164 W ε decay (6.3 s) 1994TeZZ

History								
Type	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh and Jun Chen#	NDS 147, 1 (2018)	30-Nov-2017					

Parent: 164 W: E=0.0; $J^{\pi}=0^{+}$; $T_{1/2}=6.3$ s 2; $Q(\varepsilon)=5047$ 30; $\%\varepsilon+\%\beta^{+}$ decay=96.2 12

¹⁶⁴W-T_{1/2}: From ¹⁶⁴W Adopted Levels.

 164 W-Q(ε): From 2017Wa10.

 164 W-%ε+%β⁺ decay: %α=3.8 12.

Additional information 1.

The level scheme is considered (by evaluators) as tentative.

1994TeZZ: Measured E γ , I γ , $\gamma\gamma$, γ (K x ray) coin, E α , T_{1/2}. Source from ¹¹⁰Pd(⁵⁸Ni,4n) E=340 MeV followed by mass-separation.

1997Dr09: 144 Sm(24 Mg,xn) E=109-141 MeV. From excitation functions, two γ rays of 187.0 I and 268.7 assigned to the decay of 164 W. $T_{1/2}$ =7.0 s 2 from time decay of 187 γ . But none of these γ rays is reported by 1994TeZZ. A 186.8 γ is assigned by 1994TeZZ to 165 W decay with $T_{1/2}$ =5.9 s 3.

T_{1/2}=6.44 s 17 (1994TeZZ).

¹⁶⁴Ta Levels

1994TeZZ propose J^{π} =(1⁺) for all the levels above 11.4, based on log ft values. But in the evaluators' opinion, the level scheme does not seem well established to calculate correct ε + β + feedings.

E(level) [†]	\mathbf{J}^{π}	Comments
0.0	(3 ⁺)	J^{π} : (2 ⁻) proposed by 1994TeZZ.
11.4?		
111.3		
443.4?		
483.6?		
513.1?		

[†] From Eγ data.

ε, β^+ radiations

1994TeZZ give $\%\varepsilon+\%\beta+$ feedings of 84 14, 2.5 15, 4.7 23 and 8.6 18 for levels 111, 443, 483 and 513, respectively, based on the present level scheme.

$$\frac{\text{E(decay)}}{(4.94 \times 10^{3 \, \dagger} \, 3)} \quad \frac{\text{E(level)}}{111.3}$$

γ (164Ta)

E_{γ}	I_{γ}	$E_i(level)$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
99.9 [‡]	21.5 18	111.3	11.4?	Coin with 372γ and 402γ and not with 111γ .
111.3	100 2	111.3	0.0 (3+)	Mult.: E1 from $\alpha(\exp)=0.39$ 44, estimated from γ and $\gamma(K \times \text{ray})$ coin spectra. Mult.: E1 from $\alpha(\exp)=0.51$ 27, estimated from γ and $\gamma(K \times \text{ray})$ coin spectra.

Continued on next page (footnotes at end of table)

[†] Existence of this branch is questionable.

$^{164}\mathrm{W}~\varepsilon$ decay (6.3 s) 1994TeZZ (continued)

γ (164Ta) (continued)

E_{γ}	I_{γ}	$E_i(level)$	E_f
^x 187.0 [†] 1			
^x 268.7 [†] 2			
332.1	3.8 22	443.4?	111.3
372.3	7.1 34	483.6?	111.3
401.8	13.1 23	513.1?	111.3

[†] From 1997Dr09 only. $I\gamma(187)/I\gamma(269)=5.7$ 19 (1997Dr09). This γ ray is not reported by 1994TeZZ.

 $^{^{\}ddagger}$ Placement of transition in the level scheme is uncertain. x γ ray not placed in level scheme.

164 W ε decay (6.3 s) 1994TeZZ

Legend

Decay Scheme

Intensities: Relative I_{γ}

