¹⁶⁴₇₀Yb₉₄-1

¹²⁴Sn(⁴⁴Ca,4n γ) 1996Xi01

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh and Jun Chen [#]	NDS 147, 1 (2018)	30-Nov-2017				

Includes ¹³⁸Ba(³⁰Si,4ny) (1998Fr14) and ¹²⁸Te(⁴⁰Ar,4ny) (1976Bo27).

1996Xi01: E=189 MeV. Measured Ey, GGG, lifetimes by DOPPLER-broadened line-shape analysis using an array of 20 COMPTON-suppressed Ĝe detectors.

1976Bo27 (also 1976Bo30,1972Bo61,1972Bo32): ¹²⁸Te(⁴⁰Ar,4ny) E=170-190 MeV. Measured lifetimes by recoil-distance Doppler-shift (RDDS) method for members of the ground-state band.

Others:

2000Le17: ¹³⁸Ba(³⁰Si,4n γ) E=140-155 MeV. Measured E γ , $\gamma\gamma$ coin. Study of rotational continuum, statistical analysis, deduced properties of feeding transitions for high-spin levels.

1998Fr14 (also 1999Fr37,1999Fr11,1999Le20,1999Dr12): 138 Ba(30 Si,4ny) E=150 MeV. DSA measurement of unresolved γ transitions forming the rotational quasi-continuum spectrum.

Others (dealing with the measurements of continuum spectra):

1993Le03: ¹²⁴Sn(⁴⁴Ca,4n) E=189 MeV. Measured $\gamma\gamma$ coin, $\gamma\gamma(\theta)$, T_{1/2} of continuum states.

1993Th02: 100 Mo(64 Ni,X) E=232 MeV and 148 Sm(16 O,X) E=82 MeV. Measured γ -multiplicity, deduced 164 Yb excited states built on GDR. 1989Ha34: 100 Mo(64 Ni,X) E=210-235 MeV. Measured γ -multiplicity, deduced spin distribution.

1983Ga16: ¹¹⁶Cd(⁵⁰Ti,X) E=230 MeV. Measured entry-region γ spectra, deduced γ -ray fold distribution.

¹⁶⁴Yb Levels

E(level) [†]	J ^{π‡}	T _{1/2} [@]	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @
0.0 <mark>8</mark>	0^{+}		3933.3 ^h	18^{+}	0.74 ps 35
123.3 <mark>8</mark>	2+ #	882 ps 35	3942.1 ^{<i>f</i>}	17^{-}	
385.5 <mark>8</mark>	4+ #	29.7 ps 10	4231.0 ^{&d}	16-	
760.4 <mark>8</mark>	6+ #	7.24 ps 17	4392.2 <mark>8</mark>	18^{+}	
1223.6 ⁸	8+	1.5 ps 5	4445.1 ^e	18^{-}	
1442.2 ^f	5-		4552.4 ^f	19-	
1550.9 ^e	4-		4565.7 ^h	20^{+}	0.29 ps 13
1675.4 ∫	7^{-}		4933 ^{&d}	18^{-}	
1753.9 <mark>8</mark>	10^{+}	0.82 ps 28	5067.1 ^e	20^{-}	
1798.5 ^e	6-		5098.6 <mark>8</mark>	20^{+}	
2000.1 ^{<i>f</i>}	9-		5206.4 ^{<i>f</i>}	21^{-}	
2123.6 ^e	8-		5278.4 ^h	22^{+}	0.173 ps 21
2330.6 ⁸	12^{+}	0.55 ps 21	5688.8 ^e	22^{-}	
2401.2 ^f	11^{-}		5805.6 <mark>8</mark>	22^{+}	
2483.4 ^e	10^{-}		5907.4 ^{<i>f</i>}	23-	0.159 ps 21
2538.8 ^{&d}	10^{-}		6059.1 ^h	24^{+}	0.132 ^{<i>a</i>} ps +42-21
2863.9 /	13-		6372.7 ^e	24^{-}	
2864.5 ^e	12^{-}		6666.6 ^ƒ	25^{-}	0.159 ps 35
2900.1 ^g	14^{+}	0.73 ps 21	6897.3 ^h	26^{+}	0.104 ^b ps +28-21
3030.4 ^{&d}	12-		7149.3 ^e	26-	
3087.4 ^h	14^{+}		7495.0 ^ƒ	27-	
3317.8 ^e	14^{-}		7786.5 ^h	28^{+}	0.049 ^c ps +21-14
3378.3 f	15^{-}		8018.7 <mark>¢</mark>	28^{-}	
3390.0 ^h	16^{+}	1.75 ps 35	8397.1 ^{<i>f</i>}	29-	
3593.0 ^{&d}	14-	-	8725.4 ^h	30^{+}	0.083 ps +35-28
3696.6 <mark>8</mark>	16^{+}		8971.0 ^e	30-	*
3849.3 ^e	16-		9367.2 ^f	31-	

Continued on next page (footnotes at end of table)

¹²⁴Sn(⁴⁴Ca,4nγ) **1996Xi01** (continued)

¹⁶⁴Yb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{@}$
9715.0 ^h	32+	0.083 ps 42
9987 <mark>°</mark>	32-	
10371 f	(33-)	
10746.8 ^h	34+	
11820 ^h	(36 ⁺)	
12934 ^h	(38 ⁺)	

[†] From least-squares fit to $E\gamma$ data, assuming $\Delta(E\gamma)=0.5$ keV for each γ ray. Level-energy uncertainties vary from 0.5 to 2 keV.

[‡] As proposed by 1996Xi01 unless otherwise stated.

[#] From Adopted Levels.

^(a) From recoil-distance Doppler-shift (RDDS) method (1976Bo27) up to 18⁺ in the ground-state band. Above 18⁺, values are from Doppler-broadened line shapes (1996Xi01). Transition quadrupole moments are deduced by 1996Xi01 from lifetime data and listed for the levels with measured lifetime.

[&] See Adopted Levels and/or (¹⁶O,4nγ) for a corresponding band member at a different energy due to revisions in level scheme.

^{*a*} 0.589 ps 4 (1998Fr14), effective $T_{1/2}$ from F(τ).

^b 0.565 ps 4 (1998Fr14), effective $T_{1/2}$ from $F(\tau)$.

^c 0.347 ps 4 (1998Fr14), effective $T_{1/2}$ from F(τ).

^d Band(A): (π =-, α =0) band based on 10⁻. Note that the band members are different in Adopted Levels due to additional transitions in the cascade defining this band, as given in the ¹⁵²Sm(¹⁶O,4n γ) dataset.

^e Band(B): Band based on $4^-, \alpha = 0$.

^{*f*} Band(b): Band based on $5^-, \alpha = 1$.

^g Band(C): g.s. band.

^{*h*} Band(D): Band based on $14^+, \alpha = 0$.

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$
123.3 247.6 262.2		123.3 1798.5 385.5	$2^+ 6^- 4^+$	$\begin{array}{rrr} 0.0 & 0^+ \\ 1550.9 & 4^- \\ 123.3 & 2^+ \end{array}$	491.6 [†] 514.4 530.4	16.1 9	3030.4 3378.3 1753.9	12 ⁻ 15 ⁻ 10 ⁺	2538.8 10 ⁻ 2863.9 13 ⁻ 1223.6 8 ⁺
290.9 324.7 325.0	2.6 2 <1.0	3378.3 2000.1 2123.6	15 ⁻ 9 ⁻ 8 ⁻	3087.4 14 ⁺ 1675.4 7 ⁻ 1798.5 6 ⁻	531.5 533.3 543.3	9.5 5	3849.3 2863.9 3933.3	16 ⁻ 13 ⁻ 18 ⁺	3317.8 14 ⁻ 2330.6 12 ⁺ 3390.0 16 ⁺
356.4 359.7 374.8		1798.5 2483.4 760.4	6 ⁻ 10 ⁻ 6 ⁺	1442.2 5 ⁻ 2123.6 8 ⁻ 385.5 4 ⁺	562.6 [†] 563.8 569.5		3593.0 3942.1 2900.1	14 ⁻ 17 ⁻ 14 ⁺	3030.4 12 ⁻ 3378.3 15 ⁻ 2330.6 12 ⁺
381.1 401.1	4.4 2	2864.5 2401.2	12 ⁻ 11 ⁻	2483.4 10 ⁻ 2000.1 9 ⁻	576.7 595.8		2330.6 4445.1	12 ⁺ 18 ⁻	1753.9 10 ⁺ 3849.3 16 ⁻
415.2 448.3 453.3 453.9		2538.8 2123.6 3317.8 3317.8	10 8 ⁻ 14 ⁻ 14 ⁻	2123.6 8 1675.4 7 ⁻ 2864.5 12 ⁻ 2863.9 13 ⁻	609.2 610.3 619.1 621.7	12.1 7 3.3 3	3696.6 4552.4 4552.4 5688.8	16 ⁺ 19 ⁻ 19 ⁻ 22 ⁻	3087.4 14 3942.1 17 ⁻ 3933.3 18 ⁺ 5067.1 20 ⁻
462.7 463.2	<6.6	2863.9 1223.6	13 ⁻ 8 ⁺	$\begin{array}{rrr} 2401.2 & 11^- \\ 760.4 & 6^+ \end{array}$	622 [‡] 632.4		5067.1 4565.7	20^{-} 20^{+}	4445.1 18 ⁻ 3933.3 18 ⁺
463.3 483.3 489.9		2864.5 2483.4 3390.0	12 ⁻ 10 ⁻ 16 ⁺	2401.2 11 ⁻ 2000.1 9 ⁻ 2900.1 14 ⁺	638 [†] 647.3 654.0	13.8 6	4231.0 2401.2 5206.4	16 ⁻ 11 ⁻ 21 ⁻	3593.0 14 ⁻ 1753.9 10 ⁺ 4552.4 19 ⁻

 $\gamma(^{164}\text{Yb})$

Continued on next page (footnotes at end of table)

					124 Sn(44 Ca,4n γ)		1996Xi01	ed)	
						γ ⁽¹⁶⁴ Yb)	(continue	d)	
E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Eγ	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$
683.9 695.6 701.0 702 [†] 706.4 707 712.7 756.8 759.2 776.6 776.6 776.6 780.7 796.5 828.4	10.3	6372.7 4392.2 5907.4 4933 5098.6 5805.6 5278.4 3087.4 6666.6 2000.1 7149.3 6059.1 3696.6 7495.0	$\begin{array}{c} 24^{-} \\ 18^{+} \\ 23^{-} \\ 18^{-} \\ 20^{+} \\ 22^{+} \\ 22^{+} \\ 14^{+} \\ 25^{-} \\ 9^{-} \\ 26^{-} \\ 24^{+} \\ 16^{+} \\ 27^{-} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	889.2 900 902.1 915.1 938.9 952.3 970.1 989.6 1004 [‡] 1015.7 1031.8 1038 1056.8 1073 [‡]	7786.5 2123.6 8397.1 1675.4 8725.4 8971.0 9367.2 9715.0 10371 9987 10746.8 1798.5 1442.2 11820	$ \begin{array}{r} 28^{+}\\ 8^{-}\\ 29^{-}\\ 7^{-}\\ 30^{+}\\ 30^{-}\\ 31^{-}\\ 32^{+}\\ (33^{-})\\ 32^{-}\\ 34^{+}\\ 6^{-}\\ 5^{-}\\ (36^{+}) \end{array} $	6897.3 1223.6 7495.0 760.4 7786.5 8018.7 8397.1 8725.4 9367.2 8971.0 9715.0 760.4 385.5 10746.8	26 ⁺ 8 ⁺ 27 ⁻ 6 ⁺ 28 ⁻ 29 ⁻ 30 ⁺ 31 ⁻ 30 ⁻ 32 ⁺ 6 ⁺ 4 ⁺ 34 ⁺
838.2 869.4		6897.3 8018.7	26 ⁺ 28 ⁻	6059.1 24 ⁺ 7149.3 26 ⁻	1114 [‡]	12934	(38 ⁺)	11820	(36 ⁺)

[†] See Adopted Gammas and/or (¹⁶O,4n γ) dataset for Adopted placement of this transition. [‡] Placement of transition in the level scheme is uncertain.

 $^{164}_{70} Yb_{94}$

 $^{164}_{70}{\rm Yb}_{94}$

¹²⁴Sn(⁴⁴Ca,4nγ) 1996Xi01

Level Scheme (continued)

Intensities: Relative I_{γ}

 $^{164}_{70}{\rm Yb}_{94}$

¹²⁴Sn(⁴⁴Ca,4nγ) 1996Xi01

 $^{164}_{70} Yb_{94}$