164 W ε decay (6.3 s) 1994TeZZ | History | | | | | | | | | |-----------------|----------------------------|-------------------|------------------------|--|--|--|--|--| | Type | Author | Citation | Literature Cutoff Date | | | | | | | Full Evaluation | Balraj Singh and Jun Chen# | NDS 147, 1 (2018) | 30-Nov-2017 | | | | | | Parent: 164 W: E=0.0; $J^{\pi}=0^{+}$; $T_{1/2}=6.3$ s 2; $Q(\varepsilon)=5047$ 30; $\%\varepsilon+\%\beta^{+}$ decay=96.2 12 ¹⁶⁴W-T_{1/2}: From ¹⁶⁴W Adopted Levels. 164 W-Q(ε): From 2017Wa10. 164 W-%ε+%β⁺ decay: %α=3.8 12. Additional information 1. The level scheme is considered (by evaluators) as tentative. 1994TeZZ: Measured E γ , I γ , $\gamma\gamma$, γ (K x ray) coin, E α , T_{1/2}. Source from ¹¹⁰Pd(⁵⁸Ni,4n) E=340 MeV followed by mass-separation. 1997Dr09: 144 Sm(24 Mg,xn) E=109-141 MeV. From excitation functions, two γ rays of 187.0 I and 268.7 assigned to the decay of 164 W. $T_{1/2}$ =7.0 s 2 from time decay of 187 γ . But none of these γ rays is reported by 1994TeZZ. A 186.8 γ is assigned by 1994TeZZ to 165 W decay with $T_{1/2}$ =5.9 s 3. T_{1/2}=6.44 s 17 (1994TeZZ). ### ¹⁶⁴Ta Levels 1994TeZZ propose J^{π} =(1⁺) for all the levels above 11.4, based on log ft values. But in the evaluators' opinion, the level scheme does not seem well established to calculate correct ε + β + feedings. | E(level) [†] | \mathbf{J}^{π} | Comments | |-----------------------|--------------------|---| | 0.0 | (3 ⁺) | J^{π} : (2 ⁻) proposed by 1994TeZZ. | | 11.4? | | | | 111.3 | | | | 443.4? | | | | 483.6? | | | | 513.1? | | | | | | | [†] From Eγ data. ### ε, β^+ radiations 1994TeZZ give $\%\varepsilon+\%\beta+$ feedings of 84 14, 2.5 15, 4.7 23 and 8.6 18 for levels 111, 443, 483 and 513, respectively, based on the present level scheme. $$\frac{\text{E(decay)}}{(4.94 \times 10^{3 \, \dagger} \, 3)} \quad \frac{\text{E(level)}}{111.3}$$ ### γ (164Ta) | E_{γ} | I_{γ} | $E_i(level)$ | $\mathbf{E}_f \mathbf{J}_f^{\pi}$ | Comments | |-------------------|--------------|--------------|------------------------------------|--| | 99.9 [‡] | 21.5 18 | 111.3 | 11.4? | Coin with 372γ and 402γ and not with 111γ . | | 111.3 | 100 2 | 111.3 | 0.0 (3+) | Mult.: E1 from $\alpha(\exp)=0.39$ 44, estimated from γ and $\gamma(K \times \text{ray})$ coin spectra.
Mult.: E1 from $\alpha(\exp)=0.51$ 27, estimated from γ and $\gamma(K \times \text{ray})$ coin spectra. | Continued on next page (footnotes at end of table) [†] Existence of this branch is questionable. #### $^{164}\mathrm{W}~\varepsilon$ decay (6.3 s) 1994TeZZ (continued) ## γ (164Ta) (continued) | E_{γ} | I_{γ} | $E_i(level)$ | E_f | |-----------------------------------|--------------|--------------|-------| | ^x 187.0 [†] 1 | | | | | ^x 268.7 [†] 2 | | | | | 332.1 | 3.8 22 | 443.4? | 111.3 | | 372.3 | 7.1 34 | 483.6? | 111.3 | | 401.8 | 13.1 23 | 513.1? | 111.3 | [†] From 1997Dr09 only. $I\gamma(187)/I\gamma(269)=5.7$ 19 (1997Dr09). This γ ray is not reported by 1994TeZZ. $^{^{\}ddagger}$ Placement of transition in the level scheme is uncertain. x γ ray not placed in level scheme. ## 164 W ε decay (6.3 s) 1994TeZZ ### Legend # Decay Scheme Intensities: Relative I_{γ}