¹⁶⁴Tm IT decay (5.1 min) 1971De22

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh and Jun Chen [#]	NDS 147, 1 (2018)	30-Nov-2017		

Parent: ¹⁶⁴Tm: E=0+x; J^π=6⁻; T_{1/2}=5.1 min *l*; %IT decay=80.0
¹⁶⁴Tm-%IT decay: %IT=80, estimated by 1971De22 from the decay of 5.1-min ¹⁶⁴Tm in which practically all of the directly produced 2.0-min ¹⁶⁴Tm had died out.

¹⁶⁴Tm Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	1^{+}		
0+x	6-	5.1 min 1	E(level): x=10 keV 6 (2017Au03: nubase); x<20 keV, from non-observation of any isomeric
			transitions in the E γ >20 keV region investigated by 1971De22. From systematics, 1971De22 suggest
			that there is probably a low-lying 3^- state through which the isomer decays.

[†] From Adopted Levels.