¹⁶⁴Sm IT decay (0.60 μs) 2014Pa55

	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen [#]	NDS 147, 1 (2018)	30-Nov-2017

Parent: ¹⁶⁴Sm: E=1485.5 12; J^{π} =(6⁻); $T_{1/2}$ =0.60 µs 14; %IT decay=100.0

2014Pa55: ¹⁶⁴Sm produced in ⁹Be(²³⁸U,F),E=345 MeV/nucleon reaction at the Radioactive Ion Beam Factory (RIBF) at RIKEN accelerator laboratory. Nuclei were separated in terms of mass-to-charge (A/q) ratio and atomic number Z using BigRIPS and ZeroDegree spectrometers. Ions of ¹⁶⁴Sm were implanted in a copper passive stopper, and the gamma rays from the isomer were detected using Euroball-RIKEN Cluster array (EURICA) consisting of 84 HPGe crystals in a 4π configuration. Measured E γ , I γ , $\gamma\gamma$ -coin, (ion implants) γ correlations, delayed-gamma-ray spectroscopy, isomer half-life. Deduced levels, J, π , multipolarity. Comparison with potential energy surface calculations including β_6 deformation.

¹⁶⁴Sm Levels

E(level) [†]	J π ‡	T _{1/2}	Comments
0.0#	0+		
69 [#] 1	(2^+)		
224.9 [#] 11	(4^{+})		
467.2 [#] 11	(6^+)		
1136.1 11	(5^{+})		Possible member of γ -vibrational band.
1485.5 <i>12</i>	(6 ⁻)	0.60 µs 14	%IT=100
			Configuration= $v5/2[512] \otimes v7/2[633]$, $\beta_2=0.295$, $\beta_4=0.029$, $\beta_6=-0.020$.
			$T_{1/2}$: from decay curves obtained from (ion implantation)(γ)(t) correlations for 155-, 242-,
			349-, 669-, and 911-keV γ rays.

[†] From least-squares fit to $E\gamma$ data, assuming energy of the first 2⁺ level at 69 keV *1* from rotational band systematics of nuclei in this mass region.

[‡] As proposed by 2014Pa55 based on systematics of even-even nuclides for low-lying levels and potential-energy surface calculations for higher levels above 1 MeV, supported by multipolarities obtained from intensity balances.

[#] Band(A): The g.s. band. Calculations suggest $\beta_2=0.301$, $\beta_4=0.030$, $\beta_6=-0.023$ for the ground state.

$\gamma(^{164}\text{Sm})$

Iy normalization: Summed transition intensity=100 for 349.4γ .

Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α [@]	$I_{(\gamma+ce)}^{\#}$	Comments
(69 1)	10 CA	69	(2+)	0.0	0+	[E2]	9.4 6	100	E_{γ} : estimated by evaluators from rotational band systematics of nuclei in this mass region.
155.9 4	79 14	224.9	(4+)	69	(2+)	(E2)	0.332 6		$I_{(\gamma+ce)}$: from intensity balance. $\alpha(K)=0.264$ 5; $\alpha(L)=0.0551$ 10; $\alpha(M)=0.01108$ 20; $\alpha(N)=0.00199$ 4
242.2 3	28 9	467.2	(6+)	224.9	(4 ⁺)	(E2)	0.0723		α (K)=0.0600 9; α (L)=0.00995 15; α (M)=0.00198 3; α (N)=0.000362 6
349.4 2	100	1485.5	(6 ⁻)	1136.1	(5 ⁺)	(E1)	0.00576	100	$\alpha(K) = 0.0051 \ 7; \ \alpha(L) = 0.000606 \ 9;$ $\alpha(M) = 0.0001179 \ 17; \ \alpha(N) = 2.21 \times 10^{-5} \ 4$
									Reduced hindrance f_v =487 <i>38</i> (2014Pa55), assuming the the 349-keV transition feeds the γ band with γ =3
668.8 4	39 14	1136.1	(5 ⁺)	467.2	(6 ⁺)				

¹⁶⁴Sm IT decay (0.60 μs) 2014Pa55 (continued)

$\gamma(^{164}\text{Sm})$ (continued)

Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
^x 694 911.3 <i>3</i>	79 22	1136.1	(5 ⁺)	224.9 (4 ⁺)	Weak γ ray.

[†] As implied from transition intensity balances and ΔJ^{π} . These are not given explicitly in 2014Pa55.

[‡] For absolute intensity per 100 decays, multiply by 0.9943.

[#] Absolute intensity per 100 decays.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

¹⁶⁴Sm IT decay (0.60 μs) 2014Pa55

