		His	story	
	Туре	Author	Citation	Literature Cutoff Date
	Full Evaluation	Balraj Singh and Jun Chen	NDS 194,460 (2024)	31-Oct-2022
$Q(\beta^{-}) = -1591.3 \ 15; \ S(\beta) = 3767 \ 10 \ S(2n) = 3767 \ 10 \ S(2n) = 3767 \ 10 \ S(2n) = 3767 \ S(2n) = $	n)=6650.1 6; S(p)=	$66829.8 \ 15; \ Q(\alpha) = 1109.2 \ 6$	2021Wa16	
Other reactions and me See 164 Er(n, γ),(n,n):re (16 O,pxn α), (17 O,pxn α	easurements: esonances' dataset f α) and (¹⁸ O,pxn α) o	for 18 resonances from 7.9 eV n ¹⁴⁸ Nd, ¹⁵⁰ Nd, ¹⁵⁸ Gd, ¹⁶⁰ Gd	to 750.2 eV. 1 targets: 1996Br08, 199	4Ca11, 1994Br31: measured γ ,
$\gamma(\theta)$, deduced GDF ¹⁶⁶ Er(γ ,n): 1976Go21:	R features. GDR features.			
Additional information 165 Ho(π^+, π^0): 1994Kn	1. 01, 1987Kn02: IAS	S states.		
Hyperfine structure and	d isotope-shift meas	surements: 1965A110, 1980Bc	26.	
Mass measurement: 19	079Ha32.			
2022Ai03: theory: stru	cture: calculated le	vels, J^{π} , bands, B(E2) using o	extended Bohr Hamilton	ian.
2012Er08: theory: stru	cture: calculated vi	brational and rotational bands	, γ energies, B(E2) using	g Bohr Hamiltonian.
2012Ya08: theory: stru	cture: calculated in	trinsic magnetic moment, g fa	actor using Quasiparticle	-Phonon Nuclear Model.
2007Ya05: theory: stru	cture: calculated le	evels, J^{π} , B(E2) using interact	ing boson-fermion mode	1.
2001Va27: theory: stru	cture: calculated ro	otational bands levels, J^{π} , B(E	(2) using pseudo-SU(3) s	scheme.
2001Pu02: theory: stru	cture: calculated g	round-state energies using Mo	nte Carlo method.	
2000Gu34: theory: stru	ucture: calculated h	igh-spin levels, J^{π} , B(E2) for	positive parity bands us	ing interacting boson model (IBM).
Other theoretical calcu in 'document' reco	lations: 54 reference ords which can be a	es for structure and seven dec ccessed via web retrieval of the	eay characteristics retriev ne ENSDF database for	ed from the NSR database are listed ¹⁶⁵ Er.
		165 -	T 1	

¹⁶⁵Er Levels

Cross Reference (XREF) Flags

		A B C D	165 Tm ε 160 Gd(9 H 160 Gd(9 H 164 Dy(α ,	¹⁶⁵ Tm ε decay (30.06 h) ¹⁶⁰ Gd(⁹ Be,4n γ):E=42,45 M ¹⁶⁰ Gd(⁹ Be,4n γ):E=57 MeV ¹⁶⁴ Dy(α ,3n γ)			¹⁶⁴ Er(n, γ),(n,n):resonances ¹⁶⁴ Er(pol n, γ) E=res:arc ¹⁶⁴ Er(d,p) ¹⁶⁵ Ho(p,n γ)	I J K	166 Er(d,t) 166 Er(3 He, α) 167 Er(p,t)		
E(level) [†]	J π #	_	T _{1/2} @	XREF			Comm	nents			
0.0 ^C	5/2-		10.36 h 4	ABCD FGHI K	$ \% \varepsilon = \\ \mu = + \\ Q = + \\ J^{\pi} : s \\ T_{1/2} \\ 10 \\ \mu, Q : \\ \mu : \\ \mu : $	=100 0.641 ≥2.71 3 spin fro : weig 0.4 h <i>I</i> 060Wi 050Bu8 collin =0.65	4 (1987OtZW,2019StZV) 3 (1987OtZW,2021StZZ) om atomic beam (1964Bu09); hted average of 10.39 h 7 (19 (1963Ra15), 10.3 h 2 (1965S 10, 1960Bu27, 1958Gr03, 195 35. tear fast beam LASER spectro 3, Q=2.2 <i>1</i> (atomic beam,196	parity 963Zy(508). 57Go78 9scopy 5A110	r from log <i>ft</i> =4.7 to 7/2 ⁻ . 1), 10.34 h 5 (1963Ry01), Others: 1963Sc18, 1961Bj02, 8, 1952Ku15, 1950Wi16, (1987OtZW). Other:).		
47.158 ^{&} 4	5/2+		4.0 ns 1	ABDF IK	$T_{1/2}$ (1) J^{π} :]	: other 970Ba E1 γ to	rs from ¹⁶⁵ Tm ε decay: 3.25 p (71). $0.5/2^-$: E1 γ s from 7/2 ⁻ and 3	ns 20 (3/2 ⁻ .	(1964Ja09), 4.4 ns 7		
62.672 ^a 4	$7/2^{+}$			ABCD K	J ^π :]	L(p,t)=	=0.				
$77.258^{d} 4$ $97.958^{\&} 9$ $167.4^{a} 1$ $175.82^{c} 3$	7/2 ⁻ 9/2 ⁺ (11/2 ⁺) 9/2 ⁻)	0.96 ns 8	AB D FGHI AB D G IJK BCD K ABCD GHIJ	J^{π} :] J^{π} :] J^{π} :] J^{π} :]	$ \begin{aligned} & F: M1+E2 \ \gamma \ \text{to} \ 5/2^-; \ \text{band member.} \\ & F: E2 \ \gamma \ \text{to} \ 5/2^+; \ L(d,t)=4. \\ & T: \ \Delta J=1 \ \gamma \ \text{to} \ 9/2^+; \ \text{band member.} \\ & F: \ L(d,t)=5; \ \gamma \ \text{to} \ 5/2^ \end{aligned} $					

Continued on next page (footnotes at end of table)

¹⁶⁵Er Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{(0)}$	XREF	Comments
237.8 ^{&} 7	(13/2+)		B D JK	J ^π : ΔJ=1 γ to 11/2 ⁺ ; ΔJ=2 γ to 9/2 ⁺ ; L=(6) from $\sigma(d,t)/\sigma({}^{3}\text{He},\alpha)$ ratio.
242.929 ^b 4	3/2-	0.31 ns 4	A D FGHI	$\mu = +0.62 \ 21 \ (1978 \text{EgZY}, 1989 \text{Ra}17, 2014 \text{StZZ})$ $J^{\pi}: E2 \ \gamma \text{ to } 7/2^{-}; \ L(d,t)=1.$ $\mu: \text{ from } 1978 \text{EgZY}, \text{ probably perturbed angular correlation method.}$ No value is listed in 2020 StZV.
295.8 ^d 7	$(11/2^{-})$		B D H	
296.124 ^b 4 297.367 ^e 5	5/2 ⁻ 1/2 ⁻	≤0.24 ns 0.70 ns 8	AD h AFGhIK	J ^π : M1+E2 γs to 3/2 ⁻ and 7/2 ⁻ . T _{1/2} : other: ≤1.0 ns (1970BaYN). J ^π : 297γ E2 (from ce data) to 5/2 ⁻ , 54.4γ M1(+E2) to 3/2 ⁻ ; L(d,t)=1 from 0 ⁺ ; 1/2 ⁻ from measured intensity pattern, $\sigma(\theta)$ in (d,p); 54.4γγ(θ) in ¹⁶⁵ Tm ε decay is consistent with J=1/2 (1988UI02).
356.525 ^e 4	$3/2^{-}$	0.35 ns 6	A FG I	J^{π} : M1+E2 γ to 1/2 ⁻ ; E2 γ to 7/2 ⁻ .
372.4^{a} 1 372.716^{b} 14 384.341^{e} 7 431.2 435.5^{c} 1 435.5^{c} 1	$(15/2^+)$ $7/2^-$ $5/2^-$ $1/2^+$ $(13/2^-)$ $(15/2^+)$		BCD K A GIJ A GI I BC H	J^{π} : L(d,t)=3 in (d,t); 'fingerprint' method in (d,p). J^{π} : M1+E2 γ s to 7/2 ⁻ and 3/2 ⁻ . J^{π} : L(d,t)=0. XREF: H(?).
463.3°° 10 465	$(1^{7}/2^{+})$ $7/2^{+}$		В D к	I^{π} . I (n t)=0
467 ^b 2	$(9/2^{-})^{\ddagger}$		GI	• · • (p,,) • 0.
477.758 <i>f</i> 8	5/2-		A	J^{π} : M1+E2 γ to 3/2 ⁻ ; γ to 7/2 ⁺ .
507.421 ^k 5	1/2+	0.70 ns 12	A F I	J^{π} : L(d,t)=0.
514 ^e 3	7/2-‡		G	
519.144 ^k 6 534.571 ^m 10	5/2 ⁺ 3/2 ⁺		A A FG I	J^{π} : E1 γ to $3/2^-$; E2 γ to $9/2^+$. J^{π} : L(d,t)=2 in (d,t); 'fingerprint' method in (d,p).
550.6 ^h 1	11/2-	0.25 µs 3	BCD IJ	%IT=100 XREF: I(547). T _{1/2} : from γ (t) in (α ,2n γ) (1974An04). Other: >100 ns (1970Hj02). J ^{π} : L(d,t)=5; γ to 13/2 ⁺ .
573 ^{<i>f</i>} 2	7/2-		GI	J^{π} : L(d,t)=(3); band member.
589.759 ^k 5	3/2+		A fgik	J^{π} : M1 γ to 1/2 ⁺ ; E1 γ to 5/2 ⁻ .
589.882 8	1/2-	≤0.6 ns	A fgik	J^{π} : 589.9 γ E2 (from ce data) to 5/2 ⁻ ; 346.9 γ M1(+E2) to 3/2 ⁻ ; $\gamma\gamma(\theta)$ in ¹⁶⁵ Tm ε decay is consistent with spin=1/2 (1988Ul02).
595.7 ^{<i>a</i>} 5 599 2 605.486 8 608.502 7	(15/2 ⁻) (3/2 ⁺ ,5/2 ⁺) (3/2 ⁺) 3/2 ⁻		Bh I Agk AFk	J ^π : L(d,t)=(2). J ^π : (E1+M2) γ to 3/2 ⁻ ; γ to 5/2 ⁻ ; β feeding from 1/2 ⁺ parent. J ^π : 531.2γ E2 (from ce data) to 7/2 ⁻ ; 365.6γ M1+E2 to 3/2 ⁻ ; only spin=3/2 with a small δ from 312γγ(θ) in ¹⁶⁵ Tm ε decay (1988Ul02) is consistent with Mult=M1 for 312γ from measured ce data.
648 2 674 2 678.4 ^{<i>a</i>} 2 684 <i>^f</i> 3 700 3 706 2	$5/2^+, 3/2^+$ (19/2 ⁺) $9/2^{-\ddagger}$		I I BCD G G	J^{π} : L(d,t)=2.
706.28 <i>I</i> 721 <i>2</i> 730 <i>3</i>	(13/2)		C K I RCD	
745.946 ⁰ 9	$1/2^{+}$	1.00 ns 15	A GI	XREF: I(741).

Continued on next page (footnotes at end of table)

¹⁶⁵Er Levels (continued)

E(level) [†]	$J^{\pi \#}$	XR	EF	Comments
				J^{π} : L(d,t)=0.
760 2	7/2-,5/2-		GΙ	J^{π} : L(d,t)=3 from 0 ⁺ .
769.4 ^{&} 14	$(21/2^+)$	B D		
772.4^{-1}	(1/2)	BC	с т	
820 ⁷ 3 840 2	$\frac{11/2}{(1/2^{-} 3/2^{-})}$		GI	XREF: G(846)
010 2	(1/2 ,5/2)		01	J^{π} : L(d,t)=(1).
853.538 8	3/2+	A F		J^{π} : M1 γ to 3/2 ⁺ ; E2 γ to 7/2 ⁺ ; γ to 1/2 ⁻ .
863 2	$3/2^+, 5/2^+$		I	$J^{\pi}: L(d,t)=2.$
8/3 3	(15/2-)		G	
882.4 ⁿ 1	$(15/2^{-})$	BCD	c	
02071610	1/2-	A E	G	π , E1 or to $2/2^+$, E2 or to $5/2^-$
920.710 9	$(9/2^+ 7/2^+)$	АГ	T	$J : ET \gamma to 5/2 , EZ \gamma to 5/2 .$ $I^{\pi} \cdot L(d t) = (4)$
962.422^{j} 12	$3/2^{-}$	A F	G	J^{π} : M1 vs to 5/2 ⁻ and 1/2 ⁻ .
$970.7^{d}5$	$(19/2^{-})$	В	-	
971 2	$(3/2^+, 5/2^+)$	-	I	J^{π} : L(d,t)=(2).
999.853 20	3/2+	Α		J^{π} : M1 γ to 5/2 ⁺ ; (E2) γ s to 7/2 ⁺ and 1/2 ⁺ .
1024 ^j 5	$(5/2^{-})^{\ddagger}$		G	
1032.1?		F		
1039 ¹ 2	3/2-	_	I	J^{π} : L(d,t)=1; 'fingerprint' method.
1045.0 3		F	G	
1064 ^{<i>i</i>} 2	5/2-		I	J^{π} : 'fingerprint' method.
1073 3	$(17/2^{-})$	BCD	G	
1079.8^{a} 6	$(17/2^{-})$ $(23/2^{+})$	B D		
1103.501 11	3/2+	Α		J^{π} : M1 γ to $3/2^+$; γ to $5/2^-$; log <i>ft</i> =7.56 from $1/2^+$.
1106 ^j 2	$(7/2^{-})$		GΙ	J ^{π} : L(d,t)=(3); (7/2 ⁻) proposed in (d,p) based on measured intensity pattern, $\sigma(\theta)$.
1139 2	$3/2^+, 5/2^+$		GΙ	$J^{\pi}: L(d,t)=2.$
1153.1 7	$(25/2^+)$	ΒD		
1165 15			J	
1172 ¹ 2	7/2-	_	GΙ	J^{π} : L(d,t)=(3); 'fingerprint' method in (d,t).
1178.9 6	(21/2)	В	c	
1233 5			G	
1250 2			I	
1274 2	$(5/2^-, 7/2^-)$		I	J^{π} : L(d,t)=(3).
1289.094 15	3/2-	Α	GΙ	J^{π} : M1 γ s to 1/2 ⁻ and 5/2 ⁻ .
1292.1 ^{<i>n</i>} 7	$(19/2^{-})$	В		
1317.8 1	$(15/2^{-})$	BC	-	
1339 41 5	5/2-	Α	T	I^{π} : M1 vs to 7/2 ⁻ and 5/2 ⁻ : (M1) v to 3/2 ⁻ : 7/2 ⁻ not allowed by 749.01v to 1/2 ⁺
1559.115	5/2			or $3/2^+$.
1379 2	$(5/2^-, 7/2^-)$		GΙ	J^{π} : L(d,t)=(3).
1411.92 7	3/2+	Α	GΙ	J^{π} : M1 γ to 5/2 ⁺ ; log <i>ft</i> =6.65 from 1/2 ⁺ .
1413.5 ^{<i>a</i>} 7	$(23/2^{-})$	В		
1416.72 5	$3/2^{-}$	A		J [*] : 827.4 γ M1 to 1/2 ⁻ , 1339.39 γ to 7/2 ⁻ .
142/.411 IU 1474N = 5	$\frac{3}{2}$	A	c	J . E1 γ to $3/2^{-}$, $\log f = 3.4$ from $1/2^{-}$.
14/4 3	$(3/2)^{*}$ $1/2^{+}$		GT	$I^{\pi} \cdot I(d t) = 0$
1506.0^{i} /	$(17/2^{-})$	BC		
	× · / /	-		

Continued on next page (footnotes at end of table)

¹⁶⁵Er Levels (continued)

E(level) [†]	J ^{π#}	$T_{1/2}^{(0)}$	Х	REF	Comments
1521.8 ^g 7 1528.12 6	$(21/2^{-})$ $(3/2^{+})$		B A		J^{π} : log <i>ft</i> =5.9 from 1/2 ⁺ ; γ to 5/2 ⁻ .
1539 ⁿ 5 1564 5	(5/2 ⁻) [‡]			G G	
1570.7 ^a 7	$(27/2^+)$		В		
1610.7 ^{&} 9 1612 5	(29/2 ⁺)		В	G	
1631 ⁿ 5	$(7/2^{-})^{\ddagger}$			G	
1647.8 [°] 7	$(25/2^{-})$		В		
1656 5				G	
1761 5				G	
1766.6 ^h 8	$(23/2^{-})$		В		
1780 5				G	
1805 5				G	
1819 J 1823.0 <i>1</i>	(19/2.21/2)	0.37 µs 4	BC	G	%IT=100
102010 1	(1),2,21,2)	0.07 µ8 7			T _{1/2} : from 799.8 γ (t) (2012Sw01) in ¹⁶⁰ Gd(⁹ Be,4n γ):E=57 MeV. J ^{π} : Possible configurations= $v5/2[523] \otimes \pi7/2[523] \otimes \pi7/2[404]$ for J ^{π} (1823 level)=19/2 ⁺ ; $v5/2[642] \otimes \pi7/2[523] \otimes \pi7/2[404]$ for J ^{π} (1823 level)=19/2 ⁻ ; $v7/2[633] \otimes \pi7/2[523] \otimes \pi7/2[404]$ or $v11/2[505] \otimes v5/2[523] \otimes v5/2[512]$ for J ^{π} (1823 level)=21/2 ⁻ , proposed in ¹⁶⁰ Gd(⁹ Be,4n γ):E=57 MeV (2012Sw01).
1851 5				G	
1889 5				G	
1901 5	(07/0-)		_	G	
1914.6 ⁴ /	(27/2)		В	G	
1951 5				G	
1968 5				G	
2004 5				G	
2024.8 ⁸ 8	$(25/2^{-})$		В	U.	
2033 5				G	
2047 5				G	
2037.5 2134.2 ^{&} 10	$(33/2^+)$		R	G	
2131.2 10 2140.5 ^{<i>a</i>} 9	$(31/2^+)$		B		
2167.8 [°] 9	(29/2 ⁻)		В		
2295.8 ^h 8	$(27/2^{-})$		В		
2466.6 ^{<i>d</i>} 9	$(31/2^{-})$		В		
2577.789	(29/2)		В		
$2/1/.2^{\circ}$ 11 2729 8 [°] 10	$(37/2^{+})$ $(33/2^{-})$		B		
2777.7 ^{<i>a</i>} 10	$(35/2^+)$		B		
2869.8 ^h 10	(31/2 ⁻)		В		
3060.6 ^d 10	(35/2-)		В		
3329.8 [°] 11	(37/2 ⁻)		В		
3354.0° 12	$(41/2^+)$ $(20/2^+)$		B		
3690 6 ^d 12	$(39/2^{-})$		D R		

¹⁶⁵Er Levels (continued)

E(level) [†]	$J^{\pi \#}$	XREF	Comments
3971.8 ^c 12	$(41/2^{-})$	В	
4042.4 ^{&} 13	$(45/2^+)$	В	
4193.2 ^{<i>a</i>} 13	$(43/2^+)$	В	
4360.6 ^d 13	$(43/2^{-})$	В	
4664.8? ^C 13	$(45/2^{-})$	В	
4784.5 ^{&} 14	$(49/2^+)$	В	
4946.2? ^a 14	$(47/2^+)$	В	
(6650.2 7)	1/2,3/2	F	$S(n)(^{165}Er) = 6650.1 \ 6 \ (2021Wa16).$
			J^{π} : s- and/or p-wave capture in ¹⁶⁴ Er g.s.
15.49×10^{3}		Н	IAS in ¹⁶⁵ Er.
хP	$(19/2^{-})$	С	
101.8+x ^p 1	$(21/2^{-})$	С	
242.0+x ^p 2	$(23/2^{-})$	С	
410.8+x ^{<i>p</i>} 2	$(25/2^{-})$	С	
603.3+x ^p 2	$(27/2^{-})$	С	Magnitude of $g_{K}-g_{R}=0.31+5-3$.
816.5+x ^p 2	$(29/2^{-})$	С	Magnitude of $g_{\rm K}$ - $g_{\rm R}$ =0.33 +10-7.
1049.3+x ^{<i>p</i>} 2	$(31/2^{-})$	С	Magnitude of $g_{\rm K}$ - $g_{\rm R}$ =0.39 +5-4.
1298.6+x ^p 2	$(33/2^{-})$	С	Magnitude of $g_{\rm K}$ - $g_{\rm R}$ =0.33 +6-5.
1564.9+x ^p 2	$(35/2^{-})$	С	Magnitude of $g_{\rm K}$ - $g_{\rm R}$ =0.31 7.
у 	$(19/2^+)$	С	
188.7+y 9 1	$(21/2^+)$	С	
393.8+y ^q 2	$(23/2^+)$	С	
615.0+y ^q 2	$(25/2^+)$	С	
852.0+y ^q 2	$(27/2^+)$	С	
1103.3+y ^q 2	$(29/2^+)$	С	
1368.7+y ^q 3	$(31/2^+)$	С	

[†] From ¹⁶⁵Tm ε decay for low-spin levels up to 1528 keV, where details of least-squares fitting procedure requiring inflating uncertainties of about 18 γ transitions. High-spin levels are from two studies at different beam energies using ¹⁶⁰Gd(⁹Be,4n γ) reaction, and ¹⁶⁴Dy(α ,3n γ) reaction, with precise level energies from ¹⁶⁰Gd(⁹Be,4n γ):E=57 level (2012Sw01) when available. Other low-spin levels, not populated in γ -ray studies, are from particle-transfer reactions: ¹⁶⁴Er(d,p); ¹⁶⁶Er(d,t); ¹⁶⁶Er(³He, α); and ¹⁶⁷Er(p,t).

- \ddagger From analysis of relative intensity pattern ('fingerprint' method) in (d,p) and band assignment.
- [#] For high-spin (J>9/2) assignments are based on $\gamma(\theta)$ data for selected transitions and band associations as in (⁹Be,4n γ):E=42,45 MeV (2011Wa19).
- [@] From $\gamma(ce)(t)$ in ¹⁶⁵Tm ε decay, unless otherwise noted.
- & Band(A): $v5/2[642], \alpha = +1/2$. Band assignment from 2011Wa19 in 160 Gd(9 Be,4n γ):E=42,45 MeV. In particle-transfer reactions, mixed configurations of v1/2[660], v3/2[651], v5/2[642], v7/2[633], and v9/2[624] orbitals is proposed for low-spin levels.
- ^{*a*} Band(a): $v5/2[642], \alpha = -1/2$. Band assignment from 2011Wa19 in ¹⁶⁰Gd(⁹Be, 4n\gamma):E=42,45 MeV.
- ^b Band(B): v3/2[521] band. A=10.8.
- ^{*c*} Band(C): $v5/2[523], \alpha = +1/2$. A=11.0.
- ^{*d*} Band(c): $v5/2[523], \alpha = -1/2$.
- ^e Band(D): v1/2[521] band. A=10.8, a=0.014.
- f Band(E): v5/2[512] band. A=12.9.
- ^{*g*} Band(F): $\nu 11/2[505], \alpha = +1/2$. A=11.8.
- ^{*h*} Band(f): $v11/2[505], \alpha = -1/2$.
- ^{*i*} Band(b): γ -vibrational band built on ν 11/2[505]. Band assignment from 2011Wa25 in ¹⁶⁰Gd(⁹Be,4n γ):E=42,45 MeV.
- ^{*j*} Band(G): $K^{\pi} = 1/2^{-}$ band. $v1/2[510] + (K-2 \gamma \text{ vibration built on } v5/2[512]; K=5/2)$. A=13.1, a=0.06.

¹⁶⁵Er Levels (continued)

- ^k Band(H): $K^{\pi}=1/2^+$ band. $\nu 1/2[660]+(K-2 \gamma \text{ vibration built on } \nu 5/2[642]; K=5/2)$. A=6.7, a=3.1.
- ^{*l*} Band(I): *v*1/2[530] band. A=10.2, a=0.51.
- ^m Band(J): v3/2[402] bandhead (?).
- ^{*n*} Band(K): $\nu 3/2[512]$ band (?).
- ^o Band(L): v1/2[400] bandhead (?).
- ^{*p*} Band(M): K^{π} =(19/2⁻) band. The floating bands based on 19/2 are in early coincidence with respect to the delayed isomeric transitions, so must decay through the isomer. Authors state "It is highly likely that one of these bands is the isomer band, while the other decays into the isomer bandhead through a low-energy E1 transition (<60 keV). This transition may be obscured by strong x rays between 40 and 60 keV." Intrinsic g factors, g_K-g_R for the band based on (19/2⁻) assume K=19/2 and Q₀=6.6 b (from 1995Mo29). Theoretical value=0.56 5 for 19/2⁺ configuration and 0.46 5 for 19/2⁻ configuration.

 q Band(N): Band based on (19/2⁺). See comments for band based on (19/2⁻).

$\gamma(^{165}\text{Er})$

Additional information 2.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [#]	$\delta^{\#}$	α [@]	Comments
47.158	5/2+	47.155 6	100	0.0	5/2-	E1		0.450 7	B(E1)(W.u.)= $3.57 \times 10^{-4} + 22 - 20$ δ : <0.024 from ce data, but RUL=1 for B(M2)(W.u.) gives negligible M2 admixture, thus δ (M2/E1) is assigned as zero. Note that δ <0.024 gives B(M2)(W.u.)<450.
62.672	7/2+	15.512 <i>10</i> 62.676 <i>5</i>	0.56 28 100.0 21	47.158 0.0	$5/2^+$ $5/2^-$	M1+E2 E1	0.27 7	$1.2 \times 10^3 6$ 1.099 15	-
77.258	$7/2^{-}$	14.56 2	12.7	62.672	$7/2^+$	(E1)		11.47 17	B(E1)(W.u.)=0.00091 18
		30.106 8	12.2	47.158	$5/2^+$	E1		1.565 22	$B(E1)(W.u.) = 9.9 \times 10^{-5} 21$
		77.253 5	100.0 25	0.0	5/2-	M1+E2	2.3 4	7.70 16	B(M1)(W.u.)=0.00075 +29-19; B(E2)(W.u.)=316 +32-35
97.958	9/2+	20.71 2 35.280 18 50 77 2	100 75 3 8	77.258 62.672 47.158	7/2 ⁻ 7/2 ⁺ 5/2 ⁺	(E1) M1+E2 E2	0.173 +26-19	4.39 6 17.5 25 46 9 7	
167.4	$(11/2^+)$	69.4 104.6	100 47	97.958	$9/2^+$ $7/2^+$	D+Q		-10. <i>9</i> 7	Mult.: from $\gamma(\theta)$ in $(\alpha, xn\gamma)$.
175.82	9/2-	98.60 <i>5</i>	20.6	77.258	$7/2^{-}$ $7/2^{+}$	[M1+E2]		3.03 8	γ only from ¹⁶⁰ Gd(⁹ Be 4n γ) E=57 MeV
		175 86 7	100 11	0.0	5/2-	(E2)		0 388 5	γ only non $\operatorname{Gu}(\operatorname{De},\operatorname{Hr}\gamma), \operatorname{L}=37$ we v.
237.8	$(13/2^+)$	71.2	45	167.4 97.958	$(11/2^+)$ $9/2^+$	D+Q		0.000 0	
242.929	$3/2^{-}$	165.659 15	0.44 6	77.258	$7/2^{-}$	E2		0.477 7	B(E2)(W.u.)=0.95 +20-16
	- /	195.773 7	1.62 4	47.158	$5/2^{+}$	E1		0.0550 8	$B(E1)(W.u.) = 1.25 \times 10^{-6} + 20 - 15$
		242.917 7	100.0 20	0.0	5/2-	M1+E2	0.12 +5-7	0.234 4	B(M1)(W.u.)=0.0039 +6-5; B(E2)(W.u.)=0.45 +45-35
295.8	$(11/2^{-})$	120.1	2.4	175.82	9/2-				
		197.8 218 5	43	97.958 77.258	$9/2^+$	(0)			γ only from ¹⁶⁰ Gd(⁹ Be,4n γ):E=42,45 MeV.
296.124	$5/2^{-}$	53.182.15	14.7 11	242.929	$3/2^{-}$	M1+E2	0.148 12	3.63.13	B(M1)(W,u) > 0.025; B(E2)(W,u) > 79
200112	0/2	120.34 4	0.14	175.82	$9/2^{-}$	(E2)	0111012	1.479 21	B(E2)(W.u.) > 0.58
		218.859 6	86 5	77.258	7/2-	M1+E2	-0.26 7	0.306 6	B(M1)(W.u.)≥0.002; B(E2)(W.u.)≥0.77
		248.962 ^{&} 7	<20.6 ^{&}	47.158	$5/2^+$	(E1+M2)	0.08 + 4 - 7	0.036 8	
		296.119 9	100.0 22	0.0	5/2-	M1+E2	< 0.40	0.134.5	$B(M1)(W.u.) > 9.1 \times 10^{-4}$
297.367	$1/2^{-}$	54.415 11	56.7 14	242.929	3/2-	M1(+E2)	< 0.017	2.70 4	B(M1)(W.u.)=0.035 +6-4; B(E2)(W.u.)<1.9
	,	297.369 6	100.0 20	0.0	5/2-	E2		0.0709 10	B(E2)(W.u.)=2.04 +27-22
356.525	3/2-	59.129 22	2.12 17	297.367	1/2-	M1+E2	0.77 8	17.1 6	B(M1)(W.u.)=0.00060 +14-11; B(E2)(W.u.)=48 +12-10

Ţ

¹⁶⁵₆₈Er₉₇-7

$\gamma(^{165}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	$\alpha^{@}$	Comments
356.525	3/2-	60.399 4	25.8 5	296.124	5/2-	M1+E2	0.044 +14-19	12.13 17	B(M1)(W.u.)=0.0108 +22-16; B(E2)(W.u.)=2.8 +22-18
		113.599 <i>4</i> 279.264 <i>7</i>	56.8 <i>12</i> 21.8 7	242.929 77.258	3/2 ⁻ 7/2 ⁻	M1+E2 E2	0.081 +24-33	1.974 28 0.0860 <i>12</i>	B(M1)(W.u.)=0.0036 +7-5; B(E2)(W.u.)=0.9 6 B(E2)(W.u.)=0.57 +12-9
		309.4 <i>3</i>	2.8	47.158	$5/2^{+}$	(E1)		0.0172 3	$B(E1)(W.u.) = 8.9 \times 10^{-8} + 27 - 21$
		356.519 12	100.0 30	0.0	5/2-	M1+E2	0.84 13	0.0665 35	B(M1)(W.u.)= $1.20 \times 10^{-4} + 30 - 22$; B(E2)(W.u.)= $0.32 + 9 - 8$
372.4	(15/2 ⁺)	134.3 205.1	47 100	237.8 167.4	$(13/2^+)$ $(11/2^+)$	D+Q			
372.716	7/2-	76.56 2 129.82 4 272 8 4	10 40	296.124 242.929	5/2 ⁻ 3/2 ⁻ 5/2 ⁻	M1(+E2) [E2]	<0.3	6.23 <i>13</i> 1.124 <i>16</i>	
384.341	5/2-	11.60 2 27.879 15	1.6	372.716 356.525	$\frac{3}{2}^{-}$ $\frac{3}{2}^{-}$	M1 M1+E2	0.077 12	262 <i>4</i> 24.6 <i>18</i> 5 03 7	E_{γ} : poor fit in the level scheme.
		88 205 15	29.8.32	297.307	$\frac{1}{2}$	M1+E2	0.12.2	4 09 6	E_{γ} . poor in in the level scheme.
		141.36.7	18.6.29	242.929	$3/2^{-}$	M1+E2	0.47 10	1.019 27	
		286.30 15	5.6	97.958	$9/2^+$	[M2]	0117 10	0.643 9	
		307.067 11	100.0 27	77.258	$7/2^{-}$	M1(+E2)	< 0.9	0.112 14	
		384.53 4	96 11	0.0	5/2-	M1+E2	1.1 +8-5	0.050 10	
435.5	$(13/2^{-})$	259.6 [‡]	100 [‡] 9	175.82	9/2-				
		268.1 [‡]	46 [‡]	167.4	$(11/2^+)$				
463.3	$(17/2^+)$	91.5	25.5	372.4	$(15/2^+)$	D+Q			
		225.2	100	237.8	$(13/2^+)$				
477.758	5/2-	181.61 4	4.3 5	296.124	5/2-	M1(+E2)	<1.2	0.47 5	
		234.789 22	16.2 6	242.929	3/2-	M1(+E2)	<1.2	0.226 33	
		400.520 11	34.8 8	77.258	7/2-				
		415.12 3	15.1 7	62.672	7/2+				
		430.594 21	69.9 36	47.158	5/2+	E1	1.2.4	0.00782 11	
505 401	1.0	4/7./91 23	100.0 36	0.0	5/2	MI+E2	1.2.4	0.027 4	
507.421	$1/2^{+}$	150.894 5	13.71 34	356.525	3/2-	EI		0.1090 15	$B(E1)(W.u.) = 8.4 \times 10^{-6} + 18 - 13$
		210.053 7	20.3 4	297.367	1/2-	E1		0.0458 6	$B(E1)(W.u.) = 4.6 \times 10^{-6} + 10 - 7$
		264.492 7	13.45 34	242.929	3/2-	E1		0.0254 4	$B(E1)(W.u.) = 1.53 \times 10^{-6} + 32 - 23$
510 144	5/0+	460.263 16	100.0 35	47.158	5/2+	E2		0.0204 3	B(E2)(W.u.)=0.48 + 10 - 7
519.144	5/21	162.60 3	5.1 12	356.525	3/2	EI		0.0895 13	
		421.179 10	26.2 0	97.958	$9/2^{+}$	EZ M1+E2	0 (2 11	0.0259 4	
		430.439 13	100 3	02.072	1/2* 5/2+	M1+E2 M1+E2	0.02 11	0.037718 0.0323.20	
534 571	3/2+	149 65 6	28.27	384 3/1	5/2- 5/2-	F1	0.17 14	0.0525.20	
557.571	5/2	238 471 18	15314	296 124	5/2-	(E1)		0.0330.5	
		487.399 10	100.0 21	47.158	$5/2^+$	M1		0.0373 5	
					-/-			0100700	

 ∞

$^{165}_{68}\mathrm{Er}_{97}$ -8

From ENSDF

 $^{165}_{68}{
m Er}_{97}{
m -8}$

$\gamma(^{165}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J	$\frac{\pi}{f}$	Mult. [#]	$\delta^{\texttt{\#}}$	α [@]	Comments
534.571	$3/2^{+}$	534.72 7	3.20 34	0.0 5/2	-	(E1)		0.00482 7	
550.6	$11/2^{-}$	314.8	32.7	237.8 (13	$/2^{+})$	[E1]		0.01646 24	$B(E1)(W.u.)=5.3\times10^{-9}$ 11
	,	375.0	34.9	175.82 9/2	_	(M1+E2)		0.055 9	$B(M1)(W.u.)=3.3\times10^{-7}$ 7 if M1,
									B(E2)(W.u.)=0.00112 +24-22 if E2.
		383.7	100	167.4 (11	/2+)	[E1]		0.01023 15	$B(E1)(W.u.) = 8.9 \times 10^{-9} + 14 - 11$
		473.7	7.9	77.258 7/2	_	[E2]		0.0189 <i>3</i>	$B(E2)(W.u.)=7.8 \times 10^{-5} + 20 - 17$
589.759	$3/2^{+}$	70.610 5	14.7 4	519.144 5/2	+	M1+E2	0.05 + 4 - 3	7.77 11	
		82.33 1	0.30	507.421 1/2	+	M1+E2	< 0.23	5.01 7	
		205.402 11	29.7 8	384.341 5/2	_	E1		0.0485 7	
		233.280 13	7.18 22	356.525 3/2	_	EI		0.0349 5	
		346.825 11	15.4 5	242.929 3/2	+	EI E2		0.01301 18	
		542 622 11	100.5	47 158 5/2	+	E2 M1+E2	0.61.17	0.0143720 0.0242.17	
580 882	1/2-	292 410 14	100 5	$-47.156 \ 5/2$	_	(M1)	0.01 17	0.1428 20	$B(M1)(W_{H}) > 2.7 \times 10^{-4}$
569.662	1/2	3/6 033 11	100.0.37	297.307 1/2	_	$M1(\pm E2)$	<0.53	0.1428 20	$B(M1)(W_{H}) > 3.7 \times 10^{-4}$ B(E2)(W _H) > 0.0071
		589 912 15	63 3 27	$0.0 \frac{5}{2}$	_	F_2	<0.55	0.01088 15	B(F2)(Wu) > 0.066
505 7	$(15/2^{-})$	300	100^{\ddagger} 13	205.8 (11	(2-)	112		0.01000 15	B(12)(11.0.)_0.000
393.1	(13/2)	257 5	100 15	295.8 (11)	/2) /2+)				
605 196	(2/2+)	337.3 ⁺	40*	237.8 (13	/2·) _	FE 11		0 170 2	
005.480	(3/2)	221 15 5	100	$384\ 341\ 5/2$	_			0.170 5	
		221.155	-240 ^{&}	256 525 2/2	_	$(\mathbf{E1} + \mathbf{M2})$	0.09 + 4.7	0.026.9	
		240.902 7	<340	230.323 3/2 242.929 3/2	_	(E1+W12)	0.08 +4-7	0.030 8	
		605.02°	~70&	0.0 5/2	_				
608 502	3/2-	224 02 8	5711	$384\ 341\ 5/2$	_	M1		0 294 4	
000.502	5/2	224.02.0 251.7 ^{<i>a</i>} 3	24	356 525 3/2	_	(M1)		0.2747	
		312.327 12	95.5	296.124 5/2	_	M1		0.1197 17	E_{α} : poor fit in the level scheme.
		365.577 8	100.0 29	242.929 3/2	-	M1+E2	1.14 +25-21	0.056 5	-y. F
		531.243 26	27.0 10	77.258 7/2	_	E2		0.01409 20	
		608.527 16	92.0 29	0.0 5/2	_	E2		0.01009 14	
678.4	$(19/2^+)$	214.3	12.1	463.3 (17)	/2+)	D+Q			
		306.1	100	372.4 (15	/2+)	(Q)			
706.2	$(13/2^{-})$	155.6	100	550.6 11/	2-	D			
745.946	1/2+	156.10 3	0.42 20	589.882 1/2	_	E1		0.0997 14	$B(E1)(W.u.)=1.2\times10^{-7}+6-5$
		156.21 3	0.62 20	589.759 3/2	+	M1		0.801 11	$B(M1)(W.u.) = 1.7 \times 10^{-5} + 7 - 6$
		238.471 18	5.7 5	507.421 1/2		[M1]		0.248 4	$B(M1)(W.u.) = 4.3 \times 10^{-5} + 9 - 6$
		389.404 14	100.0 23	356.525 3/2	_	E1		0.00988 14	$B(E1)(W.u.) = 1.78 \times 10^{-6} + 32 - 23$
		448.580 14	57.8 19	297.367 1/2	-	E1		0.00713 10	$B(E1)(W.u.)=6.7\times10^{-7}+12-9$
760 4	$(21/2^{+})$	098.843 10	45.6 17	4/.158 5/2	(<u>)</u> +)	E2		0.00730 10	B(E2)(W.U.)=0.0135 +24-18
/09.4	$(21/2^{\circ})$	300.1	100	403.3 (1/	12:)	(\mathbf{V})			

9

From ENSDF

_

$\gamma(^{165}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α@	Comments
772.4	$(17/2^{-})$	336.9 [‡]	100 [‡] <i>10</i>	435.5 (13/2-	-)		
		400.0	29 [‡]	372.4 (15/2-	+)		
853.538	$3/2^{+}$	318.84 7	0.12 3	534.571 3/2+	M1	0.1133 16	
	-,-	334.34 10	0.16 2	519.144 5/2+	(M1,E2)	0.075 25	
		496.98 13	0.17 6	356.525 3/2-			
		557.38 4	1.94 22	296.124 5/2-			
		610.616 17	5.04 15	242.929 3/2-	(E1)	0.00363 5	
		790.873 18	4.81 11	62.672 7/2+	E2	0.00553 8	
		806.372 17	100.0 34	47.158 5/2+	M1	0.01046 15	
		853.568 22	1.69 7	$0.0 5/2^{-}$			
882.4	$(15/2^{-})$	175.8 <mark>&</mark>	100	706.2 (13/2	-)		
		331.5	12.4	550.6 11/2-			
920.716	$1/2^{-}$	330.777 10	3.82 22	589.882 1/2-	M1	0.1027 14	
		330.885 10	4.95 22	589.759 3/2+	E1	0.01458 20	
		413.294 23	3.57 28	507.421 1/2+	(E1)	0.00860 12	
		442.980 16	31.7 12	477.758 5/2-	E2	0.02261 32	
		537.17 3	3.17 31	384.341 5/2	E2	0.013/1 19	
		564.183 1/	100 0	356.525 3/2	M1	0.0256 4	
		023.39 3 677 85 2	8.45 20 6 42 25	297.307 1/2 $242.020 3/2^{-1}$	M1	0.01989 28	
962 122	3/2-	077.85 5	0.42 23	$242.929 \ 3/2$ 534 571 $3/2^+$	1111	0.01011 25	
902.422	5/2	484 73 3	28 5 16	$477.758 5/2^{-1}$			
		578.049 16	44.0 11	$384.341 5/2^{-1}$	M1	0.02409.34	
		605 03 ^{&} 3	~13&	356 525 3/2-	F2	0.01020.14	
		665 067 20	100.0.28	$297.367 1/2^{-1}$	L2 M1	0.01690 24	
		719 58 8	466	$242.929 \ 3/2^{-1}$	1411	0.01070 24	
970.7	$(19/2^{-})$	375	100 17	595.7 (15/2)	-)		
	(->)=)	507.4	35.5	463.3 (17/2	+)		
999.853	$3/2^{+}$	410.02 7	24.9 26	589.759 3/2+	M1	0.0583 8	
		492.41 8	71 5	507.421 1/2+	(E2)	0.01711 24	
		703.66 19	12.8 18	296.124 5/2-			
		937.39 10	13.9 <i>16</i>	62.672 7/2+	(E2)	0.00384 5	
		952.71 <i>3</i>	100 8	47.158 5/2+	M1	0.00694 10	
1078.4	$(17/2^{-})$	195.6 <mark>&</mark>	<134 ^{&}	882.4 (15/2	-)		
		371.6	100	706.2 (13/2)		
1079.8	$(23/2^+)$	310.0		769.4 (21/2	*)		
	a (a)	401.9		678.4 (19/2	r) (Q)		
1103.501	3/2+	141.36 7	50 6	962.422 3/2-		0.17.5	E_{γ} : poor fit in the level scheme.
		249.83 4	59 6	853.538 3/2+	M1,E2	0.17 5	
		494.94 3	21.8 12	608.502 3/2			

10

$\gamma(^{165}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ#	α@	Comments
1103.501	3/2+	513.627 14	33.8	589.882	1/2-	E1		0.00526 7	
		513.735 14	100 7	589.759	$3/2^{+}$	M1		0.0325 5	
		570.4 8	3.4 9	534.571	3/2+				
		595.95 13	9.7 30	507.421	1/2+				
		719.58 8	7.2.9	384.341	5/2-				E_{γ} : poor fit in the level scheme.
1152 1	(25/2+)	747.00 6	74 5	356.525	$\frac{3}{2}$	$\langle \mathbf{O} \rangle$			
1155.1	$(25/2^{+})$ $(21/2^{-})$	383.7	100.12	709.4	$(21/2^{-})$	(Q)			
11/8.9	(21/2)	407 501 1	21	678.4	(1/2) $(10/2^+)$				
1289 094	$3/2^{-}$	680 613 79	88 1 27	608 502	(19/2) $3/2^{-}$	M1		0.01595.22	
1209.091	5/2	932.56.4	65 10	356.525	$3/2^{-}$	M1		0.00731 10	
		991.77 6	40.3 31	297.367	$1/2^{-}$	M1(+E2)	0.5 + 4 - 5	0.0057 7	
		1046.07 7	74.1 34	242.929	$3/2^{-}$	M1+E2	0.77 + 36 - 30	0.0046 5	
		1289.04 <i>3</i>	100.0 24	0.0	5/2-	M1+E2	1.8 +11-5	0.00336 5	
1292.1	$(19/2^{-})$	213.4		1078.4	$(17/2^{-})$				
		408.4		882.4	$(15/2^{-})$				
1317.8	$(15/2^{-})$	611.4		706.2	$(13/2^{-})$				
		767.2 1		550.6	$11/2^{-}$				
1339.41	5/2-	749.01 13	100 10	589.882	1/2-				E_{γ} : γ to 589.927 and/or 589.773.
		955.28 13	25.0 28	384.341	5/2-	M1		0.00690 10	
		1096.47 7	17.9 19	242.929	$3/2^{-}$	(M1)		0.00493 7	
		1262.09 9	16.5 38	77.258	7/2	MI		0.00353 5	
		12/7.79.0	19.5	62.672	1/2 · 5/2-			0.0025.6	
1/11 02	3/2+	1559.59 0 558 74 3	100 5	0.0 853 538	3/2	[M1, E2]		0.0023 0 0.0263 4	
1411.92	5/2	821 54 3	32 3 21	589 759	3/2 $3/2^+$	M1		0.0203 4 0.00999 14	
		892 79 7	8811	519 144	$5/2^+$	M1		0.00999914	
1413.5	$(23/2^{-})$	442.9	100 16	970.7	$(19/2^{-})$			0.0001111	
	(643.5	30.9	769.4	$(21/2^+)$				
1416.72	$3/2^{-}$	416.88 10	46 <i>6</i>	999.853	3/2+				
		827.43 7	100 12	589.882	$1/2^{-}$	M1		0.00981 14	
		1339.39 6	48 8	77.258	$7/2^{-}$	[E2]		$1.90 \times 10^{-3} 3$	
		1416.80 10	74 <i>3</i>	0.0	$5/2^{-}$	E2		$1.73 \times 10^{-3} 2$	
1427.411	3/2+	573.882 12	11.7 5	853.538	$3/2^{+}$	M1+E2	1.2 4	0.017 3	
		837.646 23	16.5 5	589.759	$3/2^{+}$	M1		0.00952 13	
		908.26 11	0.72 18	519.144	5/2+	M1+E2	1.0 + 22 - 7	0.0060 15	
		920.24 8	1.37 12	507.421	$1/2^{+}$	E2		0.00399 6	
		949.78 7	1.98 7	477.758	5/2-				
		1043.05 4	2.63 7	384.341	5/2-	E1		$1.27 \times 10^{-3} 2$	
		1070.80 12	0.40 6	356.525	3/2-	[E1]		1.21×10^{-3} 2	
		1131.26 3	58.6 27	296.124	5/2-	E1		$1.10 \times 10^{-3} 2$	

11

From ENSDF

$\gamma(^{165}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α@
1427.411	3/2+	1184.45 3	100 5	242.929	3/2-	E1	1.02×10^{-3} I
	-/-	1364.75.3	2.22.6	62.672	$7/2^+$	E2	1.84×10^{-3} 3
		1380.21 3	13.1.9	47.158	$5/2^+$	M1	0.00288 4
		1427.40.4	27.4 18	0.0	5/2-	E1	0.87×10^{-3} 12
1506.0	$(17/2^{-})$	188.2 /	21.0 16	1317.8	$(15/2^{-})$		
		623.6 1	38.7 32	882.4	$(15/2^{-})$		
		799.8 1	100 7	706.2	$(13/2^{-})$		
1521.8	$(21/2^{-})$	229.8		1292.1	$(19/2^{-})$		
		442.9		1078.4	$(17/2^{-})$		
1528.12	$(3/2^+)$	1231.86 11	53 5	296.124	$5/2^{-}$	[E1]	
		1285.22 6	100 4	242.929	$3/2^{-}$	(E1)	0.93×10 ⁻³ 13
1570.7	$(27/2^+)$	417.0		1153.1	$(25/2^+)$		
		490.8		1079.8	$(23/2^+)$		
1610.7	$(29/2^+)$	457		1153.1	$(25/2^+)$		
1647.8	$(25/2^{-})$	469	100 19	1178.9	$(21/2^{-})$		
		567.8	15.4	1079.8	$(23/2^+)$		
1766.6	$(23/2^{-})$	244.7		1521.8	$(21/2^{-})$		
1000		474.4	100.0	1292.1	$(19/2^{-})$		
1823.0	(19/2, 21/2)	317.0 1	100 8	1506.0	$(17/2^{-})$		
		1050.6 1	51	772.4	$(17/2^{-})$		
1014 ((07/0-)	1144.0 <i>I</i>	1/2	6/8.4	$(19/2^{+})$		
1914.6	(27/2)	501 761 0	100 20	1413.5	(23/2)		
2024.8	$(25/2^{-})$	/01.0	22.8	1155.1	$(23/2^{-})$		
2024.0	(23/2)	230		1521.8	(23/2)		
2134.2	$(33/2^{+})$	523.5		1610.7	(21/2) $(20/2^+)$		
2134.2	$(33/2^+)$ $(31/2^+)$	569.8		1570.7	$(27/2^+)$		
2167.8	$(29/2^{-})$	520		1647.8	$(25/2^{-})$		
2295.8	$(27/2^{-})$	271		2024.8	$(25/2^{-})$		
	(529.2		1766.6	$(23/2^{-})$		
2466.6	$(31/2^{-})$	552		1914.6	$(27/2^{-})$		
2577.7	$(29/2^{-})$	552.9		2024.8	$(25/2^{-})$		
2717.2	$(37/2^+)$	583.0		2134.2	$(33/2^+)$		
2729.8	$(33/2^{-})$	562		2167.8	$(29/2^{-})$		
2777.7	$(35/2^+)$	637.2		2140.5	$(31/2^+)$		
2869.8	$(31/2^{-})$	574		2295.8	$(27/2^{-})$		
3060.6	$(35/2^{-})$	594		2466.6	$(31/2^{-})$		
3329.8	$(37/2^{-})$	600		2729.8	$(33/2^{-})$		
3354.0	$(41/2^+)$	636.8		2717.2	$(37/2^+)$		
3467.6	$(39/2^+)$	689.9		2777.7	$(35/2^+)$		
3690.6	(39/2 ⁻)	630		3060.6	$(35/2^{-})$		

12

$\gamma(^{165}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	Comments
3971.8	$(41/2^{-})$	642		3329.8	$(37/2^{-})$	
4042.4	$(45/2^+)$	688.4		3354.0	$(41/2^+)$	
4193.2	$(43/2^+)$	725.6		3467.6	$(39/2^+)$	
4360.6	$(43/2^{-})$	670		3690.6	$(39/2^{-})$	
4664.8?	$(45/2^{-})$	693 ^a		3971.8	$(41/2^{-})$	
4784.5	$(49/2^+)$	742.1		4042.4	$(45/2^+)$	
4946.2?	$(47/2^+)$	753 a		4193.2	$(43/2^+)$	
(6650.2)	1/2,3/2	5605.1 7	49.2 26	1045.0		
		5618.1 ^a	<2.9	1032.1?		
		5687.6 12	65 7	962.422	3/2-	
		5729.1 7	44.0 21	920.716	1/2-	
		5796.8 16	8.9 20	853.538	$3/2^{+}$	
		5904.5 ⁴	<3.4	745.946	1/2+	
		6041.6 6	65.2 32	608.502	$3/2^{-}$	
		6059.9 12	68 5	589.882	$1/2^{-}$	6059.9γ can feed either or both the 589.759 and 589.882 levels.
		6117.3 16	13.5	534.571	3/2+	
		6143.7 21	11 4	507.421	$1/2^{+}$	
		6293.7 0	99 4	330.323	3/2	
		6407.2.7	62 2 20	297.307	$\frac{1}{2}$	
		$6572.7\frac{a}{6}6$	03.2 29 ~1.1	242.929	5/2 7/2-	
		$6602.7\frac{a}{6}6$	<4.4	17.238	5/2+	
		$6649.9^{a}.6$	<4.7	47.150	5/2-	
101.8 + x	$(21/2^{-})$	101.8 7	100	0.0 x	$(19/2^{-})$	
242.0+x	$(23/2^{-})$	140.2.1	100 10	101.8 + x	$(1)/2^{-})$	
212.01X	(25/2)	242.0^{a} 1	23.9	x	$(19/2^{-})$	
410.8 + x	$(25/2^{-})$	168.8 /	100 7	242.0+x	$(23/2^{-})$	
11010111	()	309.0^{a} 1	24.8	101.8 + x	$(21/2^{-})$	
603.3+x	$(27/2^{-})$	192.5 /	100.8	410.8 + x	$(25/2^{-})$	
		361.3 1	35 6	242.0+x	$(23/2^{-})$	
816.5+x	$(29/2^{-})$	213.2 <i>I</i>	100 12	603.3+x	$(27/2^{-})$	
		405.7 1	49 17	410.8+x	$(25/2^{-})$	
1049.3+x	$(31/2^{-})$	232.8 1	100 10	816.5+x	$(29/2^{-})$	
		446.0 <i>1</i>	49 6	603.3+x	$(27/2^{-})$	
1298.6+x	$(33/2^{-})$	249.3 1	100 13	1049.3+x	$(31/2^{-})$	
		482.1 <i>I</i>	89 16	816.5+x	$(29/2^{-})$	
1564.9+x	$(35/2^{-})$	266.3 1	79 18	1298.6+x	$(33/2^{-})$	
		515.6 <i>1</i>	100 18	1049.3+x	$(31/2^{-})$	
188.7+y	$(21/2^+)$	188.7 <i>1</i>	100	у	$(19/2^+)$	
393.8+y	$(23/2^+)$	205.1 <i>1</i>	100	188.7+y	$(21/2^+)$	
615.0+y	$(25/2^+)$	221.2 <i>I</i>	100	393.8+y	$(23/2^+)$	

$\gamma(^{165}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π
852.0+y	$(27/2^+)$	237.0 1	100	615.0+y	$(25/2^+)$
1103.3+y	$(29/2^+)$	251.3 <i>I</i>	100 15	852.0+y	$(27/2^+)$
		488.3 ^a 1	63 15	615.0+y	$(25/2^+)$
1368.7+y	$(31/2^+)$	265.4 1	100 15	1103.3+y	$(29/2^+)$
		516.7 ^a 1	80 15	852.0+y	$(27/2^+)$

[†] From ¹⁶⁵Tm ε decay for low-spin (J<=9/2) and from (α ,3n γ) for high-spin levels, unless otherwise noted. Energies and intensities of γ rays above 5 MeV are from ¹⁶⁴Er(pol n, γ) E=res:ARC data.

[‡] from $({}^{9}\text{Be},4n\gamma)$:E=42,45 MeV and/or E=57 MeV.

[#] From $\alpha(K)$ exp and subshell ratios in ¹⁶⁵Tm ε decay, unless otherwise stated. For high-spin levels, assignments are from $\gamma(\theta)$ data in ¹⁶⁴Dy(α ,3n γ) and band structures.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with undivided intensity.

^{*a*} Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁶⁵₆₈Er₉₇

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁶⁵₆₈Er₉₇

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁶⁵₆₈Er₉₇

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹⁶⁵₆₈Er₉₇

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given γ Decay (Uncertain) _ _ _ _ _ ٠ 1.305, 10,100 \$ \$ र्थ के के 40 0.00 $(21/2^+)$ 769.4 + 1550 0100 1 $1/2^{+}$ 745.946 1.00 ns 15 0,0 0,0 2,0,0 2,0,0 (13/2-) 706.2 305.1 \$?° 0.001 an, 48.2 23 M (41) 41/2 | (19/2+) 678.4 1001 23×1 \$203.3 . 14.> ŝ 0° 40 65.8 15.0 ¥ 608.502 $\frac{3/2^-}{(3/2^+)}$ 2000 300 35 9, 9, 9, 9, 9, 5, ², 605.486 (15/2-) <u></u>е うかん 595.7 V 30 . S ŝ ŝ 1/2 $= \frac{3_{3_{4}}^{3_{4}}}{3_{8}^{2}} (e_{j})_{3_{4}}^{3_{4}} (e_{j})_{3_{4}}^{3$ 71 MJ 8 589.882 $\leq \! 0.6 \ \mathrm{ns}$ 473.7 3/2+ 589.759 130. 11/2 550.6 0.25 µs 3 534.571 3/2+ $\frac{5/2^+}{1/2^+}$ 519.144 507.421 ¥ 0.70 ns 12 477.758 $\frac{5/2^-}{(17/2^+)}$ ¥ 463.3 $\frac{5/2^-}{(15/2^+)}$ 384.341 372.4 356.525 3/2-÷ 0.35 ns 6 297.367 1/2 0.70 ns 8 ¥ ¥ 296.124 $\frac{5/2^{-}}{(11/2^{-})}$ $\leq 0.24 \text{ ns}$ ¥ 295.8 242.929 $\frac{3/2^{-}}{(13/2^{+})}$ 0.31 ns 4 ¥ 237.8 9/2 175.82 $(11/2^+)$ Y 167.4 9/2+ 97.958 77.258 7/2-0.96 ns 8 7/2+ 62.672 5/2+ 47.158 4.0 ns 1 5/2-0.0 10.36 h 4

¹⁶⁵₆₈Er₉₇

20

 $^{165}_{68}\mathrm{Er}_{97}\text{--}20$

From ENSDF

Adopted Levels, Gammas

 $^{165}_{68}\mathrm{Er}_{97}\text{--}20$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹⁶⁵₆₈Er₉₇

 $^{165}_{68}\mathrm{Er}_{97}$

¹⁶⁵₆₈Er₉₇

				Band(K): v3/	2[512] band)		
				(7/2 ⁻)	1631		
				(5/2 ⁻)	1539		
				(3/2-)	1474		
		Band(I): v1/2[530] band					
		7/2- 1172					
		5/2- 1064					
		3/2- 1039					
						Band(L band): v1/2[400] lhead (?)
Band(H): K^{π} =	1/2 ⁺ band					<u>1/2</u> +	745.946
3/2+	589.759						
71			Band(J): v3/2[402] bandhead (?)				

519.144 507.421

82

5/2+

1/2+

¹⁶⁵₆₈Er₉₇

534.571

3/2+

¹⁶⁵₆₈Er₉₇