| History         |                                        |                   |                        |  |  |  |  |  |
|-----------------|----------------------------------------|-------------------|------------------------|--|--|--|--|--|
| Туре            | Author                                 | Citation          | Literature Cutoff Date |  |  |  |  |  |
| Full Evaluation | Balraj Singh and Jun Chen <sup>#</sup> | NDS 147, 1 (2018) | 30-Nov-2017            |  |  |  |  |  |

 $Q(\beta^{-})=-10760 \ 60; \ S(n)=11400 \ 50; \ S(p)=2990 \ 40; \ Q(\alpha)=5278.3 \ 20$ 2017Wa10

S(2n)=20379 20, S(2p)=3645 13, Q(\varepsilon p)=3739 27 (2017Wa10).

1973Ea01: <sup>164</sup>W produced and identified in <sup>147</sup>Sm(<sup>24</sup>Mg,7n) reaction. Later studies of <sup>164</sup>W decay: 1975To05, 1979Ho10, 1994TeZZ.

For theoretical nuclear structure calculations, consult NSR database, for about 10 references. These are listed in the ENSDF dataset as document records.

Additional information 1.

# <sup>164</sup>W Levels

Quasiparticle orbital labeling scheme (2016Jo01):

A:  $\nu i_{13/2}, \alpha = +1/2$ ; first orbital.

B:  $vi_{13/2}, \alpha = -1/2$ ; first orbital.

E:  $v(h_{9/2}, f_{7/2}), \alpha = +1/2$ ; first orbital.

F:  $v(h_{9/2}, f_{7/2}), \alpha = -1/2$ ; first orbital.

G:  $v(h_{9/2}, f_{7/2}), \alpha = +1/2$ ; second orbital.

H:  $v(h_{9/2}, f_{7/2}), \alpha = -1/2$ ; second orbital.

e:  $\pi h_{11/2}, \alpha = +1/2$ ; first orbital.

f:  $\pi h_{11/2}, \alpha = +1/2$ ; first orbital.

#### Cross Reference (XREF) Flags

| A 168Os | α | decay | (2.1) | s) |
|---------|---|-------|-------|----|
|---------|---|-------|-------|----|

В

 $^{104}$ Pd( $^{63}$ Cu,p2n $\gamma$ )  $^{106}$ Cd( $^{60}$ Ni,2p $\gamma$ ) С

| E(level) <sup>†</sup>        | $J^{\pi \ddagger}$ | T <sub>1/2</sub> | XREF | Comments                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------|--------------------|------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0#                         | 0+                 | 6.3 s 2          | ABC  | $%\alpha$ =3.8 <i>12</i> ; %ε+%β <sup>+</sup> =96.2 <i>12</i><br>T <sub>1/2</sub> : weighted average of 6.3 s 5 (1973Ea01), 5.5 s 5 (1975To05), 6.4 s 8 (1979Ho10)<br>and 6.44 s <i>17</i> (1994TeZZ).<br>%α: average of experimental α branchings of 2.6% <i>17</i> (1979Ho10) and 5% <i>1</i>                                                                                     |
|                              |                    |                  |      | (1996Pa01). The calculated $r_0$ parameters are 1.543 for $\%\alpha$ =2.6 and 1.588 for $\%\alpha$ =5.0. Since both of the $r_0$ values seem to fit the systematics, an unweighted average of $\%\alpha$ =3.8 <i>12</i> is used here. It should be noted, however, that $r_0$ =1.543 fits the $r_0$ systematics better than $r_0$ =1.588, thus favoring $\%\alpha$ =2.6 <i>17</i> . |
| 331.9 <sup>#</sup> 5         | 2+                 | 18 ps 12         | BC   | $J^{\pi}$ : E2 $\gamma$ to 0 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                         |
|                              |                    |                  |      | T <sub>1/2</sub> : mean lifetime $\tau$ =26 ps <i>17</i> from RDDS method (2017Do06) in <sup>92</sup> Mo( <sup>78</sup> Kr, $\alpha$ 2p $\gamma$ ) reaction at 380 MeV using DPUNS differential plunger device and RITU separator at Jyvaskyla accelerator laboratory.                                                                                                              |
| 822.4 <sup>#</sup> 7         | 4+                 |                  | BC   | $J^{\pi}$ : stretched (E2) $\gamma$ to 0 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                             |
| 1429.2 <sup>#</sup> 8        | 6+                 |                  | BC   |                                                                                                                                                                                                                                                                                                                                                                                     |
| 1480.0 <sup>&amp;</sup> 10   | $(2^{-})$          |                  | С    | $J^{\pi}$ : $\gamma$ to $2^+$ , possible bandhead.                                                                                                                                                                                                                                                                                                                                  |
| 1757.6 <sup>@</sup> 8        | (5 <sup>-</sup> )  |                  | С    | $J^{\pi}$ : $\gamma$ to 4 <sup>+</sup> , possible bandhead.                                                                                                                                                                                                                                                                                                                         |
| 1823.5 <mark>&amp;</mark> 10 | (4-)               |                  | С    |                                                                                                                                                                                                                                                                                                                                                                                     |
| 2115.1 <sup>#</sup> 9        | 8+                 |                  | BC   |                                                                                                                                                                                                                                                                                                                                                                                     |
| 2181.4 <sup>@</sup> 9        | (7 <sup>-</sup> )  |                  | С    |                                                                                                                                                                                                                                                                                                                                                                                     |
| 2238.6 <mark>&amp;</mark> 9  | (6 <sup>-</sup> )  |                  | С    |                                                                                                                                                                                                                                                                                                                                                                                     |

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

|                             |                    |      |                               |                    | <sup>164</sup> W L | evels (continued)            | )                  |      |
|-----------------------------|--------------------|------|-------------------------------|--------------------|--------------------|------------------------------|--------------------|------|
| E(level) <sup>†</sup>       | $J^{\pi \ddagger}$ | XREF | E(level) <sup>†</sup>         | $J^{\pi \ddagger}$ | XREF               | E(level) <sup>†</sup>        | $J^{\pi \ddagger}$ | XREF |
| 2572.6 <mark>&amp;</mark> 9 | (8-)               | С    | 3830.4 <sup>#</sup> 12        | $14^{+}$           | BC                 | 6190.2 <sup>#</sup> 16       | 22+                | BC   |
| 2632.4 <sup>@</sup> 9       | (9 <sup>-</sup> )  | С    | 3877.4 <sup>@</sup> 12        | (15 <sup>-</sup> ) | С                  | 6466.5 <mark>&amp;</mark> 18 | (22 <sup>-</sup> ) | С    |
| 2718.4 <sup>&amp;</sup> 10  | (10 <sup>-</sup> ) | С    | 4292.6 <sup>&amp;</sup> 13    | (16 <sup>-</sup> ) | С                  | 6778.5 <sup>@</sup> 16       | (23 <sup>-</sup> ) | С    |
| 2829.7 <sup>#</sup> 10      | $10^{+}$           | BC   | 4338.4 <sup>#</sup> <i>13</i> | 16+                | BC                 | 6900.6 <sup>#</sup> 17       | 24+                | BC   |
| 2906.0 <sup>@</sup> 10      | $(11^{-})$         | С    | 4524.6 <sup>@</sup> 13        | (17 <sup>-</sup> ) | С                  | 7282.9 <sup>&amp;</sup> 21   | (24 <sup>-</sup> ) | С    |
| 2906.5 12                   | $(10^{+})$         | С    | 4902.5 <sup>#</sup> 14        | $18^{+}$           | BC                 | 7600.9 <sup>@</sup> 19       | (25 <sup>-</sup> ) | С    |
| 3119.7 14                   | $(11^{-})$         | С    | 4966.4 <sup>&amp;</sup> 14    | (18-)              | С                  | 7665.2 <sup>#</sup> 20       | $26^{+}$           | BC   |
| 3133.0 <sup>&amp;</sup> 11  | (12 <sup>-</sup> ) | С    | 5232.2 <sup>@</sup> 14        | (19 <sup>-</sup> ) | С                  | 8122.2 <sup>&amp;</sup> 29   | (26 <sup>-</sup> ) | С    |
| 3325.7 <sup>@</sup> 11      | (13 <sup>-</sup> ) | С    | 5523.9 <sup>#</sup> 15        | $20^{+}$           | BC                 | 8463.5 <sup>#</sup> 22       | $28^{+}$           | BC   |
| 3438.5 <sup>#</sup> 11      | $12^{+}$           | BC   | 5691.0 <sup>&amp;</sup> 15    | (20 <sup>-</sup> ) | С                  | 8468.0? <sup>@</sup> 28      | (27 <sup>-</sup> ) | С    |
| 3673.5 <sup>&amp;</sup> 12  | (14 <sup>-</sup> ) | С    | 5985.9 <sup>@</sup> 15        | (21 <sup>-</sup> ) | С                  | 9303.6 <sup>#</sup> 24       | $(30^{+})$         | BC   |

 $^{\dagger}$  From least-squares fit to Ey values.

<sup>‡</sup> As proposed by 2016Jo01, based on multipolarities and  $\Delta J^{\pi}$  deduced from  $\gamma\gamma(\theta)$ (DCO) data, and from band associations.

Parentheses for some of the levels have been added by evaluators due to lack of strong arguments for  $J^{\pi}$  assignments. <sup>#</sup> Band(A): g.s. band. Configuration= $vi_{13/2}^2$  before the band crossing at  $\hbar\omega\approx 0.3$  MeV,  $vi_{13/2}^2 \otimes v(AB)$  after the crossing

(2016Jo01).

<sup>@</sup> Band(B): Band based on (5<sup>-</sup>). Configuration= $\nu i_{13/2} \otimes \nu (h_{9/2}, f_{7/2})$  before the band crossing at  $\hbar \omega \approx 0.2$  MeV,  $\nu i_{13/2} \otimes \nu (h_{9/2}, f_{7/2})$ (AE) after the crossing (2016Jo01).

& Band(C): Band based on (2<sup>-</sup>). Configuration= $vi_{13/2} \otimes v(h_{9/2}, f_{7/2})$  before the band crossing at  $\hbar \omega \approx 0.2$  MeV,  $vi_{13/2} \otimes v(h_{9/2}, f_{7/2})$ (AF) after the crossing (2016Jo01).

| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$ | Mult. <sup>‡</sup> | α <b>#</b> | Comments                                                                                                    |
|------------------------|--------------------|------------------------|------------------------|-------------------------------------|--------------------|------------|-------------------------------------------------------------------------------------------------------------|
| 331.9                  | 2+                 | 331.9 5                | 100                    | 0.0 0+                              | E2                 | 0.0632     | B(E2)(W.u.)=138 +276-55<br>Mult.: from $\Delta J$ =2, Q (DCO data in both the high-spin reactions) and RUL. |
| 822.4                  | 4+                 | 490.4 5                | 100                    | 331.9 2+                            | (E2)               |            | 6 I                                                                                                         |
| 1429.2                 | 6+                 | 606.6 5                | 100                    | 822.4 4+                            | (E2)               |            |                                                                                                             |
| 1480.0                 | $(2^{-})$          | 1148.5 10              | 100                    | 331.9 2+                            |                    |            |                                                                                                             |
| 1757.6                 | (5 <sup>-</sup> )  | 935.3 5                | 100                    | 822.4 4+                            |                    |            |                                                                                                             |
| 1823.5                 | (4 <sup>-</sup> )  | 343.6 5                | 100 16                 | 1480.0 (2-)                         |                    |            |                                                                                                             |
|                        |                    | 1001.2 20              | 26 8                   | 822.4 4+                            |                    |            |                                                                                                             |
| 2115.1                 | 8+                 | 686.0 5                | 100                    | 1429.2 6+                           | (E2)               |            |                                                                                                             |
| 2181.4                 | $(7^{-})$          | 424.4 10               | 35 <i>3</i>            | 1757.6 (5 <sup>-</sup> )            |                    |            |                                                                                                             |
|                        |                    | 751.9 5                | 100 8                  | 1429.2 6+                           | D                  |            |                                                                                                             |
| 2238.6                 | (6 <sup>-</sup> )  | 415.5 10               | 100 14                 | 1823.5 (4-)                         |                    |            |                                                                                                             |
|                        |                    | 480.9 10               | 96 14                  | 1757.6 (5 <sup>-</sup> )            |                    |            |                                                                                                             |
| 2572.6                 | (8-)               | 334.0 5                | 100 9                  | 2238.6 (6 <sup>-</sup> )            |                    |            |                                                                                                             |
|                        |                    | 391.0 5                | 91 9                   | 2181.4 (7 <sup>-</sup> )            |                    |            |                                                                                                             |
| 2632.4                 | (9 <sup>-</sup> )  | 451.0 5                | 100 7                  | 2181.4 (7 <sup>-</sup> )            |                    |            |                                                                                                             |
|                        |                    | 517.4 5                | 61 5                   | 2115.1 8+                           |                    |            |                                                                                                             |
| 2718.4                 | $(10^{-})$         | 85.8 20                | <18                    | 2632.4 (9 <sup>-</sup> )            |                    |            |                                                                                                             |
|                        |                    | 145.7 5                | 100 8                  | 2572.6 (8 <sup>-</sup> )            | (E2)               |            |                                                                                                             |
| 2829.7                 | $10^{+}$           | 714.7 5                | 100                    | 2115.1 8+                           | (E2)               |            |                                                                                                             |
| 2906.0                 | $(11^{-})$         | 187.4 5                | 69 5                   | 2718.4 (10 <sup>-</sup> )           |                    |            |                                                                                                             |
|                        |                    | 273.7 5                | 100 7                  | 2632.4 (9 <sup>-</sup> )            | (E2)               |            |                                                                                                             |

# $\gamma(^{164}W)$

Continued on next page (footnotes at end of table)

## Adopted Levels, Gammas (continued)

### $\gamma(^{164}W)$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f$  | $\mathbf{J}_f^{\pi}$ | Mult. <sup>‡</sup> | Comments                                                                        |          |
|------------------------|--------------------|------------------------|------------------------|--------|----------------------|--------------------|---------------------------------------------------------------------------------|----------|
| 2906.5                 | $(10^{+})$         | 791.0 10               | 100                    | 2115.1 | 8+                   |                    |                                                                                 |          |
| 3119.7                 | $(11^{-})$         | 487.3 10               | 100                    | 2632.4 | (9 <sup>-</sup> )    |                    |                                                                                 |          |
| 3133.0                 | $(12^{-})$         | 414.6 5                | 100                    | 2718.4 | $(10^{-})$           |                    |                                                                                 |          |
| 3325.7                 | (13-)              | 419.7 5                | 100                    | 2906.0 | $(11^{-})$           |                    |                                                                                 |          |
| 3438.5                 | 12+                | 531.6 10               | 18.4 <i>19</i>         | 2906.5 | $(10^{+})$           | (E2)               |                                                                                 |          |
|                        |                    | 608.9 5                | 100 8                  | 2829.7 | 10+                  |                    |                                                                                 |          |
| 3673.5                 | $(14^{-})$         | 540.5 5                | 100                    | 3133.0 | $(12^{-})$           |                    |                                                                                 |          |
| 3830.4                 | $14^{+}$           | 391.9 5                | 100                    | 3438.5 | $12^{+}$             | (E2)               |                                                                                 |          |
| 3877.4                 | $(15^{-})$         | 551.7 5                | 100                    | 3325.7 | (13 <sup>-</sup> )   |                    |                                                                                 |          |
| 4292.6                 | (16 <sup>-</sup> ) | 619.1 5                | 100                    | 3673.5 | $(14^{-})$           |                    |                                                                                 |          |
| 4338.4                 | 16+                | 508.0 5                | 100                    | 3830.4 | 14+                  | (E2)               |                                                                                 |          |
| 4524.6                 | $(17^{-})$         | 647.2 5                | 100                    | 3877.4 | $(15^{-})$           |                    |                                                                                 |          |
| 4902.5                 | 18+                | 564.1 5                | 100                    | 4338.4 | 16+                  | (E2)               |                                                                                 |          |
| 4966.4                 | (18 <sup>-</sup> ) | 673.8 5                | 100                    | 4292.6 | (16 <sup>-</sup> )   |                    |                                                                                 |          |
| 5232.2                 | (19 <sup>-</sup> ) | 707.6 5                | 100                    | 4524.6 | (17 <sup>-</sup> )   |                    |                                                                                 |          |
| 5523.9                 | $20^{+}$           | 621.4 5                | 100                    | 4902.5 | $18^{+}$             | (E2)               |                                                                                 |          |
| 5691.0                 | $(20^{-})$         | 724.6 5                | 100                    | 4966.4 | (18 <sup>-</sup> )   |                    |                                                                                 |          |
| 5985.9                 | $(21^{-})$         | 753.7 5                | 100                    | 5232.2 | (19 <sup>-</sup> )   |                    |                                                                                 |          |
| 6190.2                 | $22^{+}$           | 666.3 5                | 100                    | 5523.9 | $20^{+}$             | (E2)               |                                                                                 |          |
| 6466.5                 | $(22^{-})$         | 775.5 10               | 100                    | 5691.0 | $(20^{-})$           |                    |                                                                                 |          |
| 6778.5                 | (23 <sup>-</sup> ) | 792.6 5                | 100                    | 5985.9 | $(21^{-})$           |                    |                                                                                 |          |
| 6900.6                 | 24+                | 710.4 5                | 100                    | 6190.2 | 22+                  | (E2)               |                                                                                 |          |
| 7282.9                 | $(24^{-})$         | 816.4 10               | 100                    | 6466.5 | $(22^{-})$           |                    |                                                                                 |          |
| 7600.9                 | (25 <sup>-</sup> ) | 822.4 10               | 100                    | 6778.5 | (23 <sup>-</sup> )   |                    |                                                                                 |          |
| 7665.2                 | $26^{+}$           | 764.6 10               | 100                    | 6900.6 | 24+                  | (E2)               |                                                                                 |          |
| 8122.2                 | $(26^{-})$         | 839.3 20               | 100                    | 7282.9 | (24 <sup>-</sup> )   |                    |                                                                                 |          |
| 8463.5                 | $28^{+}$           | 798.3 10               | 100                    | 7665.2 | $26^{+}$             | (E2)               |                                                                                 |          |
| 8468.0?                | (27 <sup>-</sup> ) | 867.1 <sup>@</sup> 20  | 100                    | 7600.9 | (25 <sup>-</sup> )   |                    | 104 (2                                                                          |          |
| 9303.6                 | $(30^{+})$         | 840.1 10               | 100                    | 8463.5 | 28+                  |                    | $E_{\gamma}$ : 825.0 in <sup>104</sup> Pd( <sup>63</sup> Cu,p2n\gamma) (1991Si0 | 8) is in |
|                        |                    |                        |                        |        |                      |                    | disagreement.                                                                   |          |

<sup>†</sup> From <sup>106</sup>Cd(<sup>60</sup>Ni,2p $\gamma$ ) (2016Jo01). Values for the g.s. band are also available from <sup>104</sup>Pd(<sup>63</sup>Cu,p2n $\gamma$ ) (1991Si08), which are systematically higher by  $\approx 0.6$  keV as compared to those in 2016Jo01.

<sup>‡</sup> From DCO data in both the reactions, combined with RUL (for E2 and M2) for low-energy transitions, assuming level half-lives are less than 20 ns, typical resolution time in  $\gamma\gamma$ -coincidence experiments. Mult=Q indicates  $\Delta J=2$  transition, most likely E2, while mult=D indicates  $\Delta J=1$  transition. For the ground-state band, the in-band transitions up to 28<sup>+</sup> are assigned (E2) based on DCO values supporting stretched quadrupoles, and lack of evidence for any isomers.

<sup>#</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>@</sup> Placement of transition in the level scheme is uncertain.

Legend

## Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$  Decay (Uncertain)



0.0 6.3 s 2

 $^{164}_{74}W_{90}$ 

Level Scheme (continued)

Intensities: Relative photon branching from each level





 $^{164}_{74}W_{90}$