¹⁶⁸Os α decay (2.1 s) 1996Pa01,1995Hi02,1982En03

Type Author Citation Literature Cutoff Date

Full Evaluation Balraj Singh and Jun Chen# NDS 147, 1 (2018) 30-Nov-2017

Parent: 168 Os: E=0.0; J^{π} =0+; $T_{1/2}$ =2.1 s I; $Q(\alpha)$ =5815.6 27; $\%\alpha$ decay=43 4

 168 Os- $T_{1/2}$: From 168 Os Adopted Levels (2010Ba27).

 168 Os-Q(α): From 2017Wa10.

¹⁶⁸Os-%α decay: From %α=43 4 (from ¹⁶⁸Os Adopted Levels, 2010Ba27) based on measured values of 49% 3 (1982En03) and 40% 3 (1996Pa01).

¹⁶⁴W Levels

 $\frac{E(level)}{0.0} \quad \frac{J^{\pi}}{0^{+}}$

α radiations

E α : recommended by 1991Ry01. E α =5674 8 (1995Hi02) does not change the recommended E α . Other E α =5662 8 (1984Sc06), 5680 3 (1982De11, earlier value from this group was

5660 10 in 1978Ca11 and 1977Ca23), 5660 10 (1978Sc26). Ia: only one α group was observed. Intensity of an unobserved 5383 α to 2⁺ state at 332 is estimated to be less than 6% of α decay by requiring its hindrance factor to be greater than 1.0. Thus Ia(5676 α)=97 3 per 100 α decays is assigned and used in computation of the r₀ parameter.

Comments

[†] $r_0(164W)=1.563 \ 11$ is deduced from $Hf(5676\alpha)=1.0$.

[‡] For absolute intensity per 100 decays, multiply by 0.43 4.