		Tur	20	His	story	Literature Cutoff Date						
		Full Eva	luation	Balraj Singh and Jun Chen	NDS	194,460 (2024)	31-Oct-2022					
$Q(\beta^-)=1285$ S(2n)=13374 Other reaction See ¹⁶⁴ Dy(n 2018Mu Hyperfine st Additional in	5.7 8; S(1 4.07 9, S ons: $(,\gamma),(n,n)$ ZZ evalu ructure s nformati	n)=5715.96 5 S(2p)=16801. cresonances c uation. studies: 1968 on 1.	; S(p)=8 6 <i>11</i> (20 lataset fo Ra03 (al	796.3 20; $Q(\alpha) = -531.1 \ 15$ 21Wa16). or 116 neutron resonances in H so 1967St27).	2021 V E(n)=14	Va16 7 eV to 21.15 ke	V region, data taken from					
				¹⁶⁵ Dy	Levels							
	Cross Reference (XREF) Flags											
			A B C D	¹⁶⁵ Tb β^- decay (2.11 min) ¹⁶⁵ Dy IT decay (1.257 min) ¹⁶³ Dy(t,p) ¹⁶⁴ Dy(n, γ) E=thermal	E F G	164 Dy(n, γ) E=2 164 Dy(n, γ),(n,n) 164 Dy(d,p)	, 24 keV resonances					
E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	XREI			Commen	ts					
0.0 -	//2*	2.331 h 4	AB DE	G %β = 100 μ=-0.518 6 (1968Ra03, Q=+3.48 7 (1968Ra03, T _{1/2} : weighted average 2.334 h I (1989Ab05, increased to 0.004 h t systematic uncertaintid detector, average of fi (1962Ma24); 2.373 h 2.369 h I0 (1958Gu0 (1947S114); 2.33 h (19 (1938Po05); 2.5 h (19 values listed with unc pre-1960 measuremen critical χ^2 =2.1. Unwe J ^π : spin from atomic bea E=995. μ,Q: atomic beam method b=∓1521 MHz 30, μ= relative signs of μ and mentioned that sign o measured and predicton negative sign of μ. In deduced with reference for ¹⁶⁵ Dy, and hyperfi 12 for ¹⁶³ Dy from 19 were inconsistent with Q is assigned positive different from that in are not known experim (¹⁵⁵ , 157, 159, 161, 163Dy) ¹⁷¹ Hf), and experimer rare-earth nuclei stron	2019St/ 2021St/ 2021St/ 2021St/ 20021St/ 20021St/ 2005/ 200	ZV) (Z) h 6 (2014Le22, c curve for 94.7 γ , f ase its weight to 34 h 6 (1973Ha20 surements); 2.317 DHa34); 2.33 h 8 h 4 (1954Ma62) 3); 2.5 h (1947Inf 3); 2.5 h (1947Inf 3); 2.5 h 1 (1935H cs, but with a mir 338 h 5 with normation of the set of the se	decay curves for 94.7 γ and 361.7 γ); three measurements, uncertainty \approx 50%, and to account for possible 0, integral activity using a scintillation h 8 (1963Pe11). Others: 2.4 h (1960Wi10); 2.355 h 2 (1959Cr80); ; 2.3195 h 23 (1952Sh42); 2.42 h 5 08); 2.333 h 25 (1946Bo25); 2.5 h Ma03). Weighted average of all the nimum uncertainty of 0.010 h in malized χ^2 =3.6 as compared to h 15. rom allowed β^- to π =+ level at ucture constants a=±89.8 MHz 7 and 1968Ra03). Experimentally, only the 1968Ra03, however, authors (probably based on agreement of configuration), thereby fixing the μ =-0.520 5 and Q=-3.49 7 were ine constants a and b from 1968Ra03 M4272 MHz 20, B=+1152.8635 MHz re signs of μ and Q in 1989Ra17 Ra03. In 2019StZV evaluation, sign of 019StZV evaluation is slightly s opinion, while the signs of μ and Q neighboring odd-A Dy nuclei 8] g.s. in ¹⁶⁷ Er, ¹⁶⁹ Yb and . 12 of 1984Ta04 for several for Q, thus negative sign for μ ,					

¹⁶⁵Dy Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments
				from experimental $\mu/Q < 0$ in 1968Ra03.
83.3954 [@] 15	$(9/2)^+$	<35 ps	DG	J^{π} : 83.398 γ M1+E2 to 7/2 ⁺ ; band assignment.
108.1562 ^b 13	$1/2^{-}$	1.257 min 6	ABCDE G	%β ⁻ =2.27 9; %IT=97.73 9
				J^{π} : 108.159 γ E3 to 7/2 ⁺ , 425.335 γ M1,E2 from 5/2 ⁻ .
				T _{1/2} : from time scaling of γ rays from ¹⁶⁵ Dy isomer decay (1964Ha19). Others: 1.263 min <i>16</i> (1960Ho16), 1.3 min 2 (1960Wi10). Additional information 2.
				%I1: from %IT+ $\beta \beta^{-} = \Re[(\gamma + ce)(108.6\gamma)(^{105}Dy) + \Sigma[(\gamma + ce to g.s.)(^{165}Ho) = 100, using measured I\gamma in 1972Ma06.$
158.5895 ^b 13	$(3/2)^{-}$	1.8 ns 10	A DE G	J ^{π} : 50.434 γ M1+E2 to 1/2 ⁻ ; band assignment.
180.9237 ^b 13	$(5/2)^{-}$	2.5 ns 10	A cDE G	XREF: c(183).
				J^{n} : 72.768 γ E2 to 1/2 ⁻ ; band assignment. T _{1/2} : from (n, γ) (1978An22). Other from (n, γ): 10.7 ns 35 (1968Na21).
184.2552 ^{&} 12	5/2-	1.0 ns 1	A cD G	XREF: c(183).
186.0040@ 22	(11/2+)		D	J [*] : 184.252 γ EI to //2 ⁺ and 354.38 γ EI from 3/2 ⁺ .
180.0949 - 22	$(11/2^{+})$ $(7/2)^{-}$	<25 pc		J^{π} : 102.7017 to $(9/2)^+$; band assignment. I^{π} : 178.274 $_{\odot}$ E1 to $(0/2)^+$.77.514 $_{\odot}$ M1 + E2 to 5/27
201.7712 12 207.6844 b 14	$(7/2)^{-}$	<35 ps		J . 176.5747 E1 to $(9/2)$, 77.5147 M11+E2 to $3/2$. I^{π} : 130.006 μ E2 to $(3/2)^{-1}$. 116.76 μ E2 (from called to $(5/2)^{-1}$:
297.0844 14	(1/2)	<55 ps	CD G	band assignment.
				$T_{1/2}$: this upper limit deduced in 1968Na21 results in larger B(E2)(W.u.) of 116.760 γ and 139.096 γ than allowed by RUL, which may indicate a $T_{1/2}$ greater than this upper limit.
307.74 [@] 12	$(13/2^+)$		G	J^{π} : band assignment.
337.1639 ^b 15	(9/2)-		D G	J^{π} : 156.24 γ E2 (from ce data) to 5/2 ⁻ , 39.48 γ to 7/2 ⁻ ; band assignment.
360.6312 ^{&} 17	(9/2) ⁻		CD G	J ^{π} : 176.367 γ to 5/2 ⁻ , 174.554 γ to (11/2 ⁺); 246.997 γ M1,E2 from π =-; band assignment.
404.6 9			G	
479.98 24	$(11/2^{-})$		G	J^{π} : band assignment.
518.65 ^b 23	$(11/2^{-})$		G	J^{π} : band assignment.
530.6 6	$(1/2^+, 3/2^+, 5/2)$		E CD C	J^{n} : from ARC in (n, γ) E=2, 24 keV. I^{π} : I (t p)=0 from 5/2 ⁻⁷
538.6356 ^a 13	3/2+		A DE	J^{π} : 354.381 γ E1 to 5/2 ⁻ . 430.478 γ E1 to 1/2 ⁻ .
570.2619 ^d 16	$(1/2)^{-}$		DE	J^{π} : (1/2 ⁻ ,3/2 ⁻) from ARC in (n, γ) E=2, 24 keV; 386.011 γ E2
573 5853 ^C 16	$(3/2)^{-}$		A DE C	(from ce data) to $5/2^-$; band assignment.
575.5655 10	(3/2)		A DL G	J^{π} : 392.663 γ M1(+E2) γ to (5/2) ⁻ , 465.427 γ M1(+E2) to 1/2 ⁻ .
583.9972 ^a 13	5/2+		DE G	J^{π} : 583.994 γ M1+E2 to 7/2 ⁺ , primary 5131.9 γ from 1/2 ⁺ .
605.0967 ^d 15	(3/2) ⁻		cDE G	XREF: c(608). J^{π} : 496.942 γ M1(+E2) to 1/2 ⁻ , 343.323 γ E2 (from ce data) to
607.6252 17	(5/2,7/2)-		cD	$(7/2)^{-}$. XREF: c(608). I^{π} : 423 3664 M1(+E2) to 5/2 ⁻ : 270 4614 to (0/2 ⁻)
628.8384 ^c 16	$(5/2)^{-}$		DE G	J^{π} : 331.151 γ M1(+E2) to (7/2) ⁻ , 470.251 γ M1(+E2) to (3/2) ⁻ .
648.9741 ^{<i>a</i>} 17	$(7/2)^+$		D	J ^{π} : 565.578 γ E2 to (9/2) ⁺ , 648.962 γ M1+E2 to 7/2 ⁺ ; 110.328 γ to 3/2 ⁺ ; 462.883 γ to (11/2 ⁺); band assignment.
657.9997 ^d 15	(5/2)-		CD G	J ^{π} : 477.072 γ M1(+E2) γ to (5/2) ⁻ , 549.81 γ to 1/2 ⁻ , 297.370 γ to (9/2 ⁻); band assignment.
702.892 6	$(5/2^-, 7/2^-, 9/2^-)$		CD	E(level): probably a doublet with $J^{\pi} = (5/2 \text{ to } 11/2)^{-}$ and $(7/2,9/2)^{+}$

¹⁶⁵Dy Levels (continued)

E(level) [†]	J^{π}	XREF	Comments				
			$(1990\text{Ka}21)$ in (n,γ) E=thermal.				
			J^{π} : 441.12 γ to 7/2 ⁻ , 365.724 γ to 9/2 ⁻ ; L(t,p)=(2) from 5/2 ⁻ .				
705.9112 ^c 18	$(7/2)^{-}$	D G	J^{π} : 368.749 γ M1(+E2) to (9/2) ⁻ , 121.898 γ to 5/2 ⁺ .				
730.4 8		G					
737.8585 ^d 22	$(7/2)^{-}$	CD G	J^{π} : 556.938 γ E2(+M1) to (5/2) ⁻ ; 377.221 γ to (9/2 ⁻); band assignment.				
771.4 4		G					
785.2 8		G	τπ				
803.2 5	(9/2)	G	J [*] : possible band assignment.				
010.0 J 934 5 8		G					
877 2 5		G					
911.9734 21	5/2+	DE G	J^{π} : 911.966 γ M1+E2 to 7/2 ⁺ , primary γ from 1/2 ⁺ ;				
921.35 ^c 22	$(11/2^{-})$	G	J^{π} : possible band assignment.				
957.1 5		G					
976.785 7	$(7/2, 9/2)^+$	D G	J^{π} : 893.421 γ M1 to (9/2) ⁺ ; 64.697 γ to 5/2 ⁺ .				
988.1 11		G					
1016.0757 21	$(5/2^+)$	D	J^{n} : primary γ from $1/2^{+}$; 932.657 γ to $(9/2)^{+}$.				
1031.6 9		G					
1051.90		G					
1080.0402 17	$(1/2.3/2)^{-}$	DE	J^{π} : (1/2 ⁻ ,3/2 ⁻) from ARC in (n. ν) E=2, 24 keV: 546.543 ν M1.E2 to 5/2 ⁻ .				
1088.0114 18	$(3/2^{-})$	DE G	J^{π} : (1/2 ⁻ ,3/2 ⁻) from ARC in (n, γ) E=2, 24 keV; 504.013 γ 5/2 ⁺ .				
1103.0454 17	$(3/2)^{-}$	DE G	J^{π} : 474.212 γ M1 to (5/2) ⁻ ; primary γ from 1/2 ⁺ .				
1108.2015 19	$(3/2)^+$	DE	J^{π} : 524.202 γ M1 to 5/2 ⁺ , possible 537.99 γ to (1/2) ⁻ ; primary γ from 1/2 ⁺ .				
1135.8124 28	$(5/2^{-})$	D G	J^{π} : 1027.8 γ to 1/2 ⁻ , 397.962 γ to (7/2) ⁻ , 486.841 γ to (7/2) ⁺ .				
1140.8668 27	$(3/2^{+})$	DE	$J^{n}: (1/2^{+}, 3/2^{+}, 5/2^{+})$ from ARC in $(n, \gamma) E=2, 24$ keV; 1032.82γ to $1/2^{-}, 512.00\gamma$ to $(5/2)^{-}$.				
1158.1192 22	(5/2 ⁺)	DE G	J ^{π} : primary γ from 1/2 ⁺ , 1074.75 γ to (9/2) ⁺ , 420.4 γ and 452.208 γ to (7/2) ⁻ , 509.139 γ to (7/2) ⁺ . But (1/2,3/2) from ARC in (n, γ) E=2, 24 keV is inconsistent.				
1166.8927 23	$(3/2)^{-}$	DE	J^{π} : 596.626 γ E2 to (1/2) ⁻ ; (1/2,3/2) from ARC in (n, γ) E=2,24 keV.				
1169.4 5		G					
1174.9530 26	$(3/2,5/2)^{-}$	DG	J^{π} : 994.01 γ M1(+E2) to (5/2) ⁻ , 636.41 γ to 3/2 ⁺ .				
1197.0 5	5/2	CG	E(level): weighted average of 1195 2 from (t,p) and 1197.1 5 from (d,p). $I_{\rm A}$ L (t,p)=0 from 5/2 ⁻ toront				
1218 3554 25	$(5/2^+)$	DF C	J: $L(1,p)=0$ from $3/2$ target. I^{π} : (5/2) from ABC in (n a) $E=2$ 24 keV: primary a from $1/2^{+}$				
1256.503 4	(3/2)	CDE G	J^{π} : (5/2) from $1/2^+$: 1072.212 γ to 5/2 ⁻ , 672.9 γ 5/2 ⁺ , 686.29 γ to (1/2) ⁻ .				
1283.0 3	(-/-)	G	· · Frank /				
1309.302 4	$(3/2^{-}, 5/2^{-})$	CD G	J^{π} : 1201.15 γ to 1/2 ⁻ , 1047.52 γ to (7/2) ⁻ .				
1316.7 4		G					
1320.811 6	$(1/2^{-}, 3/2, 5/2^{-})$	DE	J^{π} : 1212.51 γ to 1/2 ⁻ , 1136.43 γ to 5/2 ⁻ .				
1327.17	(1/2+2/2+)	G G	$I_{I_{1}}$ (1/2+ 2/2+ 5/2+) from ABC in (n c) E-2, 24 IoV 1228 04c to 1/2-				
1357.105 4	(1/2, 3/2)	A DE G	J . $(1/2, 3/2, 3/2)$ from ARC III $(1, \gamma) = 2, 24$ KeV, 1228.947 to $1/2$.				
1356.1.7		Ğ					
1376.3381 30	$(3/2^+)$	DE	J^{π} : (1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺) from ARC in (n, γ) E=2, 24 keV; 1268.13 γ to 1/2 ⁻ , 1192.18 γ to 5/2 ⁻ .				
1380.886 4	(5/2+)	CDE G	XREF: C(1381). J ^{π} : (1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺) from ARC in (n, γ) E=2, 24 keV; 674.87 γ to (7/2) ⁻ .				
1384.29 24		G					
1400.2743 33	$(3/2^+)$	A DE G	J^{π} : (1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺) from ARC in (n, γ) E=2, 24 keV; 1292.03 γ to 1/2 ⁻ , 742.264 γ to (5/2) ⁻ .				
1416.3385 19	(3/2)	DE	J^{π} : (1/2,3/2,5/2 ⁺) from ARC in (n, γ) E=2, 24 keV; 846.058 γ to (1/2) ⁻ , 258.217 γ to (5/2 ⁺) possible 882 833 γ to 5/2 ⁻				
1440.470 15	$(5/2^+)$	DE G	J^{π} : (1/2,3/2,5/2 ⁺) from ARC in (n, γ) E=2, 24 keV; 791.34 γ to (7/2) ⁺ , 1142.73 γ				

¹⁶⁵Dy Levels (continued)

E(level) [†]	J^{π}	XREF	Comments				
			to $(7/2)^-$.				
1444.721 11	$(3/2^{-}, 5/2^{+})$	DE G	J^{π} : (1/2,3/2,5/2 ⁺) from ARC in (n, γ) E=2, 24 keV; 1182.98 γ to (7/2) ⁻ .				
1456.399 <i>5</i>	(3/2)	DE	J ^{π} : primary γ from 1/2 ⁺ ; 886.09 γ to (1/2) ⁻ , 798.398 γ to (5/2) ⁻ , 872.398 γ to (5/2) ⁺ .				
1460.6 <i>10</i> 1464.8488 <i>24</i> 1477 29 <i>24</i>	(3/2) ⁻	G DE C	J^{π} : (1/2,3/2) from ARC in (n, γ) E=2, 24 keV; 931.351 γ M1(+E2) to 5/2 ⁻ .				
1479.1326 24	$(3/2^{-}, 5/2^{-})$	DG	J^{π} : 1370.92 γ to 1/2 ⁻ , 1181.32 γ to (7/2) ⁻ .				
1482.061 5	(5/2 ⁻)	D	J^{π} : 1373.53 γ to 1/2 ⁻ , 1121.57 γ to (9/2 ⁻).				
1501.25 <i>23</i> 1509.9 <i>4</i> 1523 1 <i>3</i>		D G G					
1535.18 21		G					
1555.15 23		D G					
1560.09 22		DG					
1587.61 30	(1/2 - 2/2 -)	D	I_{A} (E1) minutes of from $1/2^{+}$				
1591.85 22	(1/2 ,3/2)	D G G	J^{-1} (E1) primary γ from $1/2^{-1}$.				
1623.24 22		DG					
1631.90 22		D					
1634.59 23		D					
1643.71 18		G					
1648.3 4	5/0-	D					
1652.4 5	5/2	CG	XREF: C(1654). I^{π}_{1} , L (t, p)=0 from $5/2^{-}$ torget				
1671 13 22		D	J . $L(t,p)=0$ from $3/2$ target.				
1693.88 24		DG	XREF: G(1699).				
1730.42 24		DG	XREF: G(1723).				
1754.87 23		D G					
1770.76 22	(1)0,0,0,5,0,->	Dg	XREF: g(1780).				
1//3.22 10	(1/2,3/2,5/2)	A g	XREF: $g(1/80)$. π_{1} 1664 Sec to $1/2^{-1}$				
1795 84 22		Da	$XREF. \sigma(1805)$				
1814.19 18	(3/2)	A D q	XREF: A(?)g(1805).				
	,		J^{π} : 1632.74 γ to (5/2) ⁻ , primary γ from 1/2 ⁺ , possible 1632.74 γ to 1/2 ⁻ .				
1830.44 22	$(1/2^+, 3/2^+, 5/2^+)$	D g	XREF: g(1833). J^{π} : (M1,E2) primary γ from 1/2 ⁺ .				
1834.54 23		D g	XREF: g(1833).				
1875 79 23	$(1/2^+ 3/2^+ 5/2^+)$	Dg	XREF. $g(1801)$.				
10/5.// 25	(1/2 ,3/2 ,3/2)	D g	J^{π} : (M1.E2) primary γ from $1/2^+$.				
1885.70 23		Dg	XREF: g(1891).				
1890.63 23		Dg	XREF: g(1891).				
1895.87 23	$(1/2^+, 3/2^+, 5/2^+)$	Dg	XREF: $g(1891)$.				
1015 45 23		D C	J ^{\sim} : (M1,E2) primary γ from 1/2 ⁺ .				
1943 81 23		DG	XREF: G(1947)				
1962.81 23	$(1/2^+, 3/2^+, 5/2^+)$	D	J^{π} : (M1,E2) primary γ from $1/2^+$.				
1968.98 <i>23</i>	$(1/2^+, 3/2^+, 5/2^+)$	DG	XREF: G(1970).				
1000 00			J^{π} : (M1,E2) primary γ from $1/2^+$.				
1988.20 23	(1/0+ 2/0+ 5/0+)	D					
2007.53 23	(1/2',3/2',5/2')	DG	AKEF: $U(2000)$. $I^{\pi_{1}}$ (M1 E2) primary of from $1/2^{+}$				
2041.82 23		DG	XREF: G(2027).				
2063.47 23		Dg	XREF: g(2069).				

¹⁶⁵Dy Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
2065.80 23		Dg	XREF: g(2069).
2088.08 23		DG	XREF: G(2076).
2107.07 23	$(1/2^+, 3/2^+, 5/2^+)$	D G	XREF: G(2097).
2112 64 22		D C	J [*] : (M1,E2) primary γ from 1/2 ⁺ .
2160 38 23	$(1/2^+ 3/2^+ 5/2^+)$	DG	XREF. $G(2121)$. XREF. $G(2152)$
2100.50 25	(1/2 ,3/2 ,3/2)	2 0	J^{π} : (M1,E2) primary γ from $1/2^+$.
2178.55 23		D G	
2187.09 23		D	
2190.89 23		D	
2208		G	
2247		G	
2271.21 25	$(1/2^{-}, 3/2)^{\#}$	DG	XREF: G(2268).
			J^{π} : 2088.5 γ to (5/2) ⁻ , 2163.7 γ to 1/2 ⁻ .
2294		G	
2320		G	
2432		G	
2445		G	
2459		G	
2475.79 29	$(1/2,3/2)^{\#}$	D	J^{π} : 1904.2 γ to $(1/2)^{-}$.
2495		G	
2547 53 25	$(1/2 3/2)^{\#}$	D U	$I\pi$, 2/30 for to 1/2 ⁻
2576	(1/2, 3/2)	G	J. 2457.07 10 1/2 .
2596		G	
2610.04 29	$(1/2,3/2)^{\#}$	DG	XREF: G(2620).
0/57			J^{π} : 2501.5 γ to 1/2 ⁻ .
2657	(1/2.2/2)#	G	
2705.64 25	(1/2, 3/2)"	D G G	$J^{*}: 2134.7\gamma$ to $(1/2)$.
2765.37.21	$(1/2^{-},3/2)^{\#}$	D	J^{π} : 2657 6y to $1/2^{-1}$: 2583.1y to $(5/2)^{-1}$
2783.72.29	$(1/2^{-},3/2)^{\#}$	D	I^{π} : 2674.6v to 1/2 ⁻ , 2603.4v to (5/2) ⁻ .
2793.14 29	$(1/2, 3/2)^{\#}$	DG	J^{π} : 2221.8 γ to $(1/2)^{-}$.
2815	(-/-,-/-)	G	
2834		G	
2852.64 25	$(1/2,3/2)^{\#}$	D G	XREF: G(2859).
2054 42 20	(1/2.2/2)#	_	$J^{*}: 2/43.5\gamma$ to $1/2^{-}$.
2874.43 29	(1/2,3/2)''	D	J^{n} : 2/65.2 γ to 1/2 ⁻ .
2920		G	
2943.54 29	$(1/2,3/2)^{\#}$	DG	J^{π} : 2834.7 γ to 1/2 ⁻ .
2982.73 22	$(1/2^{-},3/2)^{\#}$	D	J^{π} : 2874.7 γ to 1/2 ⁻ , 2803.5 γ to (5/2) ⁻ .
3006		G	
3014.02 25	$(1/2^{-}, 3/2, 5/2^{+})^{\#}$	D G	J^{π} : 2832.0 γ to (5/2) ⁻ .
3051.82 25	$(1/2^{-},3/2)^{\#}$	D	J^{π} : 2942.5 γ to 1/2 ⁻ , 2871.2 γ to (5/2) ⁻ .
3123.44 29	(1/2,3/2)#	D	J^{π} : 3015.5 γ to $1/2^{-}$.
3193.94 29	$(1/2, 3/2, 5/2^+)^{\#}$	D	
3257.61 22	$(1/2^{-},3/2)^{\#}$	D	J^{π} : 3152.5 γ to 1/2 ⁻ , 3071.2 γ to 5/2 ⁻ .
3379.40 29	$(1/2^{-},3/2)^{\#}$	D	J^{π} : 3271.3 γ to 1/2 ⁻ , 3198.0 γ to (5/2) ⁻ .
3422.01 25	(1/2,3/2) [#]	D	J^{π} : 3313.0 γ to 1/2 ⁻ .

¹⁶⁵Dy Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
3443.49 29	$(1/2^-, 3/2, 5/2^+)^{\#}$	D	J^{π} : 3261.7 γ to (5/2) ⁻ .
3455.39 29	$(1/2,3/2)^{\#}$	D	J^{π} : 3346.0 γ to 1/2 ⁻ .
3473.72 29	(1/2,3/2)#	D	J^{π} : 2902.9 γ to $(1/2)^{-}$.
3539.44 29	$(1/2,3/2)^{\#}$	D	J^{π} : 2969.4 γ to (1/2) ⁻ .
3587.41 29	$(1/2^{-}, 3/2, 5/2^{+})^{\#}$	D	J^{π} : 3406.1 γ to (5/2) ⁻ .
3651.47 25	$(1/2,3/2,5/2^+)^{\#}$	D	
3849.24 29	$(1/2, 3/2, 5/2^+)^{\#}$	D	
3979.07 29	$(1/2, 3/2, 5/2^+)^{\#}$	D	
(5715.77 4)	1/2+	D	E(level), J^{π} : s-wave capture state. S(n)=5715.96 5 (2021Wa16).
(5717.96 5)	1/2,3/2-	Е	Additional information 3. $E(level): S(n)=5715.96 \ 5 \ (2021Wa16), E(n)=2 \ keV.$ $I^{\pi}: s_{-} \text{ or } p \text{ wave capture in } 0^{+} \ a \ s_{-} \text{ of } {}^{164}Dv$
(5739.96 5)	1/2,3/2-	E	Additional information 4. $E(level): S(n)=5715.96 \ 5 \ (2021Wa16), E(n)=24 \ keV.$ $J^{\pi}: s- or p-wave capture in 0^+ g.s. of ^{164}Dy.$

[†] From a least-squares fit to $E\gamma$ data for levels populated in γ -ray studies and from (d,p) for other levels.

[‡] From $\gamma\gamma(t)$ in (n, γ) E=thermal (1968Na21) for excited levels, except where noted otherwise.

[#] Primary γ from 1/2⁺ plus additional arguments as given in comments.

[@] Band(A): v7/2[633] band. A=9.3 keV.

[&] Band(B): v5/2[512] band. A=11.0 keV.

^{*a*} Band(C): $K^{\pi}=3/2^+$ band. K-2 γ vibration built on $\nu 7/2[633]$, where K=7/2. A=9.2 keV.

^b Band(D): v1/2[521] band. A=11.0 keV, a=0.58.

^c Band(E): $K^{\pi} = 3/2^{-}$ band. $3/2[521] + (K-2 \gamma \text{ vibration built on } \nu 1/2[521]; K=1/2)$ (1990Ka21). A=11.0 keV. ^d Band(F): $K^{\pi} = 1/2^{-}$ band. $1/2[510] + (K-2 \gamma \text{ vibration built on } \nu 5/2[512]; K=5/2)$. A=11.0 keV, a=0.046.

$\gamma(^{165}\text{Dy})$

Band assignments are from 1990Ka21 in (n,γ) E=thermal and/or 1970Gr46 in (d,p).

7

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡	E_f	J_f^π	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
83.3954	(9/2)+	83.398 2	100	0.0	7/2+	M1+E2	0.31 +8-5	4.16 8	B(M1)(W.u.)>0.18; B(E2)(W.u.)>900 α (K)=3.25 9; α (L)=0.71 10; α (M)=0.160 25 α (N)=0.037 6; α (O)=0.0050 6; α (P)=0.000200 7
108.1562	1/2-	108.159 <i>3</i>	100	0.0	7/2+	E3		31.0 4	B(E3)(W.u.)=0.001757 23 E _γ : weighted average of 108.160 3 from ¹⁶⁵ Dy IT decay and 108.157 3 from (n,γ) E=thermal. Other: 108.28 10 from ¹⁶⁵ Tb $β^-$ decay.
158.5895	(3/2)-	50.434 1	100	108.1562	1/2-	M1+E2	0.40 +15-18	8 4	B(M1)(W.u.)=0.009 +16-4; B(E2)(W.u.)= 2.8×10^2 +51-20 E _γ : from (n,γ) E=thermal. Other: 50.37 12 from ¹⁶⁵ Tb β ⁻ decay.
180.9237	(5/2)-	22.35 ^{&} 2 72.768 1	100	158.5895 108.1562	$(3/2)^{-}$ $1/2^{-}$	(M1) E2		30.9 <i>4</i> 9.20 <i>13</i>	$B(E2)(W.u.)=202 + 124 - 59$ assuming no 22.35 γ .
184.2552	5/2-	184.252 3	100	0.0	7/2+	E1		0.0604 8	B(E1)(W.u.)= $3.4 \times 10^{-5} 4$ E _{γ} : weighted average of 184.08 <i>15</i> from ¹⁶⁵ Tb β^- decay and 184.252 2 from (n, γ) E=thermal.
186.0949	$(11/2^+)$	102.701 2 186.100 6	100 <i>21</i> 48.5 <i>30</i>	83.3954 0.0	$(9/2)^+$ $7/2^+$				
261.7712	(7/2)-	77.514 <i>I</i> 178.374 <i>4</i> 261.771 2	100 <i>30</i> 60 <i>6</i> 78 <i>8</i>	184.2552 83.3954 0.0	$5/2^{-}$ (9/2) ⁺ 7/2 ⁺	M1+E2 E1 E1	0.40 +16-21	5.29 24 0.0658 9 0.02424 34	B(M1)(W.u.)>0.12; B(E2)(W.u.)>426 B(E1)(W.u.)>6.2×10 ⁻⁵ B(E1)(W.u.)>2.5×10 ⁻⁵
297.6844	(7/2)-	116.760 <i>1</i> 139.096 2	54 <i>12</i> 100 <i>22</i>	180.9237 158.5895	$(5/2)^-$ $(3/2)^-$	E2 E2		1.535 <i>21</i> 0.821 <i>11</i>	Note that B(E2)(W.u.)>1740 exceeds RUL=1000. Note that B(E2)(W.u.)>1450 is larger than RUL=1000.
337.1639	(9/2)-	39.480 <i>5</i> 156.240 <i>1</i>	1.2 <i>4</i> 100 <i>10</i>	297.6844 180.9237	$(7/2)^{-}$ $(5/2)^{-}$	E2		0.547 8	
360.6312	(9/2)-	98.863 2 174.554 6 176.367 5 277.238 11	100 <i>43</i> 1.7 <i>17</i> 22.4 <i>17</i> 17.2 <i>17</i>	261.7712 186.0949 184.2552 83.3954	$(7/2)^{-}$ $(11/2^{+})$ $5/2^{-}$ $(9/2)^{+}$				
533.4937	5/2-	235.796 <i>12</i> 271.721 <i>1</i> 349.241 <i>2</i> 352.574 <i>2</i> 374.903 <i>2</i> 425.335 <i>16</i> 533.494 <i>9</i>	1.33 <i>11</i> 22.3 <i>21</i> 100 <i>10</i> 10.6 <i>11</i> 8.7 <i>9</i> 8.7 <i>12</i> 18.1 <i>16</i>	297.6844 261.7712 184.2552 180.9237 158.5895 108.1562 0.0	$(7/2)^{-}$ $(7/2)^{-}$ $5/2^{-}$ $(5/2)^{-}$ $(3/2)^{-}$ $1/2^{-}$ $7/2^{+}$	M1+E2 M1(+E2) M1+E2 M1(+E2) (E2)	1.0 +24-7 <1.2 >0.3 <0.6	0.117 25 0.065 10 0.055 16 0.059 4 0.02337 33	

¹⁶⁵₆₆Dy₉₉-7

γ ⁽¹⁶⁵Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\texttt{\#}}$	α^{\dagger}	Comments
538.6356	3/2+	354.381 <i>I</i> 357.714 <i>3</i> 380.045 <i>I</i> 430.478 <i>5</i> 538.634 <i>4</i>	4.6 4 3.44 32 6.1 7 6.1 7 100 11	184.2552 5/2 ⁻ 180.9237 (5/2) ⁻ 158.5895 (3/2) ⁻ 108.1562 1/2 ⁻ 0.0 7/2 ⁺	E1 (E1) E1 E1 [E2]		0.01143 16 0.01118 16 0.00967 14 0.00722 10 0.01252 18	E _γ : weighted average of 538.85 20 from ¹⁶⁵ Tb β^- decay and 538.634 3 from (n γ) E=thermal
570.2619	(1/2)-	386.011 2 411.679 2 462.103 3	90 8 100 <i>10</i> 4.6 5	184.2552 5/2 ⁻ 158.5895 (3/2) ⁻ 108.1562 1/2 ⁻	E2 M1(+E2) [M1]	0.4 4	0.0307 <i>4</i> 0.046 <i>6</i> 0.0364 <i>5</i>	Poor-fit; level-energy difference=411.672.
573.5853	(3/2)-	311.812 [@] 3 392.663 2 414.997 3 465.427 3	<0.64 [@] 26.7 29 85 10 100 12	261.7712 (7/2) ⁻ 180.9237 (5/2) ⁻ 158.5895 (3/2) ⁻ 108.1562 1/2 ⁻	M1(+E2) M1(+E2) M1(+E2)	<1.2 <0.7 <0.7	0.048 8 0.044 4 0.033 3	E_{γ} : from (n, γ) E=thermal. Other: 465.4 3 from ¹⁶⁵ Tb
583.9972	5/2+	286.312 2 322.224 2 399 746 3	3.23 <i>32</i> 1.16 <i>10</i> 7 7 <i>10</i>	297.6844 (7/2) ⁻ 261.7712 (7/2) ⁻ 184.2552 5/2 ⁻	E1		0.01933 27	β^- decay.
		403.073 <i>1</i> 500.603 <i>7</i>	12.9 <i>13</i> 47 5	$\begin{array}{c} 184.2352 & 5/2 \\ 180.9237 & (5/2)^{-} \\ 83.3954 & (9/2)^{+} \end{array}$	E1		0.00841 12	E _{γ} : 1965Sc09 in (n, γ) E=thermal placed it also from 1158.4 level.
605.0967	(3/2)-	583.994 <i>4</i> 34.849 2 343.323 <i>3</i> 420.840 <i>3</i> 424.161 8 446 506 8	100 <i>10</i> 0.010 2 7.7 8 21.3 23 0.53 5 0 52 5	$\begin{array}{cccc} 0.0 & 7/2^+ \\ 570.2619 & (1/2)^- \\ 261.7712 & (7/2)^- \\ 184.2552 & 5/2^- \\ 180.9237 & (5/2)^- \\ 158 & 5895 & (3/2)^- \end{array}$	M1+E2 M1 E2 E2	0.7 +5-4	0.0200 <i>3</i> 8.28 <i>12</i> 0.0430 <i>6</i> 0.035 <i>11</i>	Poor-fit; level-energy difference=34.835.
607.6252	(5/2,7/2)-	496.942 <i>3</i> 246.997 <i>2</i> 270.461 <i>4</i> 309.941 <i>2</i>	100 <i>12</i> 41 <i>4</i> 10.6 <i>9</i> 22.1 <i>18</i>	$\begin{array}{c} 108.1562 & 1/2^{-} \\ 360.6312 & (9/2)^{-} \\ 337.1639 & (9/2)^{-} \\ 297.6844 & (7/2)^{-} \end{array}$	M1(+E2) M1,E2	<0.6	0.023 7 0.15 <i>4</i>	
(20.0204	(5/0)-	345.849 <i>3</i> 423.366 <i>6</i> 426.696 <i>9</i> 449.027 <i>9</i>	93 9 100 <i>10</i> 42 5 8.9 9	261.7712 (7/2) ⁻ 184.2552 5/2 ⁻ 180.9237 (5/2) ⁻ 158.5895 (3/2) ⁻	M1(+E2) M1(+E2)	<1.1 <1.5	0.068 <i>10</i> 0.038 <i>8</i>	
028.8384	(3/2)	90.208 2 331.151 <i>10</i> 444.564 8 447.915 2 470.251 <i>4</i>	0.08 4 22.5 25 0.20 4 100 10 51 7	538.0350 3/2 ⁺ 297.6844 (7/2) ⁻ 184.2552 5/2 ⁻ 180.9237 (5/2) ⁻ 158.5895 (3/2) ⁻	M1(+E2) M1(+E2) M1(+E2)	<0.4 0.5 5 0.5 +4-5	0.0841 29 0.036 6 0.031 4	
648.9741	(7/2)+	520.679 <i>6</i> 64.968 <i>5</i>	1.02 8 2.8 8	$\begin{array}{c} 108.1562 & (0,2) \\ 108.1562 & 1/2^{-} \\ 583.9972 & 5/2^{+} \end{array}$	(122)			

 ∞

$\gamma(^{165}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}^{π}_{i}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
648.9741	(7/2)+	110.328 7 311.812 [@] 3 351.283 5 387.207 4 462.883 7 464.61 6	1.0 2 <6.6 [@] 5.8 6 9.2 8 16.8 18	538.6356 3/ 337.1639 (9 297.6844 (7 261.7712 (7 186.0949 (1 184.2552 5)	$(2^+)^{-}$ $(2^-)^{-}$ $(2^-)^{-}$ $(11/2^+)^{-}$				
657.9997	(5/2)-	565.578 <i>3</i> 648.962 <i>5</i> 52.906 <i>1</i> 297.370 <i>3</i>	100 <i>10</i> 54 <i>10</i> 2.1 <i>4</i> 2.60 <i>25</i>	$\begin{array}{c} 134.2332 & 37\\ 83.3954 & (9\\ 0.0 & 7/\\ 605.0967 & (3\\ 360.6312 & (9\\ \end{array}$	$\frac{2}{2}^{+}$ $\frac{2}{2}^{+}$ $\frac{3}{2}^{-}$ $\frac{3}{2}^{-}$	E2 M1+E2 (E2)	0.9 +26-9	0.01107 <i>15</i> 0.012 <i>4</i> 0.0663 <i>9</i>	
		396.222 3 473.737 3 477.072 3	15.0 <i>15</i> 11.0 <i>11</i> 100 <i>15</i>	261.7712 (7 184.2552 5/ 180.9237 (5	7/2) ⁻ /2 ⁻ 5/2) ⁻	M1,E2 M1+E2		0.041 <i>13</i> 0.025 8	E _γ : 1965Sc09 placed this γ also from 1015.9 level.
702.892	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻)	499.407 4 549.81 3 342.269 10 365.724 7 441 120 19	96 11 0.50 5 42 8 50 8 100 8	158.5895 (3 108.1562 1/ 360.6312 (9 337.1639 (9 261.7712 (7	3/2) ⁻ /2 ⁻ 9/2) ⁻ 9/2) ⁻	M1,E2		0.022 7	
705.9112	(7/2)-	100.792 ^{&} 2 121.898 <i>10</i> 368.749 2 408.229 <i>3</i> 444 139 8	0.69 <i>35</i> 2.4 <i>7</i> 61 <i>7</i> 100 <i>10</i> 5.17 <i>35</i>	605.0967 (3 583.9972 5/ 337.1639 (9 297.6844 (7 261.7712 (7	$3/2)^{-}/2^{+}$ $9/2)^{-}/2^$	M1(+E2)	<1.6	0.054 11	Poor-fit; level-energy difference=100.815.
737.8585	(7/2)-	524.983 <i>4</i> 79.866 <i>4</i>	61 6 3.6 7	180.9237 (5 657.9997 (5	5/2) ⁻ 5/2) ⁻	M1,E2		5.5 9	α (K)=2.9 <i>10</i> ; α (L)=2.0 <i>15</i> ; α (M)=0.48 <i>35</i> α (N)=0.11 <i>8</i> ; α (O)=0.013 <i>9</i> ; α (P)=1.6×10 ⁻⁴ <i>8</i>
		132.767 5 377.221 6 400.682 4 440.169 13 556 938 6	0.65 <i>32</i> 4.84 <i>32</i> 9.4 <i>10</i> 17.7 <i>23</i> 100 <i>10</i>	605.0967 (3 360.6312 (9 337.1639 (9 297.6844 (7 180.9237 (5	3/2) ⁻ 9/2) ⁻ 9/2) ⁻ 7/2) ⁻ 5/2) ⁻	E2(+M1)	>0.8	0 0149 <i>34</i>	
911.9734	5/2+	253.556 ^{&} 15 304.367 ^{&} 4 378.487 4	0.13 <i>13</i> 0.250 <i>31</i> 1.91 <i>22</i>	657.9997 (5 607.6252 (5 533.4937 5/	5/2) ⁻ 5/2,7/2) ⁻ /2 ⁻	22(111)	20.0	0.0117.57	Poor-fit; level-energy difference=253.974. Poor-fit; level-energy difference=304.348.
976.785	(7/2,9/2)+	828.569 17 911.966 4 64.757 12 790.58 5	2.8 6 100 <i>19</i> 2 <i>1</i> 3.7 <i>13</i>	83.3954 (9 0.0 7/ 911.9734 5/ 186.0949 (1	$9/2)^{+}$ $/2^{+}$ $1/2^{+}$	M1+E2	>0.4	0.0050 13	Poor-fit; level-energy difference=64.811.
		893.421 9	100 20	83.3954 (9	₽/2) ⁺	Ml		0.00698 10	Poor-fit; level-energy difference=893.387.

γ ⁽¹⁶⁵Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{\dagger}	Comments
976.785	$(7/2,9/2)^+$	976.66 19	47 13	0.0	$7/2^{+}$			
1016.0757	$(5/2^+)$	104.104 2	5.5 11	911.9734	5/2+			
		367.094 4	2.21 19	648.9741	$(7/2)^+$			
		408.453 6	3.5 4	607.6252	$(5/2,7/2)^{-}$			
		432.083 6	4.3 5	583.9972	$5/2^{+}$			
		442.55 <i>4</i>	0.77 10	573.5853	$(3/2)^{-}$			
		482.591 6	4.7 5	533.4937	5/2-			
		754.298 8	21 4	261.7712	$(7/2)^{-}$			
		831.822 9	37 8	184.2552	5/2-			
		932.657 11	65 14	83.3954	$(9/2)^+$			
		1016.100 15	100 21	0.0	7/2+			
1080.0402	$(1/2, 3/2)^{-}$	451.205 <i>3</i>	9.2 10	628.8384	$(5/2)^{-}$			
		474.945 <i>3</i>	46 5	605.0967	$(3/2)^{-}$			
		506.459 4	100 10	573.5853	$(3/2)^{-}$	(E2)	0.01466 21	
		509.772 6	5.7 7	570.2619	$(1/2)^{-}$			
		541.402 5	27.4 28	538.6356	$3/2^{+}$			
		546.543 2	47 5	533.4937	$5/2^{-}$	M1,E2	0.018 6	
		921.442 22	17 4	158.5895	$(3/2)^{-}$			
		971.85 <i>3</i>	5.5 11	108.1562	$1/2^{-}$			
1088.0114	$(3/2^{-})$	459.168 5	4.6 6	628.8384	$(5/2)^{-}$			
		504.013 6	20.3 20	583.9972	5/2+			
		514.426 5	19.4 24	573.5853	$(3/2)^{-}$			
		517.771 11	1.01 10	570.2619	$(1/2)^{-}$			
		549.371 3	25.3 30	538.6356	3/2+			
		554.521 11	2.02 30	533.4937	5/2-			
		903.736 19	12.9 26	184.2552	5/2-			
		907.096 18	14.1 30	180.9237	$(5/2)^{-}$			
		929.399 11	48 9	158.5895	$(3/2)^{-}$			
1102 0151	(2/2) -	979.834 21	100 20	108.1562	1/2-	2.61	0.0040.5	
1103.0454	(3/2)	474.212 4	14.3 16	628.8384	(5/2)	MI	0.0340 5	
		495.429 12	0.44 /	607.6252	(5/2, 1/2)			
		519.054 4	9.6 10	583.9972	$5/2^{+}$		0.010 (
		529.451 14	1/./ 18	5/3.5853	(3/2)	MI,E2	0.019 6	
		552.748 25	0.74 13	570.2019	(1/2)			
		304.409 2	55 4	538.0550	3/2			
		569.566 ^w 6	<66"	533.4937	5/2-			
		805.32 5	1.25 22	297.6844	$(1/2)^{-}$			
		841.38 5	1.8 4	261.7712	$(1/2)^{-}$			
		918.803 14	11.8 22	184.2552	5/2-			
		922.113 13	14.7 30	180.9237	$(5/2)^{-}$			
		944.433 7	60 12	158.5895	$(3/2)^{-}$			Ice(K)=0.0021 11.

$\gamma(^{165}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.#	α^{\dagger}
1103.0454	$(3/2)^{-}$	994.870 8	100 20	108.1562	$1/2^{-}$		
1108.2015	$(3/2)^+$	196.231 [@] 10	<2.1	911.9734	5/2+		
110012010	(0/=)	450.213 12	1.51 14	657,9997	$(5/2)^{-}$		
		479.372.4	27.7.29	628.8384	$(5/2)^{-}$		
		524.202 2	63.7	583.9972	$5/2^+$	M1	0.0263 4
		534.617 4	62 6	573.5853	$(3/2)^{-}$		
		537.99 [@] 3	<18@	570.2619	$(1/2)^{-}$		
		$569.566^{@}$ 6	<123@	538.6356	$3/2^{+}$	M1	0.0213 3
		574.705 6	5.9 6	533.4937	$5/2^{-}$		0.0210 0
		923.96 6	8.0 18	184.2552	$5/2^{-}$		
		927.22.3	15.2.32	180.9237	$(5/2)^{-}$		
		949.622 21	12.1 23	158.5895	$(3/2)^{-}$		
		1108.204 13	100 21	0.0	7/2+		
1135.8124	$(5/2^{-})$	397.962 9	1.22 21	737.8585	$(7/2)^{-}$		
		486.841 6	18.0 21	648.9741	$(7/2)^+$		
		506.980 15	6.3 10	628.8384	$(5/2)^{-}$		
		551.814 5	11.2 10	583.9972	$5/2^{+}$		
		562.227 5	8 1	573.5853	$(3/2)^{-}$		
		597.167 8	25.9 27	538.6356	$3/2^{+}$		
		838.162 25	22 5	297.6844	$(7/2)^{-}$		
		951.60 5	10.6 23	184.2552	5/2-		
		954.865 11	88 18	180.9237	$(5/2)^{-}$		
		977.18 5	100 21	158.5895	$(3/2)^{-}$		
		1027.80 15	4.9 12	108.1562	$1/2^{-}$		
1140.8668	$(3/2^+)$	228.922 [@] 21	$1.2^{@} 6$	911.9734	$5/2^{+}$		
		512.00 5	4.2 7	628.8384	$(5/2)^{-}$		
		535.767 <i>3</i>	100 10	605.0967	$(3/2)^{-}$		
		570.604 6	81 8	570.2619	$(1/2)^{-}$		
		602.244 8	5 1	538.6356	$3/2^{+}$		
		982.257 24	82 16	158.5895	$(3/2)^{-}$		
		1032.82 5	6.5 14	108.1562	$1/2^{-}$		
1158.1192	$(5/2^+)$	420.40 5	76	737.8585	$(7/2)^{-}$		
		452.208 4	16.8 18	705.9112	$(7/2)^{-}$		
		509.139 7	37 8	648.9741	$(7/2)^+$		
		529.282 4	22.4 24	628.8384	$(5/2)^{-}$		
		553.002 10	10.6 9	605.0967	$(3/2)^{-}$		
		574.122 <i>3</i>	46 5	583.9972	$5/2^{+}$		
		584.524 17	23.2 32	573.5853	$(3/2)^{-}$		
		619.480 10	56 12	538.6356	3/2+		
		1074.75 5	33 7	83.3954	$(9/2)^+$		
		1158.08 <i>3</i>	100 21	0.0	$7/2^{+}$		

γ ⁽¹⁶⁵Dy) (continued)</sup>

E_i (level)	J_i^π	E_{γ}^{\ddagger}	I_{γ} ‡	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
1166.8927	$(3/2)^{-}$	508.899 <i>3</i>	100 11	657.9997	$(5/2)^{-}$	(E2)		0.01447 20	
		537 99 [@] 3	<15.5@	628 8384	$(5/2)^{-}$				
		561.794 4	6.2.6	605.0967	$(3/2)^{-}$				
		593.282.12	3.3.4	573,5853	$(3/2)^{-}$				
		596.626 3	73.8	570.2619	$(1/2)^{-}$	E2		0.00970 14	
		1008.272 17	37 7	158.5895	$(3/2)^{-}$				
1174.9530	$(3/2, 5/2)^{-}$	86.930 6	1.72 35	1088.0114	$(3/2^{-})$				
		437.090 6	5.52 35	737.8585	$(7/2)^{-}$				
		469.045 4	54 6	705.9112	$(7/2)^{-}$				
		546.123 6	23.1 24	628.8384	$(5/2)^{-}$				
		567.318 13	13.5 24	607.6252	$(5/2,7/2)^{-}$				
		590.963 14	22.4 21	583.9972	$5/2^{+}$				
		601.366 6	15.2 <i>31</i>	573.5853	$(3/2)^{-}$				
		636.41 4	14.8 28	538.6356	$3/2^{+}$				
		641.441 15	9.3 17	533.4937	$5/2^{-}$				
		990.673 25	55 10	184.2552	5/2-				
		994.01 <i>3</i>	100 21	180.9237	$(5/2)^{-}$	M1(+E2)	<1.2	0.0047 7	
		1016.53 8	62 21	158.5895	$(3/2)^{-}$				
1218.3554	$(5/2^+)$	130.370 20	4.9 24	1088.0114	$(3/2^{-})$				
		480.491 5	52 6	737.8585	$(7/2)^{-}$				
		512.448 5	11.6 11	705.9112	$(7/2)^{-}$				
		560.352 7	5.14 27	657.9997	$(5/2)^{-}$				
		589.490 13	6.0 6	628.8384	$(5/2)^{-}$				
		610.79 4	2.7.6	607.6252	$(5/2, 7/2)^{-}$				
		613.259 3	100 19	605.0967	(3/2)				
		644./68 11	8.4 10	5/3.5853	(3/2)				
1256 502	(2 0)	920.000 11	/8 10	297.6844	(1/2)				
1256.503	(3/2)	598.50 3	0.350	657.9997	(5/2)				
		031.43 3	2.7 10	582 0072	(3/2)				
		686 20 4	1.00 50	570.2610	$\frac{3}{2}$				
		717 80 4	$0.00\ 10$	538 6356	(1/2) $3/2^+$				
		1072 212 0	100.18	184 2552	5/2				Poor fit: level energy difference-1072 244
1309 302	$(3/2^{-} 5/2^{-})$	704 29 4	274	605 0967	$(3/2)^{-}$				1 oor-mt, lever-energy uniterence=1072.244.
1507.502	(5/2 ,5/2)	1047 52 3	100.21	261 7712	$(3/2)^{-}$				
		1125 032 20	60 13	184 2552	$5/2^{-}$				
		1128.40.10	12.4	180 9237	$(5/2)^{-}$				
		1150.55 8	6.7.15	158,5895	$(3/2)^{-}$				
		1201.15 11	8.5 23	108.1562	$1/2^{-}$				
1320.811	$(1/2^{-}, 3/2, 5/2^{-})$	64.312 6	13.3 33	1256.503	(3/2)				
10201011	(-,= ,0,=,0,=)	212.611 12	1.7 17	1108.2015	$(3/2)^+$				
					N 1 7				

12

γ ⁽¹⁶⁵Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
1320.811	(1/2 ⁻ ,3/2,5/2 ⁻)	1136.43 4 1139.77 8 1161.83 10 1212.51 21	100 20 45 10 95 20 57 13	184.2552 180.9237 158.5895 108.1562	5/2 ⁻ (5/2) ⁻ (3/2) ⁻ 1/2 ⁻	Poor-fit; level-energy difference=1162.217.
1337.103	(1/2 ⁺ ,3/2 ⁺)	196.231 ⁽⁰⁾ 10 228.922 ⁽⁰⁾ 21 234.065 6 249.082 6 257.052 22	<1.5 [@] <1.3 [@] 0.49 10 0.69 10 0.69 10	1140.8668 1108.2015 1103.0454 1088.0114 1080.0402	$(3/2^+)$ $(3/2)^+$ $(3/2)^-$ $(3/2^-)$ $(1/2,3/2)^-$	145
		1178.47 <i>4</i> 1228.94 <i>5</i>	100 <i>5</i> 11.7 <i>3</i> 2	158.5895 108.1562	(3/2) ⁻ 1/2 ⁻	 E_γ: weighted average of 1178.53 <i>15</i> from ¹⁶⁵Tb β⁻ decay and 1178.46 <i>4</i> from (n,γ) E=thermal. I_γ: from ¹⁶⁵Tb β⁻ decay. Other: 100 <i>21</i> from (n,γ) E=thermal. E_γ: from (n,γ) E=thermal. Other: 1228.95 <i>30</i> from ¹⁶⁵Tb β⁻ decay. I_γ: weighted average of 9.2 <i>24</i> from ¹⁶⁵Tb β⁻ decay and 15.7 <i>30</i> from (n,γ)
1376.3381	(3/2+)	296.293 <i>3</i> 360.278 <i>6</i> 718.21 <i>7</i> 792.385 <i>20</i> 837.710 <i>22</i>	4.8 4 5.7 9 9.6 22 9.6 18 100 22	1080.0402 1016.0757 657.9997 583.9972 538.6356	$(1/2,3/2)^{-}$ $(5/2^{+})$ $(5/2)^{-}$ $5/2^{+}$ $3/2^{+}$	E=thermal.
1380.886	(5/2+)	1192.18 7 1195.44 17 1217.72 5 1268.13 3 277.843 5 292.893 10 674.87 9 731.871 23 775.71 4	31 7 91 22 65 13 100 22 1.28 26 0.77 26 5.1 10 10.0 18 4.6 10	184.2552 180.9237 158.5895 108.1562 1103.0454 1088.0114 705.9112 648.9741 605.0967	$5/2^{-}$ $(5/2)^{-}$ $(3/2)^{-}$ $1/2^{-}$ $(3/2)^{-}$ $(3/2^{-})$ $(7/2)^{-}$ $(7/2)^{+}$ $(3/2)^{-}$	
1400.2743	(3/2 ⁺)	807.34 9 842.14 6 847.44 9 1083.175 15 1199.97 9 1222.32 6 320.236 3 742.264 15 795.30 6 816.272 14 826.64 5	6.4 13 7.7 15 4.6 13 100 21 17 5 54 10 2.08 14 5.1 10 1.9 4 12.2 24 28 24	573.5853 538.6356 533.4937 297.6844 180.9237 158.5895 1080.0402 657.9997 605.0967 583.9972 573.5853	$\begin{array}{c} (3/2)^{-} \\ 3/2^{+} \\ 5/2^{-} \\ (7/2)^{-} \\ (5/2)^{-} \\ (3/2)^{-} \\ (5/2)^{-} \\ (3/2)^{-} \\ (5/2)^{-} \\ (3/2)^{-} \\ 5/2^{+} \\ (3/2)^{-} \end{array}$	E_{γ} : weighted average of 826.20 25 from ¹⁶⁵ Tb β^- decay and 826.65 3 from

E _i (level)	J_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Comments
	t		<u> </u>		J	(n, γ) E=thermal. I _{γ} : unweighted average of 52 9 from ¹⁶⁵ Tb β^- decay and 3.8 7 from (n, γ) E=thermal.
1400.2743	(3/2 ⁺)	1219.23 3	36 6	180.9237	(5/2)-	E_{γ} : from (n, γ) E=thermal. Other: 1219.2 <i>3</i> from ¹⁶⁵ Tb β^- decay. I _{γ} : from ¹⁶⁵ Tb β^- decay. Other: 35 <i>8</i> from (n, γ) E=thermal. Poor-fit; level-energy difference=1219.346.
		1241.64 4	44 4	158.5895	(3/2)-	E_{γ} : from (n,γ) E=thermal. Other: 1241.65 25 from ¹⁶⁵ Tb β^- decay. I _γ : from ¹⁶⁵ Tb β^- decay. Other: 44 8 from (n,γ) E=thermal.
		1292.03 4	100 9	108.1562	1/2-	E_{γ} : from (n,γ) E=thermal. Other: 1292.05 20 from ¹⁶⁵ Tb β^- decay. I_{γ} : from ¹⁶⁵ Tb β^- decay. Other: 100 20 from (n,γ) E=thermal.
1416.3385	(3/2)	258.217 6 313.293 2 328.328 2 336.299 4 811.248 11 842.73 3 846.058 7 882.833 [@] 13	0.88 30 10.6 9 18.5 18 17.7 18 50 12 18 4 71 15 <44 [@]	1158.1192 1103.0454 1088.0114 1080.0402 605.0967 573.5853 570.2619 533.4937	$(5/2^+)$ $(3/2)^-$ $(3/2^-)$ $(1/2,3/2)^-$ $(3/2)^-$ $(3/2)^-$ $(1/2)^-$ $5/2^-$	
1440.470	(5/2+)	1257.68 5 131.145 22 791.34 6 856.526 22 1142.73 8 1256 10 9	100 21 2.2 9 12.2 26 34 7 19 4 100 22	158.5895 1309.302 648.9741 583.9972 297.6844 184 2552	$(3/2)^{-}$ $(3/2^{-},5/2^{-})$ $(7/2)^{+}$ $5/2^{+}$ $(7/2)^{-}$ $5/2^{-}$	
1444.721	(3/2 ⁻ ,5/2 ⁺)	277.74 4 303.89 7 860.61 4 871.09 3 906.066 20 1182.98 5 1260.531 19	1.15 33 1.8 8 21 4 4.4 8 77 17 30 7 100 21	1166.8927 1140.8668 583.9972 573.5853 538.6356 261.7712 184.2552	$\begin{array}{c} (3/2)^{-} \\ (3/2^{+}) \\ 5/2^{+} \\ (3/2)^{-} \\ 3/2^{+} \\ (7/2)^{-} \\ 5/2^{-} \end{array}$	Poor-fit; level-energy difference=1260.461.
1456.399	(3/2)	320.549 ^{&} 5 368.352 <i>14</i> 798.398 7 827.57 <i>4</i> 848.90 <i>11</i> 851.38 5 872.398 <i>11</i> 882.833 [@] <i>13</i> 886.09 <i>3</i>	7.4 6 4.41 30 100 21 11.8 32 9 4 12.9 30 50 9 <44 [@] 29 6	1135.8124 1088.0114 657.9997 628.8384 607.6252 605.0967 583.9972 573.5853 570.2619	$(5/2^{-}) (3/2^{-}) (5/2)^{-} (5/2)^{-} (5/2,7/2)^{-} (3/2)^{-} 5/2^{+} (3/2)^{-} (1/2)^{-}$	Poor-fit; level-energy difference=320.586.

14

L.

$\gamma(^{165}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^π	E _γ ‡	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}
1456.399	(3/2)	1272.55 24	32 7	184.2552	5/2-			
		1275.42 12	36 7	180.9237	$(5/2)^{-}$			
		1297.87 4	88 18	158.5895	$(3/2)^{-}$			
1464.8488	$(3/2)^{-}$	127.719 <i>14</i>	0.41 21	1337.103	$(1/2^+, 3/2^+)$			
		155.547 <i>3</i>	0.41 21	1309.302	$(3/2^{-}, 5/2^{-})$			
		208.339 4	3.7 4	1256.503	(3/2)			
		306.733 11	3.9 4	1158.1192	$(5/2^+)$			
		323.994 11	0.20 21	1140.8668	$(3/2^+)$			
		329.041 16	1.02 21	1135.8124	$(5/2^{-})$			
		356.659 5	11.0 12	1108.2015	$(3/2)^+$			
		376.832 4	4.1 4	1088.0114	$(3/2^{-})$			
		384.813 4	2.25 21	1080.0402	$(1/2, 3/2)^{-}$			
		835.987 <i>23</i>	8.6 18	628.8384	$(5/2)^{-}$			
		880.839 22	8.0 16	583.9972	5/2+			
		891.319 25	31 6	573.5853	$(3/2)^{-}$			
		926.187 <i>11</i>	67 14	538.6356	3/2+			
		931.351 10	100 21	533.4937	5/2-	M1(+E2)	< 0.8	0.0058 5
		1203.19 6	33 6	261.7712	$(7/2)^{-}$			
		1280.63 4	37 10	184.2552	5/2-			
1479.1326	$(3/2^{-}, 5/2^{-})$	376.088 2	22.9 22	1103.0454	$(3/2)^{-}$			
		391.120 4	9.6 11	1088.0114	$(3/2^{-})$			
		850.288 12	41 8	628.8384	$(5/2)^{-}$			
		905.527 14	100 22	573.5853	$(3/2)^{-}$			
		945.82 12	13.2 29	533.4937	5/2-			
		1181.32 6	54 11	297.6844	$(7/2)^{-}$			
		1320.45 4	75 14	158.5895	$(3/2)^{-}$			
		1370.92 <i>3</i>	100 22	108.1562	1/2-			
1482.061	$(5/2^{-})$	101.175 <i>1</i>	2.9 5	1380.886	$(5/2^+)$			
		833.04 4	34 7	648.9741	$(7/2)^+$			
		943.55 10	18 5	538.6356	3/2+			
		1121.57 13	39 8	360.6312	$(9/2)^{-}$			
		1184.31 <i>3</i>	100 19	297.6844	$(7/2)^{-}$			
		1220.32 7	47 11	261.7712	$(7/2)^{-}$			
		1301.34 10	46 10	180.9237	$(5/2)^{-}$			
		1323.44 8	71 14	158.5895	$(3/2)^{-}$			
		1373.53 17	28 8	108.1562	1/2-			
1773.22	$(1/2,3/2,5/2^{-})$	1234.9 <i>3</i>	23 4	538.6356	3/2+			
		1614.65 30	42 5	158.5895	$(3/2)^{-}$			
		1664.80 25	100 5	108.1562	1/2-			
1814.19	(3/2)	1632.74 <i>30</i>	100 15	180.9237	$(5/2)^{-}$			
		1705.5 ^{&} 4	56 11	108.1562	$1/2^{-}$			

15

¹⁶⁵₆₆Dy₉₉-15

γ ⁽¹⁶⁵Dy) (continued)</sup>

	E_i (level)	\mathbf{J}_i^{π}	E _γ ‡	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Comments
	2271.21	(1/2 ⁻ ,3/2)	2088.5 2113.4	180.9237 158.5895	$(5/2)^{-}$ $(3/2)^{-}$	Poor-fit; level-energy difference=2090.27.
	0.155.50	(1 10 2 10)	2163.7	108.1562	1/2-	
	2475.79	(1/2,3/2)	1904.2 2367.9	570.2619	$(1/2)^{-}$ $1/2^{-}$	
	2547.53	(1/2,3/2)	1972.9	573.5853	$(3/2)^{-}$	
			2389.7	158.5895	$(3/2)^{-}$	
	2610.04	(1/2 3/2)	2439.6	108.1562	$\frac{1}{2}$ $(3/2)^{-}$	
	2010.04	(1/2, 3/2)	2501.5	108.1562	(3/2) $1/2^{-}$	
	2705.64	(1/2,3/2)	2134.7	570.2619	$(1/2)^{-}$	
			2167.9	538.6356	3/2+	
	2765 27	(1/2 - 2/2)	2546.0	158.5895	$(3/2)^{-}$	
	2705.57	(1/2, 3/2)	2192.2	538 6356	(3/2) $3/2^+$	
			2583.1	180.9237	$(5/2)^{-}$	
			2606.0	158.5895	$(3/2)^{-}$	
			2657.6	108.1562	$1/2^{-}$	
	2783.72	$(1/2^{-},3/2)$	2603.4	180.9237	$(5/2)^{-}$	
	2703 14	$(1/2 \ 3/2)$	20/4.0	108.1562	$\frac{1}{2}$ $(1/2)^{-}$	
	2793.14	(1/2, 3/2)	2634.6	158,5895	$(1/2)^{-}$	
	2852.64	(1/2, 3/2)	2281.9	570.2619	$(1/2)^{-}$	
			2314.6	538.6356	$3/2^{+}$	
	2074 42	(1.10.0.10)	2743.5	108.1562	$1/2^{-}$	
	2874.43	(1/2, 3/2)	2304.2	5/0.2619	(1/2) $1/2^{-}$	
	2943.54	(1/2, 3/2)	2703.2	573,5853	$(3/2)^{-}$	
	27 10101	(1/=,0/=)	2834.7	108.1562	$1/2^{-}$	
	2982.73	$(1/2^{-}, 3/2)$	2412.3	570.2619	$(1/2)^{-}$	
			2803.5	180.9237	$(5/2)^{-}$	
			2821.6	108 1562	(3/2) $1/2^{-}$	Poor-fit; level-energy difference=2824.12.
	3014.02	$(1/2^{-}.3/2.5/2^{+})$	2475.8	538.6356	$3/2^+$	
			2832.0	180.9237	$(5/2)^{-}$	
			2855.7	158.5895	$(3/2)^{-}$	
	3051.82	$(1/2^{-},3/2)$	2478.9	573.5853	$(3/2)^{-}$	
			28/1.2	180.9237	(5/2) $1/2^{-}$	
	3123.44	(1/2,3/2)	2551.9	570.2619	$(1/2)^{-}$	
		(,-,-,-)	3015.5	108.1562	1/2-	
	3193.94	$(1/2, 3/2, 5/2^+)$	2655.9	538.6356	$3/2^{+}$	
- 1						

16

¹⁶⁵₆₆Dy₉₉-16

γ (¹⁶⁵Dy) (continued)

E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	E_f	J_f^π	Comments
3193.94	$(1/2,3/2,5/2^+)$	3034.5	158.5895	$(3/2)^{-}$	
3257.61	$(1/2^{-},3/2)$	2684.3	573.5853	$(3/2)^{-}$	
		3071.2	184.2552	5/2-	Poor-fit: level-energy difference=3073.32.
		3098.3	158.5895	$(3/2)^{-}$	
		3152.5	108.1562	1/2-	Poor-fit; level-energy difference=3149.42.
3379.40	$(1/2^{-}, 3/2)$	3198.0	180.9237	$(5/2)^{-}$	
		3271.3	108.1562	1/2-	
3422.01	(1/2, 3/2)	2884.6	538.6356	3/2+	
		3262.7	158.5895	$(3/2)^{-}$	
		3313.0	108.1562	1/2-	
3443.49	$(1/2^{-}, 3/2, 5/2^{+})$	2905.3	538.6356	3/2+	
		3261.7	180.9237	$(5/2)^{-}$	
3455.39	(1/2, 3/2)	3297.8	158.5895	$(3/2)^{-}$	
		3346.0	108.1562	$1/2^{-}$	
3473.72	(1/2, 3/2)	2902.9	570.2619	$(1/2)^{-}$	
		3314.6	158.5895	$(3/2)^{-}$	
3539.44	(1/2, 3/2)	2969.4	570.2619	$(1/2)^{-}$	
		2999.5	538.6356	3/2+	
3587.41	$(1/2^{-}, 3/2, 5/2^{+})$	3014.1	573.5853	$(3/2)^{-}$	
		3406.1	180.9237	$(5/2)^{-}$	
3651.47	$(1/2, 3/2, 5/2^+)$	3075.9	573.5853	$(3/2)^{-}$	Poor-fit; level-energy difference=3077.9.
		3115.4	538.6356	3/2+	Poor-fit; level-energy difference=3112.8.
		3492.2	158.5895	$(3/2)^{-}$	
3849.24	$(1/2, 3/2, 5/2^{+})$	3275.1	5/3.5853	$(3/2)^{-}$	
2070.07	(1/0.0/0.5/0+)	3691.2	158.5895	(3/2)	
39/9.07	$(1/2, 3/2, 5/2^+)$	3406.0	5/3.5853	(3/2)	
(5715 77)	1/2+	3820.0	158.5895	(3/2)	
(5/15.77)	1/2	1/30.8	39/9.07	$(1/2, 3/2, 5/2^+)$	
		1800.0	2651 47	$(1/2, 3/2, 3/2^{+})$ $(1/2, 2/2, 5/2^{+})$	
		2004.3	2597 41	(1/2, 3/2, 3/2) $(1/2^{-} 2/2, 5/2^{+})$	
		2120.3 2175 3	35307.41	$(1/2, 3/2, 3/2^{+})$ (1/2, 3/2)	
		2175.5 22/1 0	3/73 72	(1/2, 3/2) (1/2, 3/2)	
		22-11.0	3455 39	(1/2,3/2) (1/2,3/2)	
		2200.2	3443 49	$(1/2^{-} 3/2 5/2^{+})$	
		2271.5	3422.01	(1/2, 3/2, 3/2)	
		2336.0	3379.40	$(1/2^{-}, 3/2)$	
		2458.7	3257.61	$(1/2^{-},3/2)$	
		2521.6	3193.94	$(1/2,3/2,5/2^+)$	
		2591.3	3123.44	(1/2,3/2)	
		2663.8	3051.82	$(1/2^-, 3/2)$	
		2701.4	3014.02	$(1/2^-, 3/2, 5/2^+)$	

¹⁶⁵₆₆Dy₉₉-17

γ ⁽¹⁶⁵Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ} ‡	I_{γ}^{\ddagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [#]
(5715.77)	$1/2^{+}$	2732.2		2982.73	$(1/2^{-}, 3/2)$	
· · · · ·		2772.3		2943.54	(1/2, 3/2)	
		2840.3		2874.43	(1/2, 3/2)	
		2862.3		2852.64	(1/2, 3/2)	
		2921.6		2793.14	(1/2, 3/2)	
		2931.7		2783.72	$(1/2^{-}, 3/2)$	
		2950.2		2765.37	$(1/2^{-}, 3/2)$	
		3009.3		2705.64	(1/2, 3/2)	
		3105.8		2610.04	(1/2, 3/2)	
		3168.2		2547.53	(1/2, 3/2)	
		3238.9		2475.79	(1/2, 3/2)	
		3444.2		2271.21	$(1/2^{-}, 3/2)$	
		3524.84 23	2.8 4	2190.89		
		3528.64 23	9.0 14	2187.09		
		3537.18 23	6.9 10	2178.55		
		3555.34 23	6.5 10	2160.38	$(1/2^+, 3/2^+, 5/2^+)$	(M1,E2)
		3603.08 23	1.20 18	2112.64		
		3608.65 23	7.3 12	2107.07	$(1/2^+, 3/2^+, 5/2^+)$	(M1,E2)
		3627.64 23	5.1 8	2088.08		
		3649.92 23	1.77 28	2065.80		
		3652.25 23	0.41 6	2063.47		
		3673.90 23	0.61 10	2041.82		
		3708.19 22	7.3 12	2007.53	$(1/2^+, 3/2^+, 5/2^+)$	(M1,E2)
		3727.52 23	0.61 10	1988.20		
		3746.74 23	6.3 10	1968.98	$(1/2^+, 3/2^+, 5/2^+)$	(M1,E2)
		3752.91 23	4.3 6	1962.81	$(1/2^+, 3/2^+, 5/2^+)$	(M1,E2)
		3771.91 22	6.7 10	1943.81		
		3800.27 23	0.53 8	1915.45		
		3819.85 22	6.1 10	1895.87	$(1/2^+, 3/2^+, 5/2^+)$	(M1,E2)
		3825.09 23	0.92 14	1890.63		
		3830.02 23	0.82 12	1885.70		
		3839.93 22	8.0 12	1875.79	$(1/2^+, 3/2^+, 5/2^+)$	(M1,E2)
		3843.06 22	2.06 30	1872.66		
		3881.18 22	1.43 22	1834.54		
		3885.28 21	10.0 16	1830.44	$(1/2^+, 3/2^+, 5/2^+)$	(M1,E2)
		3901.25 22	2.14 31	1814.19	(3/2)	
		3919.88 <i>21</i>	1.39 22	1795.84		
		3944.96 <i>21</i>	5.1 8	1770.76		
		3960.84 22	8.6 14	1754.87		
		3985.29 24	0.39 6	1730.42		
		4021.83 24	0.65 10	1693.88		
		4044.58 21	0.98 16	1671.13		

γ ⁽¹⁶⁵Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ} ‡	E_f	J_f^{π}	Mult. [#]
(5715.77)	1/2+	4067.4 4	5.9 10	1648.3		
		4081.12 22	1.67 26	1634.59		
		4083.81 21	7.1 10	1631.90		
		4092.47 21	1.57 24	1623.24	(1/2= 2/2=)	
		4123.86 21	29 4	1591.85	(1/2 ,3/2)	(EI)
		4128.1 3	0.43 0	1587.61		
		4155.02 21	5.1 ð 0.65 10	1500.09		
		4100.30 22	0.03 10	1555.15		
		4250 89 21	244	1464 8488	$(3/2)^{-}$	(F1)
		4259.69 & 11	0.333.20	1456 399	(3/2)	
		4270 95 22	0.53.6	1444 721	$(3/2^{-} 5/2^{+})$	
		4275 31 21	2.28.33	1440 470	$(5/2^+)$	(E2)
		4315.47 21	2.9 4	1400.2743	$(3/2^+)$	(M1.E2)
		4334.85 22	0.92 14	1380.886	$(5/2^+)$	()
		4339.51 21	2.3 4	1376.3381	$(3/2^+)$	(M1,E2)
		4459.32 22	4.1 6	1256.503	(3/2)	
		4497.52 21	1.73 26	1218.3554	$(5/2^+)$	
		4548.96 21	2.8 4	1166.8927	$(3/2)^{-}$	
		4557.63 21	0.69 10	1158.1192	$(5/2^+)$	
		4607.65 21	4.5 6	1108.2015	$(3/2)^+$	
		4612.73 <i>21</i>	15.5 24	1103.0454	$(3/2)^{-}$	(E1)
		4635.82 21	3.2 5	1080.0402	$(1/2,3/2)^{-}$	
		4699.79 21	0.84 12	1016.0757	$(5/2^+)$	
		4803.86 21	0.53 8	911.9/34	5/2	F 1
		5110.70 21	17.8 28	605.0967	(3/2)	EI
		5131.9~ 2	$0.0353\ 10$	583.9972	$5/2^{+}$	(E2) (E1)
		5142.22 21	21.0 55	570.2610	(3/2) $(1/2)^{-}$	(E1)
		5177 15 21	17 5 26	538 6356	(1/2) $3/2^+$	(E1) M1 F2
		5557 11 21	82 12	158 5895	$(3/2)^{-}$	F1
		5607.51 21	100 16	108.1562	$1/2^{-}$	(E1)
(5717.96)	$1/2.3/2^{-}$	4252.8 3	18.4 21	1464.8488	$(3/2)^{-}$	()
(1)-1	4260.1 4	31 4	1456.399	(3/2)	
		4264.2 6	18 4	1453.7	,	
		4272.6 6	16.9 <i>33</i>	1444.721	$(3/2^{-}, 5/2^{+})$	
		4277.0 6	15.9 <i>31</i>	1440.470	$(5/2^+)$	
		4301.0 <i>3</i>	19.3 21	1416.3385	(3/2)	
		4317.6 <i>3</i>	15.6 20	1400.2743	$(3/2^+)$	
		4337.0 5	17.0 27	1380.886	$(5/2^+)$	
		4341.8 5	15.6 27	1376.3381	$(3/2^+)$	

γ ⁽¹⁶⁵Dy) (continued)</sup>

E_i (level)	\mathbf{J}_i^{π}	E_{γ} ‡	I_{γ} ‡	E_f	J_f^π	E_i (level)	\mathbf{J}_i^{π}	E_{γ} ‡	I_{γ} ‡	E_f	\mathbf{J}_f^{π}
(5717.96)	$1/2.3/2^{-}$	4365.6 4	12.7 18	1352.3		(5739.96)	$1/2.3/2^{-}$	4323.5 4	30 4	1416.3385	(3/2)
(1)-1	4380.8 2	20.4 21	1337.103	$(1/2^+, 3/2^+)$	(,	1)-1	4340.4 4	29.3 34	1400.2743	$(3/2^+)$
		4461.0 4	12.4 18	1256.503	(3/2)			4358.5 4	39 4	1380.886	$(5/2^+)$
		4499.2 6	7.7 16	1218.3554	$(5/2^+)$			4365.2 5	28 4	1376.3381	$(3/2^+)$
		4550.6 2	24.2 23	1166.8927	$(3/2)^{-}$			4403.2 4	38 4	1337.103	$(1/2^+, 3/2^+)$
		4559.8 <i>3</i>	18 2	1158.1192	$(5/2^+)$			4419.07	14.6 30	1320.811	$(1/2^-, 3/2, 5/2^-)$
		4576.9 2	21.8 20	1140.8668	$(3/2^+)$			4483.3 8	12.5 27	1256.503	(3/2)
		4610.4 6	15 4	1108.2015	$(3/2)^+$			4522.4 5	21.7 30	1218.3554	$(5/2^+)$
		4614.8 2	48 4	1103.0454	$(3/2)^{-}$			4571.8 5	22.6 28	1166.8927	$(3/2)^{-}$
		4630.0 1	49.4 24	1088.0114	$(3/2^{-})$			4581.7 7	16.4 28	1158.1192	$(5/2^+)$
		4637.9 <i>1</i>	46.6 24	1080.0402	$(1/2, 3/2)^{-}$			4599.8 <i>3</i>	37.0 34	1140.8668	$(3/2^+)$
		4807.5 4	8.7 14	911.9734	5/2+			4631.8 8	28 7	1108.2015	$(3/2)^+$
		5087.7 9	5.8 14	628.8384	$(5/2)^{-}$			4637.0 6	39 7	1103.0454	$(3/2)^{-}$
		5112.4 <i>1</i>	70.8 25	605.0967	$(3/2)^{-}$			4650.7 4	30.0 32	1088.0114	$(3/2^{-})$
		5133.7 <i>3</i>	18 2	583.9972	5/2+			4659.8 5	24.0 32	1080.0402	$(1/2,3/2)^{-}$
		5144.0 7	27 4	573.5853	$(3/2)^{-}$			4828.0 7	12.5 28	911.9734	5/2+
		5147.8 <i>1</i>	85 <i>5</i>	570.2619	$(1/2)^{-}$			5110.7 7	33 6	628.8384	$(5/2)^{-}$
		5179.5 2	40.9 21	538.6356	3/2+			5135.0 2	55.4 32	605.0967	$(3/2)^{-}$
		5188.1 7	6.9 16	530.6	$(1/2^+, 3/2^+, 5/2)$			5156.2 5	35 4	583.9972	5/2+
		5535.7 5	5.1 16	180.9237	$(5/2)^{-}$			5164.1 22	15 7	573.5853	$(3/2)^{-}$
		5558.8 <i>1</i>	100 3	158.5895	$(3/2)^{-}$			5169.6 4	68 8	570.2619	$(1/2)^{-}$
		5609.4 1	74.3 24	108.1562	$1/2^{-}$			5200.8 <i>3</i>	64 4	538.6356	3/2+
(5739.96)	1/2,3/2-	4276.4 8	18 4	1464.8488	$(3/2)^{-}$			5208.0 9	17.6 34	530.6	$(1/2^+, 3/2^+, 5/2)$
		4283.0 4	40 4	1456.399	(3/2)			5558.8 <i>4</i>	49 5	180.9237	$(5/2)^{-}$
		4294.8 11	30 12	1444.721	$(3/2^{-}, 5/2^{+})$			5581.0 <i>3</i>	87 7	158.5895	$(3/2)^{-}$
		4298.9 11	29 12	1440.470	$(5/2^+)$			5631.8 2	100 4	108.1562	$1/2^{-}$

20

[†] Additional information 5.
[‡] From ¹⁶⁴Dy(n,γ) E=thermal, unless otherwise noted.
[#] From ce data in ¹⁶⁴Dy(n,γ) E=thermal.
[@] Multiply placed with undivided intensity.
[&] Placement of transition in the level scheme is uncertain.

Level Scheme

 $^{165}_{\ 66}Dy_{99}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁶⁵₆₆Dy₉₉

Legend

Level Scheme (continued)

 $^{165}_{66} Dy_{99}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

0.0 2.331 h 4

¹⁶⁵₆₆Dy₉₉

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁶⁵₆₆Dy₉₉

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{165}_{66} Dy_{99}$

Legend

Level Scheme (continued)

 $^{165}_{66} Dy_{99}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

 $^{165}_{66} Dy_{99}$

Level Scheme (continued)

¹⁶⁵₆₆Dy₉₉

Level Scheme (continued)

¹⁶⁵₆₆Dy₉₉

¹⁶⁵₆₆Dy₉₉

 \mathfrak{Z}

¹⁶⁵₆₆Dy₉₉-33

From ENSDF

¹⁶⁵₆₆Dy₉₉-33

Legend

-

γ Decay (Uncertain)

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

15 - 100 + 28.803 100 277,238 176,368 174,524 174,524 8,855 1,5 5.7 082! 001 čž. 29 360.6312 337.1639 (9/2) 8 Ð. 201 - (9/2) 139.00 [] 185 100 48. [] 102 101 48. [] 102 101 (7/2)-297.6844 <35 ps 184-252 | 184-252 | 100 100 1 2 - 100 1 2 - 100 (7/2)-261.7712 ${<}35 \text{ ps}$ e de $(11/2^+)$ 186.0949 5/2⁻ (5/2) 1.0 ns *1* 2.5 ns *10* ¥ 184.2552 141/4V 180.9237 25 051:801 (3/2) 158.5895 1.8 ns 10 1/2 ಹಿ 108.1562 1.257 min 6 \$ $(9/2)^+$ 83.3954 <35 ps Ť 7/2+ 0.0 2.331 h 4

¹⁶⁵₆₆Dy₉₉

¹⁶⁵₆₆Dy₉₉

