 6	35.8 7	297.367	1/2-	0.0	5/2-	E2		0.0709 <i>10</i>	$\begin{aligned} &\alpha(\text{K}) \exp[=0.054 \ 4; \ \text{K:L1:L2:L3}=722:100:94:67 \ (1970\text{Ab18}) \\ &\text{M1:M2:M3}=100:100:77 \ (1970\text{Ab18}) \\ &\alpha(\text{K})=0.0518 \ 7; \ \alpha(\text{L})=0.01476 \ 21; \ \alpha(\text{M})=0.00345 \ 5 \\ &\alpha(\text{N})=0.000790 \ 11; \ \alpha(\text{O})=0.0001015 \ 14; \ \alpha(\text{P})=2.66\times10^{-6} \ 4 \\ &\%\text{I}\gamma=12.7 \ 6 \\ &\text{Ice}(\text{K}):\text{Ice}(\text{L1}):\text{Ice}(\text{L2}):\text{Ice}(\text{L3})=10.0 \ 16:1.4 \ 2:1.30 \ 12:0.93 \ 12 \\ &(1980\text{Ab18}). \\ &\text{Ice}(\text{K})=13.1 \ 11. \end{aligned}$
x304.0 ⁹ 2 307.067 11	0.446 12	384.341	5/2-	77.258	7/2-	M1(+E2)	<0.9	0.112 14	α (K)exp=0.11 <i>3</i> (1980Ab18); α (K)exp=0.057 <i>7</i> (1982Vy03) α (K)=0.092 <i>13</i> ; α (L)=0.0150 <i>6</i> ; α (M)=0.00335 <i>9</i> α (N)=0.000778 <i>24</i> ; α (O)=0.000110 <i>6</i> ; α (P)=5.5×10 ⁻⁶ <i>9</i> %I γ =0.158 <i>8</i> Mult.: E2 in 1982Vy03. δ (E2/M1) from α (K)exp in 1980Ab18. α (K)exp in 1982Vy03 gives M1+E2, δ =2.0 <i>5</i> . Ice(K)=0.176 22. Ice(K)=0.25 4 (1980Ab18).
309.4 ^b 3	0.22 ^{&}	356.525	3/2-	47.158	5/2+	(E1)		0.01717 24	$\alpha(K)=0.01450\ 21;\ \alpha(L)=0.002089\ 30;\ \alpha(M)=0.000461\ 7$ $\alpha(N)=0.0001065\ 15;\ \alpha(O)=1.498\times10^{-5}\ 21;\ \alpha(P)=7.51\times10^{-7}\ 11$ $\%I\gamma=0.078$ Leg(K) $\approx 0.016\ (1980Ab18)$
312.327 12	1.31 7	608.502	3/2-	296.124	5/2-	M1		0.1197 <i>17</i>	% $I\gamma=0.465 32$ $\alpha(K)\exp=0.085 6$ $\alpha(K)=0.1008 14; \alpha(L)=0.01479 21; \alpha(M)=0.00327 5$

From ENSDF

Т

				¹⁶⁵ Tm ε-	b18 (continued)			
					$\gamma(1)$	⁶⁵ Er) (con	tinued)	
E_{γ}^{\ddagger}	$\mathrm{I}_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f J ²	. Mult. [#]	$\delta^{\#}$	$lpha^\dagger$	Comments
318.84 <i>7</i>	0.031 7	853.538	3/2+	534.571 3/2	2+ M1		0.1133 16	α(N)=0.000764 11; α(O)=0.0001106 15; α(P)=6.15×10-6 9 Uncertainty in Eγ increased to 0.024 keV for least-squares fitting. K:L1:L2:L3=700:100:≈10:<2.5 (1970Ab18). Ice(K):Ice(L1)=0.76 8:0.107 12 (1980Ab18). Other: M1(+E2) with δ=-0.20 17 (γγ(θ)) (1988U102). Ice(K)=0.76 5. α(K)=0.0954 13; α(L)=0.01399 20; α(M)=0.00310 4 α(N)=0.000722 10; α(O)=0.0001046 15; α(P)=5.81×10 ⁻⁶ 8 %Iv=0.0110 25
raaa ah a								Ice(K)=0.021 13.
x323.4 ⁰ 2 330.777 [@] 10	0.248 [@] 14	920.716	1/2-	589.882 1/2	E M1 [@]		0.1027 <i>14</i>	 %Iγ=0.088 6 α(K)exp=0.044 2 α(K)=0.0865 12; α(L)=0.01267 18; α(M)=0.00281 4 α(N)=0.000654 9; α(O)=9.48×10⁻⁵ 13; α(P)=5.27×10⁻⁶ 7 Uncertainty in Eγ increased to 0.020 keV for least-squares fitting. Mult.: E2 in 1982Vy03, M1+E2 in 1980Ab18 for a complex line. Ice(K):Ice(L1):Ice(L2):Ice(L3)=0.21 4:0.029 3:0.0033 8:0.0021 4 (1980Ab18) (for 330.777γ+330.885γ).
330.885 [@] 10	0.322 [@] 14	920.716	1/2-	589.759 3/2	,+ Ε1@		0.01458 20	 %Iγ=0.114 7 α(K)=0.01232 17; α(L)=0.001767 25; α(M)=0.000389 5 α(N)=9.01×10⁻⁵ 13; α(O)=1.270×10⁻⁵ 18; α(P)=6.41×10⁻⁷ 9 Poor fit in the level scheme. Uncertainty in Eγ increased to 0.040 keV for least-squares fitting. Mult.: see comment for 330.777γ. Ice(K)=0.172 9 for doublet.
334.34 10	0.042 6	853.538	3/2+	519.144 5/2	2 ⁺ (M1,E2)		0.075 25	α (K)exp=0.02 (1980Ab18) α (K)=0.061 23; α (L)=0.0110 13; α (M)=0.00249 24 α (N)=0.00058 6; α (O)=8.0×10 ⁻⁵ 13; α (P)=3.5×10 ⁻⁶ 16 %Iv=0.0149 22
346.825 [@] 11	0.62 [@] 2	589.759	3/2+	242.929 3/2	E ⁻ E1 [@]		0.01301 18	$\alpha(K)=0.01100 \ 15; \ \alpha(L)=0.001573 \ 22; \ \alpha(M)=0.000347 \ 5$ $\alpha(N)=8.02\times10^{-5} \ 11; \ \alpha(O)=1.132\times10^{-5} \ 16; \ \alpha(P)=5.75\times10^{-7} \ 8$ $\%_{I\gamma}=0.220 \ 12$ K:1 1:1 2=800:100:~~10 (1970Ab18)
346.933 [@] 11	8.1 [@] 3	589.882	1/2-	242.929 3/2	2- M1(+E2) [@]	<0.53	0.086 5	$\%$ I γ =2.88 <i>16</i> α (K)exp=0.073 <i>4</i> (1982Vy03); α (K)exp=0.076 <i>15</i> (1980Ab18) α (K)=0.072 <i>5</i> ; α (L)=0.01086 <i>33</i> ; α (M)=0.00241 <i>6</i>

				16	⁵ Tm ε-	+ β^+ decay (3	0.06 h) 1982	Vy03,1980Ab	18 (continued)
							$\gamma(^{165}\text{Er})$ (contin	nued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
356.519 <i>12</i>	7.75 23	356.525	3/2-	0.0	5/2-	M1+E2	0.84 <i>13</i>	0.0665 35	$\begin{aligned} \alpha(N) &= 0.000562 \ 16; \ \alpha(O) &= 8.08 \times 10^{-5} \ 29; \ \alpha(P) &= 4.33 \times 10^{-6} \ 32 \\ \delta: \ from \ \alpha(K) \ value. \ Others: \ 0.086 \ (1983Mo10); \ -0.23 \ +7-8 \\ (\gamma\gamma(\theta)) \ (1988U102). \\ Mult.: \ M1 \ in \ 1982Vy03. \\ K:L1:L2 &= 800:100: \approx 10 \ (1970Ab18). \\ Ice(K):Ice(L1):Ice(L2) &= 3.3 \ 7:0.41 \ 4: \approx 0.04 \ (1980Ab18). \\ (346.9\gamma)(242.9\gamma)(\theta): \ A_2 &= +0.057 \ 11, \ A_4 &= -0.034 \ 38 \\ (1975Fu13). \\ Ice(K) &= 4.30 \ 21 \ for \ doublet. \end{aligned}$
		605 496	(2)2+)	242.020	2/2-				α(K)exp=0.0320 19 α(K)=0.0546 32; α(L)=0.00928 24; α(M)=0.00209 5 $ α(N)=0.000484 12; α(O)=6.78×10^{-5} 21; α(P)=3.22×10^{-6} 21 $ Mult.: E2 in 1982Vy03. K:L1:L2:L3=833:100:20:≈10 (1970Ab18). Ice(K):Ice(L1):Ice(L2):Ice(L3)=2.1 5:0.28 3:0.056 7:≈0.028 (1980Ab18). Ice(K)=1.68 10. δ: from L1, L2 and L3 intensity ratios.
365.577 8	1.38 4	608.502	(3/2 ⁻) 3/2 ⁻	242.929	3/2 3/2 ⁻	M1+E2	1.14 +25–21	0.056 4	α (K)exp=0.0429 23 %I γ =0.490 25 α (K)=0.045 4; α (L)=0.00823 29; α (M)=0.00186 6 α (N)=0.000431 14; α (O)=5.96×10 ⁻⁵ 25; α (P)=2.64×10 ⁻⁶ 25 K:L1:L2:L3=700:100:≤20:<10 (1970Ab18). Ice(K):Ice(L1):Ice(L2)=0.41 8:0.066 8:≤0.016 (1980Ab18). Ice(K)=0.403 21.
372.8 ^b 4	0.05 ^{&}	372.716	7/2-	0.0	5/2-	[M1+E2]		0.056 19	α (K)=0.045 <i>18</i> ; α (L)=0.0079 <i>13</i> ; α (M)=0.00179 <i>25</i> α (N)=0.00041 <i>6</i> ; α (O)=5.8×10 ⁻⁵ <i>11</i> ; α (P)=2.7×10 ⁻⁶ <i>12</i> %I γ =0.018 Ice(K)=0.016 <i>5</i> (1980Ab18).
311.4° 2 384.53 4	0.43 5	384.341	5/2-	0.0	5/2-	M1+E2	1.1 +8-5	0.050 <i>10</i>	%Iγ=0.153 19 α(K)exp=0.05 1 (1980Ab18); α(K)exp=0.037 5 (1982Vy03); K:L1=1.3:0.2 (1970Ab18) α(K)=0.040 9; α(L)=0.0071 7; α(M)=0.00161 14 α(N)=0.000372 34; α(O)= 5.2×10^{-5} 6; α(P)= 2.4×10^{-6} 6 Uncertainty in Eγ increased to 0.08 keV for least-squares fitting. Ice(K):Ice(L1):Ice(L2):Ice(L3)=0.11 2:0.014 3:0.028 3:≤0.014 (1980Ab18). δ: from α(K)exp (1980Ab18,1982Vy03) and K/L1 ratios in 1980Ab18 and 1970Ab18.

From ENSDF

I.

					°Tm ε	$\beta^+\beta^-$ decay (3)	$\gamma(^{165}\text{Er})$ (con	ntinued)
E _γ ‡	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
389.404 14	7.94 18	745.946	1/2+	356.525	3/2-	E1	0.00988 14	$\begin{aligned} &\alpha(\text{K}) \exp = 0.0064 \ 4 \\ &\alpha(\text{K}) = 0.00836 \ 12; \ \alpha(\text{L}) = 0.001188 \ 17; \ \alpha(\text{M}) = 0.000262 \ 4 \\ &\alpha(\text{N}) = 6.06 \times 10^{-5} \ 8; \ \alpha(\text{O}) = 8.57 \times 10^{-6} \ 12; \ \alpha(\text{P}) = 4.41 \times 10^{-7} \ 6 \\ &\% \text{Iy} = 2.82 \ 14 \\ &\text{K:L1:L2} = 717:100:<17 \ (1970\text{Ab18}). \\ &\text{Ice}(\text{K}):\text{Ice}(\text{L1}):\text{Ice}(\text{L2}):\text{Ice}(\text{L3}) = 0.33 \ 3:0.041 \ 4:\approx 0.004:\approx 0.003 \ (1980\text{Ab18}). \\ &\text{Other:} \ \delta(\text{M2/E1}) = -0.13 \ +3-2 \ (\gamma\gamma(\theta)) \ (1988\text{U102}). \\ &\text{Ice}(\text{K}) = 0 \ 341 \ 20 \end{aligned}$
400.520 11	0.393 9	477.758	5/2-	77.258	7/2-	[M1+E2]	0.046 <i>16</i>	$\alpha(\mathbf{K}) = 0.038 \ 15; \ \alpha(\mathbf{L}) = 0.0064 \ 12; \ \alpha(\mathbf{M}) = 0.00145 \ 24 \\ \alpha(\mathbf{N}) = 0.00034 \ 6; \ \alpha(\mathbf{O}) = 4.7 \times 10^{-5} \ 10; \ \alpha(\mathbf{P}) = 2.2 \times 10^{-6} \ 10 \\ \alpha(\mathbf{M}) = 0.140 \ 7 $
410.02 7	0.097 10	999.853	3/2+	589.759	3/2+	M1	0.0583 8	$\alpha(K) = 0.0467$ $\alpha(K) = 0.065$ 13 $\alpha(K) = 0.0492$ 7; $\alpha(L) = 0.00715$ 10; $\alpha(M) = 0.001583$ 22 $\alpha(N) = 0.000369$ 5; $\alpha(O) = 5.35 \times 10^{-5}$ 7; $\alpha(P) = 2.98 \times 10^{-6}$ 4 % Iy = 0.034 4 Ice(K) = 0.040 7
413.294 <i>23</i>	0.232 18	920.716	1/2-	507.421	1/2+	(E1)	0.00860 12	$\begin{array}{l} \alpha(\mathrm{K}) = 0.040 \ 7.\\ \alpha(\mathrm{K}) = 0.0013 \ 8\\ \alpha(\mathrm{K}) = 0.00728 \ 10; \ \alpha(\mathrm{L}) = 0.001030 \ 14; \ \alpha(\mathrm{M}) = 0.0002268 \ 32\\ \alpha(\mathrm{N}) = 5.26 \times 10^{-5} \ 7; \ \alpha(\mathrm{O}) = 7.45 \times 10^{-6} \ 10; \ \alpha(\mathrm{P}) = 3.85 \times 10^{-7} \ 5\\ \alpha(\mathrm{F}) = 0.082 \ 7\\ \mathrm{Lec}(\mathrm{K}) = 0.020 \ 13 \end{array}$
415.12 3	0.171 8	477.758	5/2-	62.672	7/2+	[E1]	0.00851 12	$\alpha(K)=0.0020$ 13. $\alpha(K)=0.00721$ 10; $\alpha(L)=0.001020$ 14; $\alpha(M)=0.0002245$ 31 $\alpha(N)=5.20\times10^{-5}$ 7; $\alpha(O)=7.38\times10^{-6}$ 10; $\alpha(P)=3.82\times10^{-7}$ 5 %I $\gamma=0.061$ 4
416.88 10	0.056 7	1416.72	3/2-	999.853	3/2+	[E1]	0.00843 12	% \dot{I}_{γ} =0.0199 26 α (K)=0.00714 10; α (L)=0.001010 14; α (M)=0.0002223 31 α (N)=5.15×10 ⁻⁵ 7; α (Q)=7.30×10 ⁻⁶ 10; α (P)=3.78×10 ⁻⁷ 5
421.179 10	0.921 20	519.144	5/2+	97.958	9/2+	E2	0.0259 4	$\begin{aligned} \alpha(\mathbf{K}) &= 0.0155 \ 17 \\ \alpha(\mathbf{K}) &= 0.02020 \ 28; \ \alpha(\mathbf{L}) &= 0.00444 \ 6; \ \alpha(\mathbf{M}) &= 0.001021 \ 14 \\ \alpha(\mathbf{N}) &= 0.0002350 \ 33; \ \alpha(\mathbf{O}) &= 3.13 \times 10^{-5} \ 4; \ \alpha(\mathbf{P}) &= 1.097 \times 10^{-6} \ 15 \\ \mathbf{K}_{\mathbf{V}} &= 0.327 \ 16 \\ \mathbf{Le}(\mathbf{K}) &= 0.097 \ 10. \end{aligned}$
427.56 12	0.100 6	962.422	3/2-	534.571	3/2+	[E1]	0.00795 11	%Iy=0.0355 26 α (K)=0.00674 9; α (L)=0.000951 13; α (M)=0.0002094 29 α (N)=4 85×10 ⁻⁵ 7; α (Q)=6 89×10 ⁻⁶ 10; α (P)=3 57×10 ⁻⁷ 5
430.594 <i>21</i>	0.79 4	477.758	5/2-	47.158	5/2+	E1	0.00782 11	$\alpha(K) = 0.0064 \ 6$ $\alpha(K) = 0.00663 \ 9; \ \alpha(L) = 0.000936 \ 13; \ \alpha(M) = 0.0002059 \ 29$ $\alpha(N) = 4.77 \times 10^{-5} \ 7; \ \alpha(O) = 6.77 \times 10^{-6} \ 9; \ \alpha(P) = 3.52 \times 10^{-7} \ 5$ $\beta(I\gamma = 0.281 \ 19)$ $Ice(K) = 0.034 \ 3.$
442.980 16	2.06 8	920.716	1/2-	477.758	5/2-	E2	0.02261 32	$\alpha(K) \exp = 0.0107 \ 10 \ (1982 Vy 03)$

I.

				165	Tm ε+	$-\beta^+$ decay (30.06 h)	1982Vy03,19	80Ab18 (continued)
							γ (¹⁶⁵ Er)	(continued)	
${\rm E_{\gamma}}^{\ddagger}$	I_{γ} ‡ c	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
									$\alpha(K)=0.01774\ 25;\ \alpha(L)=0.00378\ 5;\ \alpha(M)=0.000867\ 12$ $\alpha(N)=0.0001997\ 28;\ \alpha(O)=2.67\times10^{-5}\ 4;\ \alpha(P)=9.69\times10^{-7}\ 14$ %I γ =0.73 4
									K:L1:L2:L3=880:100: \approx 24: \leq 12 (1970Ab18).
448.580 <i>14</i>	4.59 15	745.946	$1/2^{+}$	297.367	$1/2^{-}$	E1		0.00713 10	$\alpha(K) = 0.130$ 14. $\alpha(K) = 0.0044$ 4 (1982Vy03)
									$\alpha(K)=0.00604 \ 8; \ \alpha(L)=0.000850 \ 12; \ \alpha(M)=0.0001871 \ 26$
									$\alpha(N)=4.34\times10^{-5} 6; \alpha(O)=6.16\times10^{-6} 9; \alpha(P)=3.21\times10^{-7} 4$
									$\%_{1}\gamma_{=1.05}$ 9 K·L1:L2=800:100:<16 (1970Ab18).
									Ice(K)=0.137 10.
456.459 15	3.52 16	519.144	5/2+	62.672	7/2+	M1+E2	0.62 11	0.0377 17	α(K)exp=0.0251 17 (1982Vy03); K:L1:L2:L3=700:100:8:4 (1970Ab18)
									$\alpha(K) = 0.0314$ 15: $\alpha(L) = 0.00485$ 16: $\alpha(M) = 0.001081$ 33
									$\alpha(N) = 0.000251 \ 8; \ \alpha(O) = 3.59 \times 10^{-5} \ 12; \ \alpha(P) = 1.88 \times 10^{-6} \ 10$
									Ice(K)=0.60 3.
460.263 16	11.6 4	507.421	1/2+	47.158	5/2+	E2		0.02042 29	α(K)exp=0.0126 7 (1982Vy03); K:L1:L2:L3=706:100:48:24 (1970Ab18)
									$\alpha(\mathbf{K})=0.01609\ 23;\ \alpha(\mathbf{L})=0.00335\ 5;\ \alpha(\mathbf{M})=0.000768\ 11$
									$a(N)=0.000170925; a(O)=2.574\times10^{-5}55; a(P)=8.85\times10^{-5}12$ %Iv=4.12.23
									δ: δ=0.0 (E2+M3) from γγ(θ) (1988U102).
									Ice(K)=0.99 4.
471.979 10	0.994 23	519.144	5/2+	47.158	5/2+	M1+E2	0.79 14	0.0323 19	$\alpha(\mathbf{K}) \exp[=0.0242 \ I3 \ (1982 \vee y03)]$
									$\alpha(N)=0.000220$ 9; $\alpha(O)=3.12\times10^{\circ}$ 14; $\alpha(P)=1.59\times10^{\circ}$ 11 % $I_{V}=0.353$ 17
									$\alpha(K)=0.0268 \ 17; \ \alpha(L)=0.00424 \ 17; \ \alpha(M)=0.00095 \ 4$
									K:L1:L2:L3=600:100:12:≤4 (1970Ab18).
477 701 00	1 10 4	477 750	5/0-	0.0	5 /Q-	11.50	10.4	0.007 ($Ice(K) = 0.164 \ 9.$
477.791 23	1.13 4	4//./58	5/2	0.0	5/2	MI+E2	1.2 4	0.0274	$\alpha(\mathbf{K}) \exp[=0.0213 \ 16]$ $\alpha(\mathbf{K}) = 0.022 \ 4; \ \alpha(\mathbf{L}) = 0.0037 \ 4; \ \alpha(\mathbf{M}) = 0.00084 \ 8$
									$\alpha(N)=0.000194$ /8: $\alpha(O)=2.72\times10^{-5}$ 29: $\alpha(P)=1.30\times10^{-6}$ 24
									$\%$ I γ =0.401 22
									K:L1:L2=733:100:<20 (1970Ab18).
X 190 22 9	0 126 10								$Ice(K)=0.183 \ I3.$
480.25 8	0.130 10	962.422	$3/2^{-}$	477.758	$5/2^{-}$				$\%_{1} = 0.0464$ $\%_{1} = 0.1078$
487.399 10	2.94 6	534.571	$3/2^+$	47.158	$5/2^+$	M1		0.0373 5	$\alpha(K) \exp[=0.0205 \ 11 \ (1982 Vy 03)]$
			•						$\alpha(K)=0.0314$ 4; $\alpha(L)=0.00455$ 6; $\alpha(M)=0.001005$ 14
									$\alpha(N)=0.0002344 \ 33; \ \alpha(O)=3.40\times10^{-5} \ 5; \ \alpha(P)=1.901\times10^{-6} \ 27$

					165 T	m ε+ β⁻	2Vy03,1980Ab18 (continued)		
								$\gamma(^{165}\text{Er})$ (con	tinued)
	E _γ ‡	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
	492.41 <i>3</i>	0.276 19	999.853	3/2+	507.421	1/2+	(E2)	0.01711 24	%I γ =1.04 5 K:L1:L2:L3=650:100:7.7:<5 (1970Ab18). Ice(K)=0.452 24. α (K)exp=0.011 6 α (K)=0.01360 19; α (L)=0.00272 4; α (M)=0.000622 9 α (N)=0.0001435 20; α (O)=1.938×10 ⁻⁵ 27; α (P)=7.51×10 ⁻⁷ 11 %I γ =0.098 8
	494.94 5	0.148 8	1103.501	3/2+	608.502	3/2-	[E1]	0.00571 8	Ice(K)=0.020 12. %I γ =0.053 4 α (K)=0.00485 7; α (L)=0.000678 9; α (M)=0.0001492 21
	496.98 <i>13</i>	0.045 15	853.538	3/2+	356.525	3/2-	[E1]	0.00566 8	$\alpha(N)=3.46 \times 10^{-5} 5; \alpha(O)=4.93 \times 10^{-6} 7; \alpha(P)=2.59 \times 10^{-7} 4$ %I γ =0.016 5 $\alpha(K)=0.00480 7; \alpha(L)=0.000672 9; \alpha(M)=0.0001478 21$ $\alpha(N)=3.43 \times 10^{-5} 5; \alpha(O)=4.88 \times 10^{-6} 7; \alpha(P)=2.57 \times 10^{-7} 4$
	513.627 [@] 14	0.23 [@]	1103.501	3/2+	589.882	1/2-	E1 [@]	0.00526 7	$\alpha(K)=0.00447 \ 6; \ \alpha(L)=0.000624 \ 9; \ \alpha(M)=0.0001372 \ 19 \ \alpha(N)=3.18\times10^{-5} \ 4; \ \alpha(O)=4.54\times10^{-6} \ 6; \ \alpha(P)=2.394\times10^{-7} \ 34 \ \%$ [y=0.082
	513.735 [@] 14	0.68 [@] 5	1103.501	3/2+	589.759	3/2+	M1 [@]	0.0325 5	α (K)exp=0.0218 27 α (K)=0.0275 4; α (L)=0.00397 6; α (M)=0.000877 12 α (N)=0.0002044 29; α (O)=2.97×10 ⁻⁵ 4; α (P)=1.659×10 ⁻⁶ 23 %Iy=0.241 21 K:L1:L2=700:100:≤40 (1970Ab18). Ice(K)=0.136 15 for doublet.
	527.106 <i>12</i>	0.296 <i>21</i> 2.66 <i>6</i>	589.759	3/2+	62.672	7/2+	E2	0.01437 20	%ty=0.105 9 α(K)exp=0.0078 6 (1982Vy03) α(K)=0.01151 16; $α(L)=0.002225$ 31; $α(M)=0.000506$ 7 $α(N)=0.0001169$ 16; $α(O)=1.589\times10^{-5}$ 22; $α(P)=6.40\times10^{-7}$ 9 %Iy=0.94 5 K:L1:L2:L3=667:100:33:≈23 (1970Ab18). Lce(K)=0.157 11
	531.243 26	0.372 13	608.502	3/2-	77.258	7/2-	E2	0.01409 20	$\begin{array}{l} \alpha(K) = 0.107 \ 11. \\ \alpha(K) = xp = 0.008 \ 3 \\ \alpha(K) = 0.01129 \ 16; \ \alpha(L) = 0.002174 \ 30; \ \alpha(M) = 0.000495 \ 7 \\ \alpha(N) = 0.0001142 \ 16; \ \alpha(O) = 1.553 \times 10^{-5} \ 22; \ \alpha(P) = 6.28 \times 10^{-7} \ 9 \\ \Re_{P} = 0.132 \ 7 \\ \log(K) = 0.020 \ 7 \end{array}$
	534.72 7	0.094 10	534.571	3/2+	0.0	5/2-	(E1)	0.00482 7	$\begin{array}{l} \alpha(\mathrm{K}) = 0.025 \ 1.\\ \alpha(\mathrm{K}) = xp = 0.0035 \ 20\\ \alpha(\mathrm{K}) = 0.00409 \ 6; \ \alpha(\mathrm{L}) = 0.000570 \ 8; \ \alpha(\mathrm{M}) = 0.0001253 \ 18\\ \alpha(\mathrm{N}) = 2.91 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 4.15 \times 10^{-6} \ 6; \ \alpha(\mathrm{P}) = 2.197 \times 10^{-7} \ 31\\ \% \mathrm{Iy} = 0.033 \ 4\\ \alpha(\mathrm{K}) = xp = 0.36 \ 20 \ \text{in} \ 1982 \mathrm{Vy03} \ \text{is a misprint.} \\ \mathrm{Lea}(\mathrm{K}) = 0.022 \ 12 \end{array}$
	537.17 3	0.206 20	920.716	$1/2^{-}$	384.341	5/2-	E2	0.01371 19	$\% I\gamma = 0.073 \ 8$

I.

				1	¹⁶⁵ Tm ε + β ⁺ decay (30.06 h)			1982Vy03,1	980Ab18 (continued)
							γ (¹⁶⁵ Er) (continued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]	δ#	$lpha^{\dagger}$	Comments
									$ α(K)exp=0.018 5 $ $ α(K)=0.01100 15; α(L)=0.002105 29; α(M)=0.000479 7 $ $ α(N)=0.0001105 15; α(O)=1.505\times10^{-5} 21; α(P)=6.12\times10^{-7} 9 $ Poor fit in the level scheme. Uncertainty in Eγ increased to 0.30 keV for least-squares fitting. Ice(K)=0.025 5.
542.622 11	4.04 21	589.759	3/2+	47.158	8 5/2+	M1+E2	0.61 17	0.0242 17	$\alpha(K)\exp=0.0165 \ 15 \ (1982Vy03)$ $\%I\gamma=1.43 \ 10$ $\alpha(K)=0.0203 \ 15; \ \alpha(L)=0.00306 \ 16; \ \alpha(M)=0.000680 \ 34$ $\alpha(N)=0.000158 \ 8; \ \alpha(O)=2.27\times10^{-5} \ 13; \ \alpha(P)=1.21\times10^{-6} \ 9$ K:L1:L2:L3=686:100:8.6:≤4 (1970Ab18). Ice(K)=0.45 \ 3.
557.38 4	0.52 6	853.538	3/2+	296.124	4 5/2-	[E1]		0.00441 6	%Iy=0.185 23 α (K)=0.00374 5; α (L)=0.000520 7; α (M)=0.0001143 16 α (N)=2 65×10 ⁻⁵ 4: α (O)=3 79×10 ⁻⁶ 5: α (P)=2 013×10 ⁻⁷ 28
558.74 <i>3</i>	0.89 4	1411.92	3/2+	853.538	3 3/2+	M1		0.0263 4	%I _γ =0.316 20 α(K)exp=0.022 3 (1982Vy03); K:L1:L2=600:100:25 (1970Ab18) α(K)=0.02217 31; $α$ (L)=0.00319 4; $α$ (M)=0.000705 10 α(N)=0.0001645 23; $α$ (O)=2.387×10 ⁻⁵ 33; $α$ (P)=1.337×10 ⁻⁶ 19 Poor fit in the level scheme. Uncertainty in Eγ increased to 0.24 keV for least-squares fitting. Ice(K)=0.204 13.
564.183 17	6.5 4	920.716	1/2-	356.525	5 3/2-	M1		0.0256 4	α (K)exp=0.0223 <i>18</i> (1982Vy03) α (K)=0.02163 <i>30</i> ; α (L)=0.00311 <i>4</i> ; α (M)=0.000688 <i>10</i> α (N)=0.0001604 <i>22</i> ; α (O)=2.328×10 ⁻⁵ <i>33</i> ; α (P)=1.304×10 ⁻⁶ <i>18</i> %I γ =2.31 <i>17</i> K:L1:L2:L3=685:100:7.7:<2.3 (1970Ab18). M1+E2 in $\gamma\gamma(\theta)$ (1988U102) with δ =-0.18 <i>4</i> ($\gamma\gamma(\theta)$) (1988U102). Ice(K)=0.97 3.
570.4 8 573.882 12	0.023 6 0.97 <i>4</i>	1103.501 1427.411	3/2+ 3/2+	534.57 853.538	1 3/2 ⁺ 8 3/2 ⁺	M1+E2	1.2 4	0.0169 26	$%1\gamma$ =0.0082 22 α (K)exp=0.0140 17 (1982Vy03) α (N)=0.000117 13; α (O)=1.65×10 ⁻⁵ 20; α (P)=8.2×10 ⁻⁷ 15 $%1\gamma$ =0.344 20 α (K)=0.0140 23; α (L)=0.00225 25; α (M)=0.00050 5 K:L1:L2=545:100:≤23 (1970Ab18). Ice(K)=0.095 10.
578.049 16	0.467 12	962.422	3/2-	384.34	1 5/2-	M1		0.02409 <i>34</i>	α (K)exp=0.0205 <i>I3</i> (1982Vy03) α (K)=0.02034 <i>28</i> ; α (L)=0.00293 <i>4</i> ; α (M)=0.000646 <i>9</i> α (N)=0.0001507 <i>21</i> ; α (O)=2.187×10 ⁻⁵ <i>31</i> ; α (P)=1.226×10 ⁻⁶ <i>17</i> %Iy=0.166 <i>8</i> K:L1:L2=625:100:<50 (1970Ab18). Ice(K)=0.0650 20.

Т

				32Vy03,1980Ab18 (continued)				
							$\gamma(^{165}\text{Er})$ (cor	ntinued)
${\rm E_{\gamma}}^{\ddagger}$	Ι _γ ‡ <i>C</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$lpha^{\dagger}$	Comments
589.912 15	5.13 22	589.882	1/2-	0.0	5/2-	E2	0.01088 15	$\begin{aligned} &\alpha(\text{K})\exp=0.0073 \ 6 \ (1982\text{Vy03}) \\ &\alpha(\text{K})=0.00881 \ 12; \ \alpha(\text{L})=0.001612 \ 23; \ \alpha(\text{M})=0.000365 \ 5 \\ &\alpha(\text{N})=8.44\times10^{-5} \ 12; \ \alpha(\text{O})=1.158\times10^{-5} \ 16; \ \alpha(\text{P})=4.93\times10^{-7} \ 7 \\ &\text{%Iy}=1.82 \ 11 \\ &\text{K:L1:L2:L3}=866:100:27:\approx17 \ (1970\text{Ab18}). \\ &\text{Ice}(\text{K})=0.251 \ 16. \end{aligned}$
595.95 <i>13</i>	0.066 20	1103.501	3/2	507.421	1/2	02.13	0.000.00.5	$\%1\gamma = 0.023$ /
605.93" 3	0.46" 3	605.486	(3/2*)	0.0	5/2	[E1]	0.00369 5	%1γ=0.163 13 $\alpha(K)=0.00313 4; \alpha(L)=0.000434 6; \alpha(M)=9.52\times10^{-5} 13$ $\alpha(N)=2.210\times10^{-5} 31; \alpha(O)=3.16\times10^{-6} 4; \alpha(P)=1.692\times10^{-7} 24$ Poor fit in the level scheme. Uncertainty in Eγ increased to 0.24 keV for least-squares fitting.
605.93 ^d 3	0.46 ^{<i>d</i>} 3	962.422	3/2-	356.525	3/2-	E2	0.01020 14	α (K)exp=0.0067 24 α (K)=0.00827 12; α (L)=0.001496 21; α (M)=0.000339 5 α (N)=7.83×10 ⁻⁵ 11; α (O)=1.076×10 ⁻⁵ 15; α (P)=4.64×10 ⁻⁷ 7 %I γ =0.163 13 Ice(K)=0.021 7.
608.527 16	1.27 4	608.502	3/2-	0.0	5/2-	E2	0.01009 14	α (K)exp=0.0085 9; K:L1=600:100 (1970Ab18) α (K)=0.00819 11; α (L)=0.001479 21; α (M)=0.000335 5 α (N)=7.73×10 ⁻⁵ 11; α (O)=1.064×10 ⁻⁵ 15; α (P)=4.60×10 ⁻⁷ 6 %I γ =0.451 24 Lce(K)=0.074 8
610.616 <i>17</i>	1.35 4	853.538	3/2+	242.929	3/2-	(E1)	0.00363 5	$ \begin{aligned} &\alpha(\text{K}) \exp = 0.0054 \ I3 \\ &\alpha(\text{K}) = 0.00308 \ 4; \ \alpha(\text{L}) = 0.000426 \ 6; \ \alpha(\text{M}) = 9.37 \times 10^{-5} \ I3 \\ &\alpha(\text{N}) = 2.174 \times 10^{-5} \ 30; \ \alpha(\text{O}) = 3.11 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 1.666 \times 10^{-7} \ 23 \\ &\beta(\text{H}) = 0.479 \ 25 \\ &\text{Lec(K)} = 0.049 \ 11 \end{aligned} $
623.39 <i>3</i>	0.549 17	920.716	1/2-	297.367	1/2-	M1	0.01989 28	$\begin{array}{l} \alpha(\mathbf{K}) = 0.0214 \ I3 \\ \alpha(\mathbf{K}) = 0.0214 \ I3 \\ \alpha(\mathbf{K}) = 0.01681 \ 24; \ \alpha(\mathbf{L}) = 0.002411 \ 34; \ \alpha(\mathbf{M}) = 0.000532 \ 7 \\ \alpha(\mathbf{N}) = 0.0001242 \ I7; \ \alpha(\mathbf{O}) = 1.803 \times 10^{-5} \ 25; \ \alpha(\mathbf{P}) = 1.011 \times 10^{-6} \ I4 \\ \% \mathbf{I}\gamma = 0.195 \ I0 \\ \mathbf{Le}(\mathbf{K}) = 0.0798 \ 18. \end{array}$
^x 654.54 ^a 8 ^x 660.62 ^a 21 665.067 20	0.068 8 0.050 <i>13</i> 1.06 <i>3</i>	962.422	3/2-	297.367	1/2-	M1	0.01690 24	$\begin{aligned} & \kappa_{\rm I} = 0.0763 \ 10. \\ & \kappa_{\rm I} = 0.0176 \ 10. \\ & \kappa_{\rm I} = 0.0121 \ 30 \\ & \kappa_{\rm I} = 0.0185 \ 5 \\ & \alpha({\rm K}) = 0.0152 \ 11 \ (1982 {\rm Vy03}) \\ & \alpha({\rm K}) = 0.01429 \ 20; \ \alpha({\rm L}) = 0.002045 \ 29; \ \alpha({\rm M}) = 0.000451 \ 6 \\ & \alpha({\rm N}) = 0.0001053 \ 15; \ \alpha({\rm O}) = 1.529 \times 10^{-5} \ 21; \ \alpha({\rm P}) = 8.59 \times 10^{-7} \ 12 \\ & \kappa_{\rm I} = 0.376 \ 19 \\ & \kappa_{\rm L} 1: {\rm L} 2: {\rm L} 3 = 600: 100: <50: 10 \ (1970 {\rm Ab18}). \\ & \kappa_{\rm I} = 0.110.5 \end{aligned}$
677.85 <i>3</i>	0.417 16	920.716	1/2-	242.929	3/2-	M1	0.01611 23	$\alpha(K) = 0.110$ S. $\alpha(K) = 0.0133$ 9

Т

				165	Tm ε+	$-\beta^+$ decay	(30.06 h) 198	2Vy03,1980Ab18 (continued)
					ntinued)			
${\rm E_{\gamma}}^{\ddagger}$	I_{γ} ‡ c	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
								$\alpha(K)=0.01362 \ 19; \ \alpha(L)=0.001948 \ 27; \ \alpha(M)=0.000430 \ 6$ $\alpha(N)=0.0001003 \ 14; \ \alpha(O)=1.456\times10^{-5} \ 20; \ \alpha(P)=8.18\times10^{-7} \ 11$ $\%_{1\gamma}=0.148 \ 9$ K:L1:L2=667:100:<33 (1970Ab18). Lce(K)=0.0378 \ 10
680.613 <i>19</i>	0.258 8	1289.094	3/2-	608.502	3/2-	M1	0.01595 22	$\begin{array}{l} \alpha(K) = 0.0316\ 169\ (1982Vy03)\\ \alpha(K) = 0.0145\ 9\ (1982Vy03)\\ \alpha(K) = 0.01348\ 19;\ \alpha(L) = 0.001928\ 27;\ \alpha(M) = 0.000426\ 6\\ \alpha(N) = 9.93 \times 10^{-5}\ 14;\ \alpha(O) = 1.442 \times 10^{-5}\ 20;\ \alpha(P) = 8.10 \times 10^{-7}\ 11\\ \% I\gamma = 0.092\ 5\\ K:L1:L2 = 583:100:<33\ (1970Ab18).\\ Lec(K) = 0.0255\ 7. \end{array}$
698.843 <i>16</i>	3.62 13	745.946	1/2+	47.158	5/2+	E2	0.00730 <i>10</i>	$\alpha(K) = 1.297$ $\alpha(K) = 1.297$ $\alpha(K) = 0.00654 (1982Vy03); K:L1 = 520:100 (1970Ab18)$ $\alpha(K) = 0.005998; \alpha(L) = 0.001021$ 14; $\alpha(M) = 0.0002298$ 32 $\alpha(N) = 5.32 \times 10^{-5}7; \alpha(O) = 7.40 \times 10^{-6}$ 10; $\alpha(P) = 3.38 \times 10^{-7}$ 5 Uncertainty in Ey increased to 0.032 keV for least-squares fitting. Lee(K) = 0.1585.
703.66 <i>19</i> *712.59 ^a 6	0.050 7 0.066 <i>11</i>	999.853	3/2+	296.124	5/2-	[E1]	0.00271 4	%1 γ =0.0178 26 α (K)=0.002303 32; α (L)=0.000316 4; α (M)=6.94×10 ⁻⁵ 10 α (N)=1.610×10 ⁻⁵ 23; α (O)=2.310×10 ⁻⁶ 32; α (P)=1.250×10 ⁻⁷ 18 %1 γ =0.023 4
^x 716.96 ^a 5	0.087 8					M1	0.01400 20	$\begin{array}{l} \alpha(\textbf{K}) \exp = 0.0092 \ 13 \\ \alpha(\textbf{K}) = 0.01184 \ 17; \ \alpha(\textbf{L}) = 0.001690 \ 24; \ \alpha(\textbf{M}) = 0.000373 \ 5 \\ \alpha(\textbf{N}) = 8.70 \times 10^{-5} \ 12; \ \alpha(\textbf{O}) = 1.264 \times 10^{-5} \ 18; \ \alpha(\textbf{P}) = 7.11 \times 10^{-7} \ 10 \\ \% I_{\gamma} = 0.0309 \ 31 \\ Ice(\textbf{K}) = 0.0055 \ 5. \end{array}$
719.58 ^d 8	0.049 ^d 6	962.422	3/2-	242.929	3/2-			%Iy=0.0174 23
719.58 ⁴ 8	0.049 ^a 6	1103.501	3/2+	384.341	5/2-	[E1]	0.00259 4	$%1\gamma=0.0174$ 23 $\alpha(K)=0.002201$ 31; $\alpha(L)=0.000302$ 4; $\alpha(M)=6.62\times10^{-5}$ 9 $\alpha(N)=1.537\times10^{-5}$ 22; $\alpha(O)=2.207\times10^{-6}$ 31; $\alpha(P)=1.196\times10^{-7}$ 17 Uncertainty in E _γ increased to 0.16 keV for least-squares fitting
x742.84 ^{<i>a</i>} 6	0.080 <i>10</i>					M1	0.01282 18	$\begin{aligned} &\alpha(\text{K}) \text{exp}=0.0078 \ 23 \\ &\alpha(\text{K})=0.01084 \ 15; \ \alpha(\text{L})=0.001546 \ 22; \ \alpha(\text{M})=0.000341 \ 5 \\ &\alpha(\text{N})=7.95\times10^{-5} \ 11; \ \alpha(\text{O})=1.156\times10^{-5} \ 16; \ \alpha(\text{P})=6.50\times10^{-7} \ 9 \\ &\%\text{I}\gamma=0.028 \ 4 \\ &\text{Ice}(\text{K})=0.0043 \ 11. \end{aligned}$
747.00 6	0.50 3	1103.501	3/2+	356.525	3/2-	[E1]	2.40×10 ⁻³ 3	α (K)exp=0.0062 5 %I γ =0.178 13 α (K)=0.002042 29; α (L)=0.000279 4; α (M)=6.13×10 ⁻⁵ 9

				1657	Γ m ε+/	B ⁺ decay (30.06 h) 19	82Vy03,1980Ab18 (continued)
							$\gamma(^{165}\text{Er})$ (co	ntinued)
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$lpha^{\dagger}$	Comments
749.01 <i>13</i>	0.212 20	1339.41	5/2-	589.882	1/2-	[E2]	0.00624 9	$\begin{aligned} &\alpha(\text{N})=1.424\times10^{-5}\ 20;\ \alpha(\text{O})=2.045\times10^{-6}\ 29;\ \alpha(\text{P})=1.111\times10^{-7}\ 16\\ &\alpha(\text{K})\text{exp is close to }\alpha(\text{K})(\text{theory})=0.0052 \text{ for E2 and disagrees with}\\ &\text{mult=E1 from level scheme.}\\ &\text{Ice}(\text{K})=0.0299\ 16.\\ &\%\text{I}\gamma=0.075\ 8\\ &\alpha(\text{K})=0.00514\ 7;\ \alpha(\text{L})=0.000856\ 12;\ \alpha(\text{M})=0.0001920\ 27\\ &\alpha(\text{N})=4.45\times10^{-5}\ 6;\ \alpha(\text{O})=6.21\times10^{-6}\ 9;\ \alpha(\text{P})=2.91\times10^{-7}\ 4\\ &\text{Uncertainty in Ey increased to }0.26\ \text{keV for least-squares fitting.} \end{aligned}$
^x 773.42 ^{<i>a</i>} 18 790.873 18	0.050 <i>10</i> 1.29 <i>3</i>	853.538	3/2+	62.672	7/2+	E2	0.00553 8	E _y : γ to 589.905 and/or 589.781. %Iγ=0.018 4 α (K)exp=0.0038 3 α (K)=0.00457 6; α (L)=0.000747 10; α (M)=0.0001674 23 α (N)=3.88×10 ⁻⁵ 5; α (O)=5.44×10 ⁻⁶ 8; α (P)=2.59×10 ⁻⁷ 4 %Iγ=0.458 22
^x 793.72 ^{<i>a</i>} 10 806.372 17	0.082 <i>10</i> 26.8 9	853.538	3/2+	47.158	5/2+	M1	0.01046 <i>15</i>	Ice(K)=0.0359 12. %I γ =0.029 4 α (K)exp=0.0088 4 α (K)=0.00885 12; α (L)=0.001258 18; α (M)=0.000277 4 α (N)=6.47×10 ⁻⁵ 9; α (O)=9.40×10 ⁻⁶ 13; α (P)=5.30×10 ⁻⁷ 7 %I γ =9.5 5 K:L1:1.2:L3=500:100:8 3:<4 (1970Ab18)
821.54 <i>3</i>	0.287 19	1411.92	3/2+	589.759	3/2+	M1	0.00999 14	δ: M1(+E2) with δ=+0.06 6 from γγ(θ) (1988U102). Ice(K)=1.62 6. %Iy=0.102 8 α(K)exp=0.0081 7 α(K)=0.00845 12; α(L)=0.001201 17; α(M)=0.000265 4 α(N)=6.18×10 ⁻⁵ 9; α(O)=8.97×10 ⁻⁶ 13; α(P)=5.06×10 ⁻⁷ 7 Poor fit in the level scheme. Uncertainty in Ex increased to 0.24 keV for
^x 826.04 ^a 6 827.43 7	0.130 8 0.121 <i>14</i>	1416.72	3/2-	589.882	1/2-	M1	0.00981 <i>14</i>	least-squares fitting. Ice(K)=0.0159 5. %I γ =0.0462 35 %I γ =0.043 5 α (K)exp=0.0091 15 α (K)=0.00830 12; α (L)=0.001179 17; α (M)=0.000260 4 α (N)=6.07×10 ⁻⁵ 8; α (O)=8.82×10 ⁻⁶ 12; α (P)=4.97×10 ⁻⁷ 7
837.646 <i>23</i>	1.37 4	1427.411	3/2+	589.759	3/2+	M1	0.00952 <i>13</i>	 Poor fit in the level scheme. Uncertainty in Eγ increased to 0.28 keV for least-squares fitting. Ice(K)=0.0141 5. α(K)exp=0.0073 5 α(K)=0.00806 11; α(L)=0.001144 16; α(M)=0.0002523 35 α(N)=5.88×10⁻⁵ 8; α(O)=8.55×10⁻⁶ 12; α(P)=4.82×10⁻⁷ 7 %Iγ=0.486 25 Ice(K)=0.0676 20.

	¹⁶⁵ Tm ε + β ⁺ decay (30.0							5h) 1982Vy03,1980Ab18 (continued)			
γ ⁽¹⁶⁵ Er) (continued)											
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ#	α^{\dagger}	Comments		
853.568 22	0.454 19	853.538	3/2+	0.0	5/2-	[E1]		1.85×10 ⁻³ 3	%Iγ=0.161 10 α (K)=0.001573 22; α (L)=0.0002138 30; α (M)=4.69×10 ⁻⁵ 7 α (N)=1.089×10 ⁻⁵ 15; α (O)=1.567×10 ⁻⁶ 22;		
^x 880.93 ^a 7 ^x 884.48 ^a 21 892.79 7	0.089 7 0.035 7 0.078 <i>10</i>	1411.92	3/2+	519.144	5/2+	M1		0.00814 11	$\alpha(P)=8.59\times10^{-6} 12^{-6}$ %Iy=0.0316 28 %Iy=0.0124 26 $\alpha(K)=0.00689 10; \alpha(L)=0.000976 14; \alpha(M)=0.0002152^{-6}$ 30		
908.26 <i>11</i>	0.060 15	1427.411	3/2+	519.144	5/2+	M1+E2	1.0 +22-7	0.0060 15	$\alpha(N)=5.02\times10^{-5} 7; \ \alpha(O)=7.30\times10^{-6} 10; \alpha(P)=4.12\times10^{-7} 6 \%I\gamma=0.028 4 Ice(K)=0.0040 3. \alpha(K)exp=0.0050 13 \%I\gamma=0.021 6 \alpha(K)=0.0050 12; \ \alpha(L)=0.00074 17; \ \alpha(M)=0.00016 4 $		
920.24 8	0.114 10	1427.411	3/2+	507.421	1/2+	E2		0.00399 6	$\begin{aligned} \alpha(\mathbf{K}) &= 0.0030 \ 15, \ \alpha(\mathbf{L}) = 0.00074 \ 17, \ \alpha(\mathbf{M}) = 0.00016 \ 4 \\ \alpha(\mathbf{N}) &= 3.8 \times 10^{-5} \ 9; \ \alpha(\mathbf{O}) = 5.5 \times 10^{-6} \ 13; \ \alpha(\mathbf{P}) = 2.9 \times 10^{-7} \ 8 \\ \% & \mathrm{Iy} = 0.021 \ 6 \\ \mathrm{Ice}(\mathbf{K}) &= 0.00202 \ 18. \\ \% & \mathrm{Iy} = 0.041 \ 4 \\ \alpha(\mathbf{K}) &= p = 0.0032 \ 5 \\ \alpha(\mathbf{K}) &= 0.00333 \ 5; \ \alpha(\mathbf{L}) = 0.000520 \ 7; \ \alpha(\mathbf{M}) = 0.0001160 \ 16 \\ \alpha(\mathbf{N}) &= 2.69 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 3.80 \times 10^{-6} \ 5; \end{aligned}$		
932.56 4	0.19 <i>3</i>	1289.094	3/2-	356.525	3/2-	M1		0.00731 <i>10</i>	$\alpha(P)=1.893\times10^{-7} 27$ Uncertainty in E γ increased to 0.16 keV for least-squares fitting. Ice(K)=0.0025 3. $\alpha(K)$ exp=0.0068 13 $\alpha(K)$ =0.00619 9; $\alpha(L)$ =0.000876 12; $\alpha(M)$ =0.0001931 27 $\alpha(N)$ =4.50×10 ⁻⁵ 6; $\alpha(O)$ =6.55×10 ⁻⁶ 9; $\alpha(P)$ =3.70×10 ⁻⁷		
937.39 10	0.054 6	999.853	3/2+	62.672	7/2+	(E2)		0.00384 5	% I_{γ} =0.068 <i>11</i> Ice(K)=0.0089 3. α (K)exp=0.0018 6 α (K)=0.00320 4; α (L)=0.000498 7; α (M)=0.0001110 <i>16</i> α (N)=2.58×10 ⁻⁵ 4; α (O)=3.64×10 ⁻⁶ 5; α (P)=1.823×10 ⁻⁷ 26		
949.78 7	0.164 <i>6</i>	1427.411	3/2+	477.758	5/2-	[E1]		1.51×10 ⁻³ 2	$\gamma_{\alpha}(\gamma = 0.0192 23)$ Ice(K)=0.00066 21. α (K)exp=0.00257 23		

				¹⁶⁵ T	' m ε + β	⁺ decay (30.	06 h) 1982Vy	03,1980Ab18 (c	continued)			
	γ ⁽¹⁶⁵ Er) (continued)											
E_{γ}^{\ddagger}	Ι _γ ‡ <i>c</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	$lpha^{\dagger}$	Comments			
									%Iγ=0.0582 33 $\alpha(K)=0.001285 18; \alpha(L)=0.0001737 24;$ $\alpha(M)=3.80\times10^{-5} 5$ $\alpha(N)=8.84\times10^{-6} 12; \alpha(O)=1.275\times10^{-6} 18;$ $\alpha(P)=7.03\times10^{-8} 10$ Mult.: $\alpha(K)$ exp close to $\alpha(K)(E2)=0.00312$ disagrees with mult=E1 from level scheme. Ice(K)=0.00286 18.			
952.71 <i>3</i>	0.39 3	999.853	3/2+	47.158	5/2+	M1		0.00694 <i>10</i>	$\alpha(\mathbf{K}) \exp = 0.0056 \ 6$ $\alpha(\mathbf{K}) = 0.00588 \ 8; \ \alpha(\mathbf{L}) = 0.000831 \ 12;$ $\alpha(\mathbf{M}) = 0.0001832 \ 26$ $\alpha(\mathbf{N}) = 4.27 \times 10^{-5} \ 6; \ \alpha(\mathbf{O}) = 6.21 \times 10^{-6} \ 9;$ $\alpha(\mathbf{P}) = 3.51 \times 10^{-7} \ 5$ $\% \mathbf{I} \gamma = 0.139 \ 12$ $\mathbf{Ice}(\mathbf{K}) = 0.0147 \ 5.$			
955.28 <i>13</i>	0.053 6	1339.41	5/2-	384.341	5/2-	M1		0.00690 <i>10</i>	$\alpha(K) \exp = 0.0054 \ 10$ $\alpha(K) = 0.00584 \ 8; \ \alpha(L) = 0.000825 \ 12;$ $\alpha(M) = 0.0001819 \ 25$ $\alpha(N) = 4.24 \times 10^{-5} \ 6; \ \alpha(O) = 6.17 \times 10^{-6} \ 9;$ $\alpha(P) = 3.49 \times 10^{-7} \ 5$ $\% I\gamma = 0.0188 \ 23$ $Ice(K) = 0.0020 \ 3.$			
^x 1013.59 ^a 18	0.018 5	1289.094	3/2-	297.367	1/2-	M1(+E2)	0.5 +4-5	0.0057 7	$\begin{aligned} &\alpha(\mathbf{K}) \exp[=0.0048\ 6\\ &\%\mathbf{I}\gamma=0.042\ 4\\ &\alpha(\mathbf{K})=0.0048\ 6;\ \alpha(\mathbf{L})=0.00069\ 8;\ \alpha(\mathbf{M})=0.000152\ 17\\ &\alpha(\mathbf{N})=3.5\times10^{-5}\ 4;\ \alpha(\mathbf{O})=5.1\times10^{-6}\ 6;\\ &\alpha(\mathbf{P})=2.9\times10^{-7}\ 4\\ &\mathbf{Ice}(\mathbf{K})=0.00388\ 24.\\ &\%\mathbf{I}\gamma=0.0064\ 18 \end{aligned}$			
1043.05 <i>4</i>	0.218 6	1427.411	3/2+	384.341	5/2-	E1		1.27×10 ⁻³ 2	$\begin{aligned} &\alpha(\text{K}) \exp[=0.00140 \ 17 \\ &\alpha(\text{K}) = 0.001080 \ 15; \ \alpha(\text{L}) = 0.0001454 \ 20; \\ &\alpha(\text{M}) = 3.18 \times 10^{-5} \ 4 \\ &\alpha(\text{N}) = 7.40 \times 10^{-6} \ 10; \ \alpha(\text{O}) = 1.068 \times 10^{-6} \ 15; \\ &\alpha(\text{P}) = 5.92 \times 10^{-8} \ 8 \\ &\% \text{I}\gamma = 0.077 \ 4 \\ \text{Ice}(\text{K}) = 0.00207 \ 21. \end{aligned}$			
1046.07 7	0.217 10	1289.094	3/2-	242.929	3/2-	M1+E2	0.77 +36-30	0.0046 5	α (K)exp=0.0039 4 %I γ =0.077 5 α (K)=0.0039 4; α (L)=0.00056 5; α (M)=0.000123 11			

¹⁶⁵₆₈ Er₉₇-24

				1057	m ε+β	decay (3	$\gamma(^{165}\text{Er})$ (conti	nued)
E _γ ‡	Ι _γ ‡ <i>c</i>	E _i (level)	${ m J}^{\pi}_i$	E_{f}	J_f^{π}	Mult. [#]	α^{\dagger}	Comments
1070.80 12	0.033 5	1427.411	3/2+	356.525	3/2-	[E1]	1.21×10 ⁻³ 2	$\alpha(N)=2.88 \times 10^{-5} 27; \ \alpha(O)=4.2 \times 10^{-6} 4; \ \alpha(P)=2.30 \times 10^{-7} 26$ Ice(K)=0.0059 4. %Iy=0.0117 19
1096.47 7	0.038 4	1339.41	5/2-	242.929	3/2-	(M1)	0.00493 7	$\alpha(K)=0.001029 \ 14; \ \alpha(L)=0.0001384 \ 19; \ \alpha(M)=3.03\times10^{-5} \ 4 \\ \alpha(N)=7.04\times10^{-6} \ 10; \ \alpha(O)=1.017\times10^{-6} \ 14; \ \alpha(P)=5.65\times10^{-8} \ 8 \\ \alpha(K)\exp=0.0035 \ 21 \\ \alpha(K)=0.00418 \ 6; \ \alpha(L)=0.000588 \ 8; \ \alpha(M)=0.0001296 \ 18 \\ \alpha(M)=0.0001$
^x 1118.77 ^a 13	0.023 4					(M1)	0.00470 7	$\begin{aligned} \alpha(N) &= 3.02 \times 10^{-5} \ 4; \ \alpha(O) &= 4.40 \times 10^{-6} \ 6; \ \alpha(P) &= 2.489 \times 10^{-7} \ 35 \\ \%_{I\gamma} &= 0.0135 \ 15 \\ \text{Ice}(K) &= 0.0009 \ 5. \\ \alpha(K) &= 0.0009 \ 5. \\ \alpha(K) &= 0.00398 \ 6; \ \alpha(L) &= 0.000560 \ 8; \ \alpha(M) &= 0.0001234 \ 17 \\ \alpha(N) &= 2.88 \times 10^{-5} \ 4; \ \alpha(O) &= 4.18 \times 10^{-6} \ 6; \ \alpha(P) &= 2.371 \times 10^{-7} \ 33; \end{aligned}$
1131.26 3	4.86 22	1427.411	3/2+	296.124	5/2-	E1	1.10×10 ⁻³ 2	$\alpha(\text{IPF})=6.43\times10^{-7}\ 10$ %Iy=0.0082 15 Ice(K)=0.0009 4. $\alpha(\text{K})\text{exp}=0.00106\ 8$ $\alpha(\text{K})=0.000932\ 13;\ \alpha(\text{L})=0.0001250\ 18;\ \alpha(\text{M})=2.74\times10^{-5}\ 4$ $\alpha(\text{N})=6.36\times10^{-6}\ 9;\ \alpha(\text{O})=9.19\times10^{-7}\ 13;\ \alpha(\text{P})=5.12\times10^{-8}\ 7;$ $\alpha(\text{IPF})=4.42\times10^{-6}\ 6$
1184.45 <i>3</i>	8.3 4	1427.411	3/2+	242.929	3/2-	E1	1.02×10 ⁻³ 1	% [γ=1.73 <i>II</i>] δ : -0.72< δ (M2/E1)<-0.45 from γγ(θ) (1988U102). Ice(K)=0.0345 <i>II</i> . α (K)exp=0.00097 7 α (K)=0.000858 <i>I2</i> ; α (L)=0.0001149 <i>I6</i> ; α (M)=2.515×10 ⁻⁵ <i>35</i> α (N)=5.85×10 ⁻⁶ <i>8</i> ; α (O)=8.45×10 ⁻⁷ <i>I2</i> ; α (P)=4.72×10 ⁻⁸ 7; α (IPE)=1 682×10 ⁻⁵ 24
1231.86 <i>11</i>	0.081 7	1528.12	(3/2+)	296.124	5/2-	[E1]	0.000973 14	%Iγ=2.95 <i>19</i> δ : +0.19 7 (E1+M2) from γγ(θ) (1988Ul02). Ice(K)=0.0543 <i>14</i> . %Iγ=0.0288 <i>28</i> α (K)=0.000801 <i>11</i> ; α (L)=0.0001070 <i>15</i> ; α (M)=2.342×10 ⁻⁵ <i>33</i> α (N)=5.45×10 ⁻⁶ <i>8</i> ; α (O)=7.88×10 ⁻⁷ <i>11</i> ; α (P)=4.40×10 ⁻⁸ <i>6</i> ;
1262.09 9	0.035 8	1339.41	5/2-	77.258	7/2-	M1	0.00353 5	$\alpha(\text{IPF})=3.56\times10^{-5} 5$ $\alpha(\text{K})\text{exp}=0.0031 9$ $\alpha(\text{K})=0.00298 4; \ \alpha(\text{L})=0.000418 6; \ \alpha(\text{M})=9.20\times10^{-5} 13$ $\alpha(\text{N})=2.145\times10^{-5} 30; \ \alpha(\text{O})=3.12\times10^{-6} 4; \ \alpha(\text{P})=1.772\times10^{-7} 25; \ \alpha(\text{IPF})=1.564\times10^{-5} 22$ %Iy=0.0124 29 Ice(K)=0.0076 12

	¹⁶⁵ Tm ε+ $β^+$ decay (30.06 h) 1982Vy03,1980Ab18 (continued)											
	$\gamma(^{165}\text{Er})$ (continued)											
${\rm E}_{\gamma}$ ‡	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments			
1277.79 6	0.041 11	1339.41	5/2-	62.672	7/2+	[E1]		0.000935 13	%Iγ=0.015 4 $\alpha(K)=0.000751 \ 11; \ \alpha(L)=0.0001002 \ 14;$ $\alpha(M)=2.192\times10^{-5} \ 31$ $\alpha(N)=5.10\times10^{-6} \ 7; \ \alpha(O)=7.38\times10^{-7} \ 10;$ $\alpha(P)=4.13\times10^{-8} \ 6; \ \alpha(IPF)=5.66\times10^{-5} \ 8$ Poor fit in the level scheme. Uncertainty in Eγ			
1285.22 6	0.154 6	1528.12	(3/2+)	242.929	3/2-	(E1)		0.000930 13	increased to 0.48 keV for least-squares fitting. $\alpha(K)\exp=0.00115 \ I3$ $\alpha(N)=5.05\times10^{-6} \ 7; \ \alpha(O)=7.30\times10^{-7} \ I0;$ $\alpha(P)=4.09\times10^{-8} \ 6; \ \alpha(IPF)=6.01\times10^{-5} \ 8$ %I $\gamma=0.0547 \ 32$ $\alpha(K)=0.000743 \ I0; \ \alpha(L)=9.92\times10^{-5} \ I4;$ $\alpha(M)=2.169\times10^{-5} \ 30$			
1289.04 <i>3</i>	0.293 7	1289.094	3/2-	0.0	5/2-	M1+E2	1.8 +11-5	0.00235 18	Ice(K)=0.00120 11. α (K)exp=0.00197 14 %Iy=0.104 5 α (K)=0.00197 16; α (L)=0.000283 21; α (M)=6.3×10 ⁻⁵ 5 α (N)=1.46×10 ⁻⁵ 11; α (O)=2.10×10 ⁻⁶ 16; α (P)=1.14×10 ⁻⁷ 10; α (IPF)=1.80×10 ⁻⁵ 5 Ice(K)=0.00392 17			
1339.39 ^d 6	0.058 ^d 10	1339.41	5/2-	0.0	5/2-	[M1,E2]		0.0025 6	$%I_{\gamma}=0.021 4$ %(K)exp=0.0021 10 α(K)=0.0021 5; α(L)=0.00030 7; α(M)=6.5×10 ⁻⁵ 15 α(N)=1.52×10 ⁻⁵ 34; α(O)=2.2×10 ⁻⁶ 5; α(P)=1.22×10 ⁻⁷ 32; α(IPF)=2.96×10 ⁻⁵ 28 Uncertainty in Eγ increased to 0.12 keV for least-squares fitting. Ice(K)=0.0008 3 for doublet.			
1339.39 ^d 6	0.058 ^d 10	1416.72	3/2-	77.258	7/2-	[E2]		1.90×10 ⁻³ 3	$\alpha(K) \exp = 0.0021 \ 10$ $\alpha(K) = 0.001584 \ 22; \ \alpha(L) = 0.0002292 \ 32;$ $\alpha(M) = 5.06 \times 10^{-5} \ 7$ $\alpha(N) = 1.177 \times 10^{-5} \ 16; \ \alpha(O) = 1.689 \times 10^{-6} \ 24;$ $\alpha(P) = 9.03 \times 10^{-8} \ 13; \ \alpha(IPF) = 2.68 \times 10^{-5} \ 4$ %Iy = 0.021 4			
1364.75 3	0.184 5	1427.411	3/2+	62.672	7/2+	E2		1.84×10 ⁻³ 3	α (K)exp=0.00178 <i>15</i> α (K)=0.001529 <i>21</i> ; α (L)=0.0002205 <i>31</i> ; α (M)=4.87×10 ⁻⁵ <i>7</i>			

From ENSDF

 $^{165}_{68}\mathrm{Er}_{97}$ -26

Т

					¹⁶⁵ Tn	$\epsilon + \beta^+ \operatorname{dec}$	cay (30.06 h)	1982Vy03,1980Ab18 (continued)
							γ (¹⁶⁵ Er)	(continued)
E_{γ} ‡	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{\dagger}	Comments
1380.21 <i>3</i>	1.09 7	1427.411	3/2+	47.158	5/2+	M1	0.00288 4	$\begin{aligned} \alpha(N) &= 1.133 \times 10^{-5} \ 16; \ \alpha(O) &= 1.625 \times 10^{-6} \ 23; \ \alpha(P) &= 8.71 \times 10^{-8} \ 12; \\ \alpha(IPF) &= 3.27 \times 10^{-5} \ 5 \\ \% I\gamma &= 0.0653 \ 33 \\ Ice(K) &= 0.00224 \ 14. \\ \alpha(K) &= 0.002410 \ 34; \ \alpha(L) &= 0.000337 \ 5; \ \alpha(M) &= 7.41 \times 10^{-5} \ 10 \\ \alpha(N) &= 1.728 \times 10^{-5} \ 24; \ \alpha(O) &= 2.515 \times 10^{-6} \ 35; \ \alpha(P) &= 1.429 \times 10^{-7} \ 20; \\ \alpha(IPF) &= 4.43 \times 10^{-5} \ 6 \\ \% I\gamma &= 0.387 \ 30 \end{aligned}$
1416.80 <i>10</i>	0.090 4	1416.72	3/2-	0.0	5/2-	E2	1.73×10 ⁻³ 2	Ice(K)=0.0198 7. α (K)exp=0.00156 23 α (K)=0.001424 20; α (L)=0.0002043 29; α (M)=4.51×10 ⁻⁵ 6 α (N)=1.049×10 ⁻⁵ 15; α (O)=1.507×10 ⁻⁶ 21; α (P)=8.11×10 ⁻⁸ 11; α (IPF)=4.65×10 ⁻⁵ 7
1427.40 <i>4</i>	2.27 15	1427.411	3/2+	0.0	5/2-	E1	0.000872 12	%Iγ=0.0320 20 Ice(K)=0.00095 12. α (K)exp=0.00068 6 α (N)=4.19×10 ⁻⁶ 6; α (O)=6.07×10 ⁻⁷ 8; α (P)=3.41×10 ⁻⁸ 5; α (IPF)=0.0001466 21 %Iγ=0.81 6 α (K)=0.000620 9; α (L)=8.24×10 ⁻⁵ 12; α (M)=1.802×10 ⁻⁵ 25 Ice(K)=0.0104 4.

[†] Additional information 3.

[‡] From 1982Vy03, except where noted otherwise.

[#] From ce data of 1980Ab18 and 1982Vy03. The data are normalized to $\alpha(K)(M1)=0.202$ 7 for 242γ. Since $\alpha(K)(M1+E2,\delta=0.12 + 5-7)$ for the 242γ is 0.197 4, all the experimental conversion coefficients have been adjusted downward by 2.5%. Below 390 keV, the multipolarity assignments and mixing ratios are primarily from subshell data and conversion coefficients of 1970Ab18 and 1980Ab18, above this the $\alpha(K)$ exp data are from 1982Vy03 only. Uncertainties in experimental electron intensities are stated in 1970Ab18 as ≈10%. Values of K-shell and L-subshell intensities are used from 1980Ab18 when available in both the references: 1980Ab18 and 1970Ab18. 1988U102 report $\delta(E2/M1)$ and $\delta(M2/E1)$ for 19 γ rays from $\gamma\gamma(\theta)$ data, but no A₂ and A₄ values are listed in the paper and sign convention for mixing ratio is not given. Eight of these transitions are assigned M2+E1 multipolarity with significant values of mixing ratios. Several of these M2+E1 mixing as given by 1988U102 give B(M2)(W.u.) values larger than RUL(M2)=1, for 264.5γ from 507 level, $\delta(M2/E1)=-0.33$ 7 (1988U102) gives B(M2)(W.u.)=9, about an order of magnitude larger than RUL. For this reason the δ values given by 1988U102 have not been adopted here but are listed under comments. For assignment of mult=M1, small E2 admixtures are not ruled out.

[@] From analysis by 1983Mo10 of earlier ce and $\gamma\gamma(\theta)$ data.

& Tentative value deduced by 1980Ab18 from their ce data assuming multipolarity as stated. The evaluators have normalized I γ values quoted by 1980Ab18 to I γ (242.9 γ)=100.

^a Observed only in 1982Vy03.

From ENSDF

¹⁶⁵Tm ε+ $β^+$ decay (30.06 h) 1982Vy03,1980Ab18 (continued)

 $\gamma(^{165}\text{Er})$ (continued)

^b Observed only in ce spectra, for ce(K) see 1980Ab18.

^c For absolute intensity per 100 decays, multiply by 0.355 15.
 ^d Multiply placed with undivided intensity.

 $x \gamma$ ray not placed in level scheme.

¹⁶⁵Tm ε decay (30.06 h) 1982Vy03,1980Ab18

¹⁶⁵₆₈Er₉₇

¹⁶⁵₆₈Er₉₇

¹⁶⁵Tm ε decay (30.06 h) 1982Vy03,1980Ab18

¹⁶⁵Tm ε decay (30.06 h) 1982Vy03,1980Ab18

