#### **Adopted Levels, Gammas**

| History         |                            |                   |                        |  |  |
|-----------------|----------------------------|-------------------|------------------------|--|--|
| Type            | Author                     | Citation          | Literature Cutoff Date |  |  |
| Full Evaluation | Balraj Singh and Jun Chen# | NDS 147, 1 (2018) | 30-Nov-2017            |  |  |

 $Q(\beta^{-}) = -705 \times 10^{1} \ 14$ ;  $S(n) = 9540 \ 60$ ;  $S(p) = -150 \ 80$ ;  $Q(\alpha) = 5926 \ 5$ 

69.4 4 0+x  $E_{\gamma}$ : from 2009Ha42.

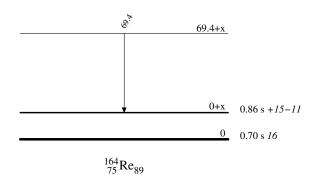
69.4 + x

 $S(2n)=21110\ 200\ (syst),\ S(2p)=2270\ 80,\ Q(\varepsilon p)=7770\ 70\ (2017Wa10).$  1981Ho10, 1979Ho10:  $^{164}$ Re produced and identified in  $^{109}$ Ag( $^{58}$ Ni,xnyp),E=275 MeV reaction, using velocity filter, and ion implantation in Si surface-barrier and position-sensitive detectors.

Later studies of <sup>164</sup>Re decay:

Additional information 1.

# <sup>164</sup>Re Levels


#### Cross Reference (XREF) Flags

- $^{168}$ Ir lpha decay (220 ms)
- $^{168}$ Ir  $\alpha$  decay (159 ms)

| E(level)     | T <sub>1/2</sub>     | XREF | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------|----------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | 0.70 s 16            | A    | $\%\alpha\approx58;$ %ε+%β <sup>+</sup> ≈42<br>%ε+%β <sup>+</sup> : from gross β-strength function calculations of 1973Ta30 as quoted by 1979Ho10. J <sup>π</sup> : very tentative 2 <sup>-</sup> for g.s. and 9 <sup>+</sup> for isomeric state based on the following considerations: for Z=75, valence proton orbitals are h <sub>11/2</sub> , d <sub>3/2</sub> , and s <sub>1/2</sub> ; and for N=89, valence neutron orbitals are h <sub>9/2</sub> , f <sub>7/2</sub> , and i <sub>13/2</sub> . In neighboring <sup>166</sup> Ir odd-odd nucleus, following configurations and J <sup>π</sup> were proposed by 1997Da07: [ $\pi$ d <sub>3/2</sub> ⊗vf <sub>7/2</sub> ] <sub>2</sub> - for α-decaying g.s. and [ $\pi$ h <sub>11/2</sub> ⊗vf <sub>7/2</sub> ] <sub>9+</sub> for α-decaying isomeric state. The J <sup>π</sup> assignments for these configurations were based on the Nordheim rules. Similar assignments were suggested for the α-decaying g.s. and isomeric state in <sup>170</sup> Au by 2004Ke06 and for <sup>172</sup> Au by 2009Ha42. It is possible that the α-decay chain <sup>172</sup> Au → <sup>168</sup> Ir → <sup>164</sup> Re → <sup>160</sup> Ta → <sup>156</sup> Lu → <sup>152</sup> Tm follows a trend of α decays of 2 <sup>-</sup> g.s. and 9 <sup>+</sup> isomeric state, as the J <sup>π</sup> =2 <sup>-</sup> for the ground states and 9 <sup>+</sup> for the isomers in <sup>156</sup> Lu and <sup>152</sup> Tm seem fairly secure. 2017Au03 (in NUBASE-2016) assign (2 <sup>-</sup> ) for g.s. and (9 <sup>+</sup> ) for the isomeric state, probably from favored α-decay chain starting with <sup>172</sup> Au and ending in <sup>152</sup> Tm, as shown above.  T <sub>1/2</sub> : weighted average of 0.85 s +14−11 (2009Ha42), 0.38 s 16 (1996Pa01), and 0.88 s 24 (1979Ho10,1981Ho10). |
| 0+x          | 0.86 s +15-11        | В    | $%\alpha=3$ 1 (2009Ha42); $%\varepsilon+%\beta^+=97$ 1<br>E(level): x=-50 250 (systematics, 2017Au03).<br>J <sup>π</sup> : very tentative 9 <sup>+</sup> , see comment for g.s.<br>T <sub>1/2</sub> : from 2009Ha42.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 69.4+x       |                      | В    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                      |      | $\gamma$ <sup>(164</sup> Re)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $E_i(level)$ | $E_{\gamma}$ $E_{f}$ |      | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### **Adopted Levels, Gammas**

## <u>Level Scheme</u>

