## <sup>106</sup>Cd(<sup>60</sup>Ni,2pγ) 2016Jo01

| History         |                                        |                   |                        |  |  |  |  |  |
|-----------------|----------------------------------------|-------------------|------------------------|--|--|--|--|--|
| Туре            | Author                                 | Citation          | Literature Cutoff Date |  |  |  |  |  |
| Full Evaluation | Balraj Singh and Jun Chen <sup>#</sup> | NDS 147, 1 (2018) | 30-Nov-2017            |  |  |  |  |  |

Includes 2017Do06:  ${}^{92}$ Mo( ${}^{78}$ Kr, $\alpha 2p\gamma$ ),E=380 MeV; measured lifetime of the first 2<sup>+</sup> state by recoil-distance Doppler-shift (RDDS) method using DPUNS differential plunger device and RITU separator at Jyvaskyla.

2016Jo01: E=270 MeV. Target=1.0 mg/cm<sup>2</sup> thick, 96.5% enriched <sup>106</sup>Cd self-supporting foil. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ -coin,  $\gamma\gamma(\theta)$ (DCO), recoil implants, (implants) $\gamma$ -coin. Recoil-decay tagging technique using RITU gas-filled separator and GREAT

spectrometer and JUROGAM array at University of Jyvaskyla accelerator laboratory. Deduced high-spin levels,  $J^{\pi}$ , bands, configurations, alignments. Comparison with predictions of cranked shell-model calculations.

Other: 1992DrZU (also 1992DrZW): <sup>109</sup>Ag(<sup>58</sup>Ni,2np $\gamma$ ) E=253 MeV. Measured E $\gamma$ ,  $\gamma$ (x-ray) coin. The authors report two bands in the alignment plots only: a positive-parity band of 14 transitions and two negative-parity bands (possibly signature partners) with eight transitions in one and seven in the other. The energy range of the transitions in the negative-parity bands is estimated as  $\approx$ 300 keV to 800 keV from the alignment plot. All three bands are reported in 2016Jo01, where the second author is the first author of 1992DrZU.

## <sup>164</sup>W Levels

Quasiparticle orbital labeling scheme: A:  $vi_{13/2}, \alpha = +1/2$ ; first orbital. B:  $vi_{13/2}, \alpha = -1/2$ ; first orbital. E:  $v(h_{9/2}, f_{7/2}), \alpha = +1/2$ ; first orbital. F:  $v(h_{9/2}, f_{7/2}), \alpha = -1/2$ ; first orbital. G:  $v(h_{9/2}, f_{7/2}), \alpha = +1/2$ ; second orbital. H:  $v(h_{9/2}, f_{7/2}), \alpha = -1/2$ ; second orbital. e:  $\pi h_{11/2}, \alpha = +1/2$ ; first orbital. f:  $\pi h_{11/2}, \alpha = +1/2$ ; first orbital.

| E(level) <sup>†</sup>      | $J^{\pi \ddagger}$ | T <sub>1/2</sub> | Comments                                                                |
|----------------------------|--------------------|------------------|-------------------------------------------------------------------------|
| 0.0#                       | $0^{+}$            |                  |                                                                         |
| 331.9 <sup>#</sup> 5       | 2+                 | 18 ps 12         | $T_{1/2}$ : mean lifetime $\tau$ =26 ps 17 from RDDS method (2017Do06). |
| 822.4 <sup>#</sup> 7       | 4+                 |                  |                                                                         |
| 1429.2 <sup>#</sup> 8      | 6+                 |                  |                                                                         |
| 1480.0 <sup>&amp;</sup> 10 | (2 <sup>-</sup> )  |                  |                                                                         |
| 1757.6 <sup>@</sup> 8      | (5 <sup>-</sup> )  |                  |                                                                         |
| 1823.5 <sup>&amp;</sup> 10 | (4 <sup>-</sup> )  |                  |                                                                         |
| 2115.1 <sup>#</sup> 9      | 8+                 |                  |                                                                         |
| 2181.4 <sup>@</sup> 9      | (7 <sup>-</sup> )  |                  |                                                                         |
| 2238.6 <sup>&amp;</sup> 9  | (6 <sup>-</sup> )  |                  |                                                                         |
| 2572.6 <sup>&amp;</sup> 9  | (8-)               |                  |                                                                         |
| 2632.4 <sup>@</sup> 9      | (9 <sup>-</sup> )  |                  |                                                                         |
| 2718.4 <sup>&amp;</sup> 10 | (10 <sup>-</sup> ) |                  |                                                                         |
| 2829.7 <sup>#</sup> 10     | $10^{+}$           |                  |                                                                         |
| 2906.0 <sup>@</sup> 10     | (11 <sup>-</sup> ) |                  |                                                                         |
| 2906.5 12                  | $(10^+)$           |                  |                                                                         |
| 3119./ 14                  | (11)               |                  |                                                                         |
| $3133.0^{\sim} 11$         | (12)               |                  |                                                                         |
| 3325./ <sup>2</sup> 11     | (13)               |                  |                                                                         |
| 3438.5" 11                 | (12))              |                  |                                                                         |

| $^{106}$ Cd( $^{60}$ Ni,2p $\gamma$ ) | 2016Jo01 | (continued) |
|---------------------------------------|----------|-------------|
|                                       |          | (           |

| E(level) <sup>†</sup>         | Jπ‡                | E(level) <sup>†</sup>      | Jπ‡                | E(level) <sup>†</sup>      | Jπ‡                | E(level) <sup>†</sup>      | Jπ‡                |
|-------------------------------|--------------------|----------------------------|--------------------|----------------------------|--------------------|----------------------------|--------------------|
| 3673.5 <sup>&amp;</sup> 12    | (14-)              | 4902.5 <sup>#</sup> 14     | (18 <sup>+</sup> ) | 6190.2 <sup>#</sup> 16     | $(22^{+})$         | 7665.2 <sup>#</sup> 20     | (26 <sup>+</sup> ) |
| 3830.4 <sup>#</sup> 12        | $(14^{+})$         | 4966.4 <sup>&amp;</sup> 14 | (18 <sup>-</sup> ) | 6466.5 <sup>&amp;</sup> 18 | (22 <sup>-</sup> ) | 8122.2 <sup>&amp;</sup> 29 | (26 <sup>-</sup> ) |
| 3877.4 <sup>@</sup> 12        | (15 <sup>-</sup> ) | 5232.2 <sup>@</sup> 14     | (19 <sup>-</sup> ) | 6778.5 <sup>@</sup> 16     | (23 <sup>-</sup> ) | 8463.5 <sup>#</sup> 22     | (28 <sup>+</sup> ) |
| 4292.6 <sup>&amp;</sup> 13    | (16 <sup>-</sup> ) | 5523.9 <sup>#</sup> 15     | $(20^{+})$         | 6900.6 <sup>#</sup> 17     | (24+)              | 8468.0? <sup>@</sup> 28    | (27 <sup>-</sup> ) |
| 4338.4 <sup>#</sup> <i>13</i> | (16 <sup>+</sup> ) | 5691.0 <sup>&amp;</sup> 15 | $(20^{-})$         | 7282.9 <sup>&amp;</sup> 21 | (24 <sup>-</sup> ) | 9303.6 <sup>#</sup> 24     | (30 <sup>+</sup> ) |
| 4524.6 <sup>@</sup> 13        | (17 <sup>-</sup> ) | 5985.9 <sup>@</sup> 15     | (21 <sup>-</sup> ) | 7600.9 <sup>@</sup> 19     | (25 <sup>-</sup> ) |                            |                    |

## <sup>164</sup>W Levels (continued)

<sup>†</sup> From least-squares fit to  $E\gamma$  values.

<sup>‡</sup> As proposed by 2016Jo01, based on  $\gamma\gamma(\theta)$ (DCO) data.

<sup>#</sup> Band(A): g.s. band. Configuration=
$$vi_{13/2}^2$$
 before the band crossing at  $\hbar\omega\approx 0.3$  MeV,  $vi_{13/2}^2 \otimes v(AB)$  after the crossing.

<sup>(a)</sup> Band(B): Band based on (5<sup>-</sup>). Configuration= $\nu i_{13/2} \otimes \nu (h_{9/2}, f_{7/2})$  before the band crossing at  $\hbar \omega \approx 0.2$  MeV,  $\nu i_{13/2} \otimes \nu (h_{9/2}, f_{7/2})$ (AE) after the crossing.

& Band(C): Band based on (2<sup>-</sup>). Configuration= $\nu i_{13/2} \otimes \nu (h_{9/2}, f_{7/2})$  before the band crossing at  $\hbar \omega \approx 0.2$  MeV,  $\nu i_{13/2} \otimes \nu (h_{9/2}, f_{7/2})$ (AF) after the crossing.

 $\gamma(^{164}\mathrm{W})$ 

The DCO ratios are for 90° and 158° geometry, with gates on  $\Delta J=2$ , quadrupole transitions. For a guide, DCO values for known transitions were 0.94 9 for 490, 4<sup>+</sup> -> 2<sup>+</sup> transition, and 0.67 14 for 752, 7<sup>-</sup> -> 6<sup>+</sup> transition.

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}$   | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$ | Mult. <sup>‡</sup> | α <b>#</b> | Comments                                                                                                                                                              |
|------------------------|----------------|---------------|----------------------|-------------------------------------|--------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 85.8 20                | <2.0           | 2718.4        | $(10^{-})$           | 2632.4 (9 <sup>-</sup> )            |                    |            |                                                                                                                                                                       |
| 145.7 5                | 11.2 9         | 2718.4        | $(10^{-})$           | 2572.6 (8-)                         | (E2)               |            | DCO=1.3 6                                                                                                                                                             |
| 187.4 5                | 11.2 8         | 2906.0        | $(11^{-})$           | 2718.4 (10 <sup>-</sup> )           |                    |            |                                                                                                                                                                       |
| 273.7 5                | 16.3 11        | 2906.0        | $(11^{-})$           | 2632.4 (9-)                         | (E2)               |            | DCO=1.3 3                                                                                                                                                             |
| 331.9 5                | 100.0 6        | 331.9         | 2+                   | $0.0 \ 0^+$                         | E2                 | 0.0632     | DCO=0.8 1                                                                                                                                                             |
|                        |                |               |                      |                                     |                    |            | B(E2)(W.u.)=150 <i>100</i> (2017Do06), but the<br>evaluators obtain B(E2)(W.u.)=138 +276-55<br>using upper and lower bounds of half-life.<br>Mult.: from DCO and RUL. |
| 334.0 5                | 11.7 <i>10</i> | 2572.6        | (8 <sup>-</sup> )    | 2238.6 (6 <sup>-</sup> )            |                    |            |                                                                                                                                                                       |
| 343.6 5                | 5.0 8          | 1823.5        | (4 <sup>-</sup> )    | 1480.0 (2-)                         |                    |            |                                                                                                                                                                       |
| 391.0 5                | 10.7 11        | 2572.6        | (8 <sup>-</sup> )    | 2181.4 (7 <sup>-</sup> )            |                    |            |                                                                                                                                                                       |
| 391.9 5                | 34.6 23        | 3830.4        | $(14^{+})$           | 3438.5 (12 <sup>+</sup> )           |                    |            |                                                                                                                                                                       |
| 414.6 5                | 22.0 16        | 3133.0        | $(12^{-})$           | 2718.4 (10 <sup>-</sup> )           |                    |            |                                                                                                                                                                       |
| 415.5 10               | 4.9 7          | 2238.6        | (6 <sup>-</sup> )    | 1823.5 (4-)                         |                    |            |                                                                                                                                                                       |
| 419.7 5                | 28.9 19        | 3325.7        | (13-)                | 2906.0 (11-)                        |                    |            |                                                                                                                                                                       |
| 424.4 10               | 9.0 8          | 2181.4        | (7 <sup>-</sup> )    | 1757.6 (5 <sup>-</sup> )            |                    |            |                                                                                                                                                                       |
| 451.0 5                | 22.1 16        | 2632.4        | (9-)                 | 2181.4 (7 <sup>-</sup> )            |                    |            |                                                                                                                                                                       |
| 480.9 10               | 4.7 7          | 2238.6        | (6 <sup>-</sup> )    | 1757.6 (5 <sup>-</sup> )            |                    |            |                                                                                                                                                                       |
| 487.3 10               | 2.9 8          | 3119.7        | $(11^{-})$           | 2632.4 (9 <sup>-</sup> )            |                    |            |                                                                                                                                                                       |
| 490.4 5                | 95 6           | 822.4         | 4+                   | 331.9 2+                            | (E2)               |            | DCO=0.9 1                                                                                                                                                             |
| 508.0 5                | 41 <i>3</i>    | 4338.4        | $(16^{+})$           | 3830.4 (14 <sup>+</sup> )           |                    |            |                                                                                                                                                                       |
| 517.4 5                | 13.5 10        | 2632.4        | (9 <sup>-</sup> )    | 2115.1 8+                           |                    |            |                                                                                                                                                                       |
| 531.6 10               | 6.8 7          | 3438.5        | $(12^{+})$           | $2906.5 (10^+)$                     |                    |            |                                                                                                                                                                       |
| 540.5 5                | 20.1 14        | 3673.5        | (14-)                | 3133.0 (12-)                        |                    |            |                                                                                                                                                                       |
| 551.7 5                | 27.5 19        | 3877.4        | $(15^{-})$           | 3325.7 (13 <sup>-</sup> )           |                    |            |                                                                                                                                                                       |
| 564.1 5                | 31.7 21        | 4902.5        | $(18^{+})$           | 4338.4 (16 <sup>+</sup> )           |                    |            |                                                                                                                                                                       |

Continued on next page (footnotes at end of table)

## <sup>106</sup>Cd(<sup>60</sup>Ni,2pγ) 2016Jo01 (continued)

## $\gamma(^{164}W)$ (continued)

| $E_{\gamma}^{\dagger}$ | Iγ      | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f \qquad J_f^{\pi}$  | Mult. <sup>‡</sup> |           | Comments |  |
|------------------------|---------|---------------|----------------------|-------------------------|--------------------|-----------|----------|--|
| 606.6 5                | 80 5    | 1429.2        | 6+                   | 822.4 4+                | 0                  | DCO=0.8 1 |          |  |
| 608.9 5                | 37 3    | 3438.5        | $(12^{+})$           | 2829.7 10+              |                    |           |          |  |
| 619.1 5                | 17.0 13 | 4292.6        | $(16^{-})$           | 3673.5 (14-             | )                  |           |          |  |
| 621.4 5                | 22.5 16 | 5523.9        | $(20^{+})$           | 4902.5 (18+             | )                  |           |          |  |
| 647.2 5                | 26.9 18 | 4524.6        | $(17^{-})$           | 3877.4 (15-             | )                  |           |          |  |
| 666.3 5                | 20.5 15 | 6190.2        | $(22^{+})$           | 5523.9 (20+             | )                  |           |          |  |
| 673.8 5                | 15.1 11 | 4966.4        | $(18^{-})$           | 4292.6 (16-             | )                  |           |          |  |
| 686.0 5                | 55 4    | 2115.1        | 8+                   | 1429.2 6+               | Q                  | DCO=1.7 4 |          |  |
| 707.6 5                | 18.0 13 | 5232.2        | (19 <sup>-</sup> )   | 4524.6 (17-             | )                  |           |          |  |
| 710.4 5                | 13.1 10 | 6900.6        | $(24^{+})$           | 6190.2 (22+             | )                  |           |          |  |
| 714.7 5                | 37 3    | 2829.7        | $10^{+}$             | 2115.1 8+               | Q                  | DCO=1.2 2 |          |  |
| 724.6 5                | 12.5 10 | 5691.0        | $(20^{-})$           | 4966.4 (18-             | )                  |           |          |  |
| 751.9 5                | 25.6 21 | 2181.4        | (7-)                 | 1429.2 6+               | D                  | DCO=0.7 1 |          |  |
| 753.7 5                | 12.5 11 | 5985.9        | $(21^{-})$           | 5232.2 (19-             | )                  |           |          |  |
| 764.6 10               | 9.2 8   | 7665.2        | $(26^{+})$           | 6900.6 (24+             | )                  |           |          |  |
| 775.5 10               | 7.0 7   | 6466.5        | (22 <sup>-</sup> )   | 5691.0 (20-             | )                  |           |          |  |
| 791.0 <i>10</i>        | 5.6 11  | 2906.5        | $(10^{+})$           | 2115.1 8+               |                    |           |          |  |
| 792.6 5                | 7.5 7   | 6778.5        | (23-)                | 5985.9 (21-             | )                  |           |          |  |
| 798.3 10               | 6.1 6   | 8463.5        | $(28^{+})$           | 7665.2 (26 <sup>+</sup> | )                  |           |          |  |
| 816.4 10               | 3.7 5   | 7282.9        | (24-)                | 6466.5 (22-             | )                  |           |          |  |
| 822.4 10               | 4.1 5   | 7600.9        | $(25^{-})$           | 6778.5 (23-             | )                  |           |          |  |
| 839.3 20               | 1.8 4   | 8122.2        | (26 <sup>-</sup> )   | 7282.9 (24-             | )                  |           |          |  |
| 840.1 10               | 2.1 4   | 9303.6        | $(30^{+})$           | 8463.5 (28+             | )                  |           |          |  |
| 867.1 <sup>@</sup> 20  | 1.7 4   | 8468.0?       | (27 <sup>-</sup> )   | 7600.9 (25-             | )                  |           |          |  |
| 935.3 5                | 11.9 15 | 1757.6        | (5 <sup>-</sup> )    | 822.4 4+                |                    |           |          |  |
| 1001.2 20              | 1.3 4   | 1823.5        | (4 <sup>-</sup> )    | 822.4 4+                |                    |           |          |  |
| 1148.5 10              | 3.6 15  | 1480.0        | $(2^{-})$            | 331.9 2+                |                    |           |          |  |

<sup>†</sup> 2016Jo01 assign uncertainty of 0.5 keV for  $\gamma$  rays with I $\gamma$ >10, up to 2 keV for weaker  $\gamma$  rays. Evaluators assign 1.0 keV for  $\gamma$  rays with I $\gamma$ =2-10, and 2.0 keV for I $\gamma$ <2.

<sup>‡</sup> Assigned by evaluators based on DCO ratios, combined with RUL (for E2 and M2) assuming level half-lives are less than 20 ns, typical resolution time in  $\gamma\gamma$ -coincidence experiments. Mult=Q indicates  $\Delta J=2$  transition, most likely E2, while mult=D indicates  $\Delta J=1$  transition.

<sup>#</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>@</sup> Placement of transition in the level scheme is uncertain.

#### <sup>106</sup>Cd(<sup>60</sup>Ni,2pγ) 2016Jo01 Legend $\begin{array}{l} I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ \gamma \text{ Decay (Uncertain)} \end{array}$ ► Level Scheme Intensities: Relative $I_{\gamma}$ • • \_ \_ \_ + 840, 2,1 $(30^{+})$ 9303.6 - 862, 1:2 1 <u>39</u>3 $\frac{(27^-)}{(28^+)}$ <u>8468.0</u> 8463.5 639<sub>.3</sub> $(26^{-})$ 8122.2 + 204.00 - 1 1.2.2. $(26^+)$ 7665.2 $\frac{4^{8}t_{6,q}}{3,2}$ (25<sup>-</sup>) 7600.9 $(24^{-})$ 7282.9 + 210,4 13,1 + کولی ازد کر (24+) 6900.6 (23-) 6778.5 + 66.3 | 2013 (22-) 6466.5 l, S $(22^{+})$ 6190.2 233-)-- ';-(21<sup>-</sup>) 5985.9 , 234° , + 62/ 14 22.5 + (20<sup>-</sup>) 5691.0 1 202 1 1 205 1 1 205 1 $(20^{+})$ 5523.9 ۲ <sup>623,8</sup>1 راجع (۲.2 564, 31, > (19<sup>-</sup>) 5232.2 (18<sup>-</sup>) 4966.4 | 692 cityo + $(18^{+})$ 4902.5 1 30% 0 41 0:21' 1'61' 1 (17<sup>-</sup>) 4524.6 (16<sup>+</sup>) 4338.4 + 551,222 $(16^{-})$ 4292.6 20' $\frac{(15^{-})}{(14^{+})}$ 3877.4 ۲ 53,6 | . ا مور<sub>ا</sub>ع ا 3830.4 -0- $(14^{-})$ 3673.5 -85 $(12^+)$ < 61+ 3438.5 3325.7 $\frac{1}{(13^{-})}$ $(12^{-})$ 3133.0 $\frac{(12^{+})}{(10^{+})}$ 2906.5 2906.0 $10^{+}$ 2829.7 $0^+$ 0.0

 $^{164}_{74}W_{90}$ 

4



 $^{164}_{74}W_{90}$ 

# <sup>106</sup>Cd(<sup>60</sup>Ni,2pγ) 2016Jo01



 $^{164}_{\ 74}W_{90}$