History											
Туре	Author	Citation	Literature Cutoff Date								
Full Evaluation	Balraj Singh and Jun Chen [#]	NDS 147, 1 (2018)	30-Nov-2017								

 $Q(\beta^{-}) = -8540 \ 30; \ S(n) = 10626 \ 29; \ S(p) = 4320 \ 30; \ Q(\alpha) = 3919 \ 17$ 2017Wa10

S(2n)=18792 18, S(2p)=6570 22, Q(\varepsilon p)=192 22 (2017Wa10).

Identification and production of ¹⁶⁴Hf by 1981Br30 using ¹⁴⁷Sm(²²Ne,5n) reaction at E=110, 136 MeV.

A B C

Mass measurement: 2000Ra23. 2013Ma73, in their 94 Zr(74 Ge,4n γ) results, stated that eight normal-deformed bands had been extended to high spins, and that

these data would be presented in a forthcoming paper. Based on NSR database search and current literature, no further publication from the authors of 2013Ma73 seems to have appeared as of November 30, 2017.

For theoretical nuclear structure calculations, consult NSR database, for about 40 references. These are listed in the ENSDF dataset as document records.

Additional information 1.

164Hf Levels

Quasiparticle labels for neutrons:

A: $(\pi = +, \alpha = +1/2)$; $i_{13/2}$ orbital, $\nu 5/2[642]$.

B: $(\pi = +, \alpha = -1/2)$; $i_{13/2}$ orbital, $\nu 5/2[642]$.

C: $(\pi = +, \alpha = +1/2)_2$; $i_{13/2}$ orbital, $\nu 3/2[651]$.

E: $(\pi = -, \alpha = +1/2)$; h_{9/2} orbital, $\nu 3/2[521]$.

F: $(\pi = -, \alpha = -1/2)$; h_{9/2} orbital, v_{3/2}[521].

Quasiparticle labels for protons:

A_p: (π =-, α =-1/2); h_{11/2} orbital, π 9/2[514].

B_p: (π =-, α =+1/2); h_{11/2} orbital, π 9/2[514].

Cross Reference (XREF) Flags

¹⁶⁴ Ta ε decay (14.2 s)	D	120 Sn(48 Ti,4n γ)
¹⁶⁸ W α decay (50.9 s)	E	148 Sm(20 Ne,4n γ)
94 Zr(74 Ge,4n γ)		

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
0@	0+	111 s 8	ABCDE	$%ε+%β^+=100$ T _{1/2} : from decay curve for 153γ (1989Hi04). Others: 168 s <i>12</i> (1981Br30,1989Br19, from γ-decay curve), 114 s <i>3</i> (1981LiZM, from decay curve for Lu K x-rays). Evaluators prefer value from 1989Hi04 as it was measured using characteristic γ ray from the decay of ¹⁶⁴ Hf, in contrast to somewhat more precise value from 1981LiZM obtained from the decay curve for K x-rays, which can be subject to contamination. High value from 1989Br19 and 1981Br30 is clearly discrepant.
210.7 [@] 3	2+	301 ps 29	A CDE	$\mu = +0.66 \ 12 \ (1998 \text{We02})$ $\mu: \text{ transient-field technique in } (^{128}\text{Te},4n\gamma) \ (1998 \text{We02}) \text{ for } \text{T}_{1/2}(211 \text{ level})=344$ ps 20. $\text{T}_{1/2}: \text{ from } 2016 \text{Pr01 evaluation, based on RDDS method in } ^{148}\text{Sm}(^{20}\text{Ne},4n\gamma),$ where the two values of mean lifetime are: τ =497 ps 29 (1998 We02) and 370 ps 30 (1989 \text{Mu13}). $J^{\pi}: \text{E2 } \gamma \text{ to } 0^{+}.$
587.1 [@] 4 620.2 8 816.0 4	4 ⁺ (2 ⁺)	13.0 ps +26-22	A CDE A A	$J^{\pi}: \Delta J=2, E2 \gamma \text{ to } 2^+.$ $J^{\pi}: \leq 4 \text{ from } \gamma \text{ to } 2^+.$ $J^{\pi}: \gamma \text{ to } 0^+, \text{ probable allowed } \varepsilon \text{ feeding from } (3^+).$

Continued on next page (footnotes at end of table)

¹⁶⁴Hf Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
1072.8 5	$(2^+, 3, 4^+)$		A E	J^{π} : gammas to 2 ⁺ and 4 ⁺ . $J^{\pi}=(3^-)$ suggested in (²⁰ Ne,4n γ).
1085.0 [@] 5	6+	2.0 ps +26-4	CDE	J^{π} : $\Delta J=2$, E2 γ to 4 ⁺ .
1237.6 11		-	Α	J^{π} : 2 ⁺ to 6 ⁺ from γ to 4 ⁺ .
1352.6 6	$(2^+, 3, 4^+)$		A	J^{π} : gammas to 2 ⁺ and 4 ⁺ .
1458.0 11			A	$J^{n}: \leq 4$ from γ to (2^{+}) . $\overline{M}_{+} \leq 4$ from α to 2^{+}
1480.2 11 1520 8 ^{<i>a</i>} 5	(5^{-})		A CDF	$J^{\alpha} \le 4$ from γ to 2^{α} . $I^{\pi} \le \Lambda I = 1$ dipole γ to 4^{+} : band member
1614.5.5	(3^{-})		A E	I^{π} : $\Lambda I = (2) \gamma$ from (6 ⁻). $I^{\pi} = (4^{-}, 5^{-})$ suggested in (²⁰ Ne.4n γ).
$1668.7^{@}5$	8 ⁺	<1.4 ns	CDE	
1675.7 9	0	(11) po	A	J^{π} : ≤ 4 from γ to 2^+ .
1836.1 ^{<i>a</i>} 5	(7)-		CDE	J^{π} : $\Delta J=1$, E1 γ to 6 ⁺ ; γ to (5 ⁻).
1946.9 <mark>b</mark> 5	(6 ⁻)		CDE	J ^{π} : Δ J=1, (M1+E2) γ to (5 ⁻); Δ J=(0), dipole γ to 6 ⁺ .
2244.8 ^{<i>a</i>} 5	(9)-		CDE	
2301.7 ^b 5	(8)-		CDE	J^{π} : E1 γ to 8 ⁺ ; $\Delta J=1$, M1+E2 γ to (7) ⁻ .
$2304.0^{\textcircled{0}}6$	10^{+}		CDE	
2575.7 <mark>6</mark> 5	(10 ⁻)		CDE	
2698.3 ^{<i>a</i>} 6	$(11)^{-}$	3.0 ps +16-10	CDE	
2870.9 ^{<i>x</i>} 6	12^{+}	5.2 ps +15-12	CDE	
2961.3 ⁰ 6	(12^{-})		CDE	
2994.5 ^⁶ 7	(12^+)		E	
3155.54 0	(13)	4.1 ps $+12-10$	CDE	
3209.7	(13^{-})	14.8 ps $+10-12$	CDE	
$3403 h^{b} 7$	(13^{-})		CDF	
3617 8 [@] 8	(14^{+})		CDL F	
3677 8 <mark>&</mark> 8	(14) 16 ⁺	2.9 ns + 10 - 7	CDF	
3700.4 ^{<i>a</i>} 7	(15^{-})	2.7 p3 110 7	CDE	
3944.3 ^c 12	(15 ⁻)		С	
4128.8 <mark>b</mark> 7	(16 ⁻)		CDE	
4262.0 <mark>&</mark> 8	18+	2.1 ps +12-10	CDE	
4335.2 ^{<i>a</i>} 8	(17 ⁻)		CDE	
4614.2 [°] 12	(17^{-})		С	
4765.9 ⁰ 8	(18 ⁻)		CDE	
4938.6 ^{x} 9	20^+		CDE	
5009.3 ⁴ 8	(19^{-})		CDE	
$5239.2^{-}10$ 5250 nh o	(17)		CDE	
5558.7° 8	(20^{-})		CDE	
$5698.6^{\&}9$	22+		CDE	
5894.0 [°] 10	(21 ⁻)		C	
5981.5 <mark>b</mark> 9	(22 ⁻)		CDE	
6335.0 ^a 9	(23 ⁻)		CDE	
6544.1 <mark>&</mark> 10	24+		CDE	
6601.7 [°] 11	(23 ⁻)		C	
6672.7 ⁰ 9	(24^{-})		CDE	
7061.5" 10 7350.0° 14	(25)		CDE	
7442 8 10	(25^{-})			
1442.0 10	(20)		CDE	

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
7457.7 <mark>&</mark> 10	26+	CDE	10411.4 ^{&} 18	32+	С	13390.5 ^b 22	(38 ⁻)	С
7872.9 ^a 10	(27^{-})	CDE	10598.5 ^d 13	(33-)	С	13467.5 ^d 22	(39-)	С
8166.4 [°] 15	(27 ⁻)	С	10754.0 ^a 15	(33 ⁻)	С	13802.0 ^a 23	(39 ⁻)	С
8291.7 <mark>b</mark> 10	(28 ⁻)	CDE	11074.1 ^e 14	(34-)	С	14027.1 ^e 22	(40^{-})	С
8435.8 <mark>&</mark> 11	28^{+}	CDE	11257.5 ^b 17	(34 ⁻)	CΕ	14540.5 ^d 24	(41 ⁻)	С
8763.9 ^a 10	(29 ⁻)	CDE	11428.4 ^{&} 21	34+	С	14851.0 ^{<i>a</i>} 25	(41 ⁻)	С
8989.7 ^d 14	(29 ⁻)	С	11494.5 ^d 17	(35 ⁻)	С	15106.1 ^e 24	(42 ⁻)	С
9084.4 ^c 18	(29 ⁻)	С	11784.0 ^a 18	(35-)	С	15665 ^d 3	(43-)	С
9215.2 ^b 11	(30-)	CDE	12006.1 ^e 17	(36 ⁻)	С	16232 ^e 3	(44-)	С
9418.4 ^{&} 15	30^{+}	CΕ	12306.5 ^b 20	(36 ⁻)	С	16830 ^d 3	(45 ⁻)	С
9726.0 ^a 11	(31 ⁻)	CDE	12450.5 ^d 20	(37 ⁻)	С	17413 ^e 3	(46 ⁻)	С
9770.1 ^d 13	(31^{-})	С	12482.4 ^{&} 23	36+	С	18643 ^e 3	(48^{-})	С
10190.0 ^e 11	(32 ⁻)	CΕ	12787.0 ^a 21	(37 ⁻)	С			
10228.1 ^b 14	(32 ⁻)	С	12992.1 ^e 20	(38-)	С			

¹⁶⁴Hf Levels (continued)

[†] From least-squares fit to $E\gamma$ data.

[‡] For high-spin states (J>6), the assignments are based on ΔJ and multipolarities deduced from $\gamma(\theta)$, $\gamma\gamma(\theta)$ (DCO) and γ (linear pol) in ¹²⁰Sn(⁴⁸Ti,4n γ) and $\gamma\gamma(\theta)$ (DCO) in ¹⁴⁸Sm(²⁰Ne,4n γ) combined with γ -decay modes and band associations. Arguments for separate levels are generally not given since most of these are based on band structures.

[#] For excited states, values are from recoil-distance Doppler shift (RDDS) method (1989Mu13) in 148 Sm(20 Ne,4n γ), unless otherwise stated.

[@] Band(A): g.s. band. Average measured g factor=+0.23 *3* for the yrast band (1998We02, 2014StZZ).

[&] Band(a): AB band, α =0. This band is a continuation of g.s. band, with a possible band crossing at 10⁺. Interpreted (1987B106) as AB up to 28⁺ and ABA_pB_p (alignment of a pair of AB protons) above 28⁺.

^{*a*} Band(B): AE, α =1 band. Interpreted (1987Bl06) as AE up to 19⁻ and ABCE (alignment of a pair of BC neutrons) above 19⁻.

^b Band(b): AF, α =0 band. Bands AE and AF are signature partners. Interpreted (1987B106) as AF up to 16⁻ and ABCF (alignment of a pair of BC neutrons) above 16⁻.

^c Band(C): AG band.

^d Band(D): TSD-1 band. Proposed configuration=4–qp involving high-j intruder $\pi i_{13/2}^2$.

^{*e*} Band(E): TSD-2 band. Proposed configuration=4–qp involving high-j intruder $\pi i_{13/2}^2$.

				tinued)				
						$\gamma(^{164}\text{Hf})$		
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α ^{&}	Comments
210.7	2+	210.7 [‡] 3	100	0 0+	E2		0.242	α (K)=0.1447 21; α (L)=0.0740 12; α (M)=0.0181 3 α (N)=0.00422 7; α (O)=0.000556 9; α (P)=9.60×10 ⁻⁶ 14 B(E2)(W.u.)=68 7
587.1	4+	376.3 [‡] 3	100	210.7 2+	E2		0.0411	$\alpha(K)=0.0303 \ 5; \ \alpha(L)=0.00833 \ 12; \ \alpha(M)=0.00198 \ 3$ $\alpha(N)=0.000465 \ 7; \ \alpha(O)=6.46\times10^{-5} \ 10; $ $\alpha(P)=2.24\times10^{-6} \ 4$ $B(E2)(W.u.)=103 \ +21-17$
620.2	(2+)	409.5 7	100	$210.7 \ 2^+$				
816.0	(2^{+})	605.2 4 816.0 4	100 7 60 7	$ \begin{array}{ccccccccccccccccccccccccccccccccc$				
1072.8	$(2^+, 3, 4^+)$	485 1	17 5	587.1 4+				γ from ¹⁶⁴ Ta decay only.
1005.0	(+	862.0 [‡] 5	100 5	$210.7 \ 2^{+}$	50		0.0105	
1085.0	6'	498.2 3	100	587.1 4'	E2		0.0195	$\alpha(\mathbf{K})=0.01514\ 22;\ \alpha(\mathbf{L})=0.00338\ 5;\ \alpha(\mathbf{M})=0.000792\ 12$ $\alpha(\mathbf{N})=0.000186\ 3;\ \alpha(\mathbf{O})=2.66\times10^{-5}\ 4;$ $\alpha(\mathbf{P})=1.158\times10^{-6}\ 17$ $\mathbf{B}(\mathbf{F}2)(\mathbf{W}\mathbf{u})=170\ \pm 42-96$
1237.6 1352.6	(2+,3,4+)	650.5 <i>10</i> 765 <i>1</i> 1142.0 <i>5</i>	100 27 7 100 6	587.1 4 ⁺ 587.1 4 ⁺ 210.7 2 ⁺				D(L2)(W.u.)=170 142 90
1458.0		642 <i>I</i>	100	$816.0 (2^+)$				
1480.2	(5 ⁻)	933.6 3	100	587.1 4 ⁺	D			
1614.5	(4 ⁻)	541.5 [‡] 5	100	1072.8 (2+,3,4+)				
1668.7	8+	583.7 3	100	1085.0 6+	E2		0.01325	$\alpha(K)=0.01049 \ 15; \ \alpha(L)=0.00213 \ 3; \ \alpha(M)=0.000494 \ 7$ $\alpha(N)=0.0001165 \ 17; \ \alpha(O)=1.687\times10^{-5} \ 24;$ $\alpha(P)=8.11\times10^{-7} \ 12$ B(E2)(W.u.)>110 E _v : unresolved from 584.2.
1675.7		1465.0 8	100	210.7 2+				
1836.1	(7)-	315.4 <i>3</i> 750 9 3	9.5 <i>19</i> 100 <i>10</i>	$1520.8 (5^{-})$ $1085.0 6^{+}$	E1		3	
1946.9	(6 ⁻)	332.3 <i>3</i> 425.7 <i>3</i> 862 8 <i>4</i>	75 8 100 10	$\begin{array}{c} 1603.6 & 0 \\ 1614.5 & (4^{-}) \\ 1520.8 & (5^{-}) \\ 1085.0 & 6^{+} \end{array}$	(Q) (M1+E2)	+0.41 +19-14	5	
2244.8	(9)-	408.7 3	100.0 20	1836.1 (7) ⁻	E2		0.0328	α (K)=0.0245 4; α (L)=0.00632 9; α (M)=0.001496 22 α (N)=0.000351 5; α (O)=4.92×10 ⁻⁵ 7; α (P)=1.84×10 ⁻⁶
2301.7	(8)-	576.1 <i>3</i> 355.0 <i>3</i> 465.5 <i>3</i>	91.8 25 61 6 74 5	1668.7 8 ⁺ 1946.9 (6 ⁻) 1836.1 (7) ⁻	E1 Q M1+E2	+0.6 +5-2	0.049 <i>10</i>	J I_{γ} : from (²⁰ Ne,4n γ). I_{γ} =95 9 in (⁴⁸ Ti,4n γ). α (K)=0.040 9; α (L)=0.0065 9; α (M)=0.00147 19 α (N)=0.00035 5; α (O)=5.3 \times 10 ⁻⁵ 8; α (D)=3.2 \times 10 ⁻⁶ 8
		632.8 5	100 9	1668.7 8+	E1			$a_{(17)} = 0.000555, a_{(07)} = 5.5 \times 10^{-6}, a_{(17)} = 5.5 \times 10^{-6} 8$

4

From ENSDF

 $^{164}_{72}\mathrm{Hf}_{92}\text{--}4$

L

 $^{164}_{72}\mathrm{Hf}_{92}\text{--}4$

$\gamma(^{164}\text{Hf})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α &	Comments
2304.0	10^{+}	635.3 <i>3</i>	100	1668.7 8+	E2		0.01086	
2575.7	(10 ⁻)	273.9 3	97 2	$2301.7 (8)^{-}$	(E2)			
2608.2	$(11)^{-}$	331.0 3	100 3	2244.8 (9) $2304.0 10^{+}$	(M1+E2) (E1)	+0.33 8		$P(E_1)(W_{11}) = 1.6 \times 10^{-4} + 7.6$
2098.5	(11)	394.4 3 453 5 3	100.3	$2304.0 \ 10$ $2244.8 \ (9)^{-1}$	(E1) E2		0 0248	$\alpha(K) = 0.0190 \ 3^{\circ} \alpha(L) = 0.00452 \ 7^{\circ} \alpha(M) = 0.001064 \ 15$
		155.5 5	100.5	2211.0 ())	112		0.0210	$\alpha(\mathbf{N})=0.000250 \ 4; \ \alpha(\mathbf{O})=3.54\times10^{-5} \ 5; \ \alpha(\mathbf{P})=1.439\times10^{-6} \ 21$
								B(E2)(W.u.)=157 +78-55
2870.9	12^{+}	566.9 <i>3</i>	100	$2304.0 \ 10^+$	E2		0.01421	$\alpha(K)=0.01121 \ 16; \ \alpha(L)=0.00231 \ 4; \ \alpha(M)=0.000538 \ 8$
								$\alpha(N)=0.0001267 \ 18; \ \alpha(O)=1.83\times10^{-5} \ 3; \ \alpha(P)=8.65\times10^{-7} \ 13$
2961.3	(12^{-})	263.0.3	7.4.15	2698.3 (11)-	(M1+E2)	+0.30 19		D(E2)(W.U.)=34 +11-9
270110	(12)	385.6 3	100 10	$2575.7 (10^{-})$	(E2)	10120 12		
2994.5	(12^{+})	690.5 10	100	2304.0 10+	(Q)			
3155.5	$(13)^{-}$	457.2 <i>3</i>	100	2698.3 (11)-	E2		0.0243	$\alpha(K)=0.0186 \ 3; \ \alpha(L)=0.00440 \ 7; \ \alpha(M)=0.001037 \ 15$
								α (N)=0.000244 4; α (O)=3.45×10 ⁻⁵ 5; α (P)=1.412×10 ⁻⁶ 20
	+							B(E2)(W.u.) = 126 + 41 - 28
3209.7	14'	215.2 3	1.5 3	2994.5 (12)	[E2]		0.225	B(E2)(W.u.)=19.2
								$\alpha(\mathbf{N}) = 0.1303 \ 20; \ \alpha(\mathbf{L}) = 0.0079 \ 11; \ \alpha(\mathbf{M}) = 0.0100 \ 3$
		338.8.3	100 5	2870.9 12+	E2		0.0554	$\alpha(K) = 0.003876; \alpha(C) = 0.0003118; \alpha(F) = 9.10\times10^{-14}$ $\alpha(K) = 0.03976; \alpha(L) = 0.0120018; \alpha(M) = 0.002875$
		550.0 5	100.5	2070.9 12	22		0.000	$\alpha(\mathbf{R}) = 0.000672, 10; \alpha(\mathbf{\Omega}) = 9.25 \times 10^{-5}, 14; \alpha(\mathbf{P}) = 2.90 \times 10^{-6}, 5$
								B(E2)(W.u.)=150 + 13 - 10
3301.3	(13 ⁻)	603		2698.3 (11)-				
3493.4	(14 ⁻)	532.1 3	100	2961.3 (12 ⁻)	Q			
3617.8	(14^+)	623.3 3	100	$2994.5 (12^+)$	(Q)		0.0220	E_{γ} : unresolved from 622.8.
3677.8	10	468.1 3	100	3209.7 14	E2		0.0229	$\alpha(\mathbf{K}) = 0.0175725; \alpha(\mathbf{L}) = 0.004096; \alpha(\mathbf{M}) = 0.00096274$
								$\alpha(N)=0.0002204; \alpha(O)=5.21\times10^{-5} J; \alpha(P)=1.550\times10^{-5} I9$ B(F2)(Wu)=159 ±50-41
3700.4	(15^{-})	544.9.3	100	$3155.5 (13)^{-1}$	0			D(L2)(m.u.) = 157 + 50 + 1
3944.3	(15^{-})	643		3301.3 (13 ⁻)	×			
4128.8	(16 ⁻)	635.4 <i>3</i>	100	3493.4 (14-)	Q			E_{γ} : from (⁴⁸ Ti,4n γ). 636.7 γ placed from 4131 level in (²⁰ Ne,4n γ).
4262.0	18^{+}	584.2 <i>3</i>	100	3677.8 16+	E2		0.01322	α (K)=0.01047 15; α (L)=0.00212 3; α (M)=0.000493 7
								α (N)=0.0001162 17; α (O)=1.683×10 ⁻⁵ 24; α (P)=8.09×10 ⁻⁷ 12
								B(E2)(W.u.)=73+67-26
1335 2	(17^{-})	63183	100	$3700 4 (15^{-})$	0			E_{γ} : unresolved from 583./.
4614 2	(17) (17^{-})	670	100	$39443(15^{-})$	V			
4765.9	(17)	637.1.3	100	4128.8 (16 ⁻)	0			E_{α} ; from (⁴⁸ Ti.4ny), 635.5y placed from 4767 level in (²⁰ Ne.4ny)
4938.6	20+	676.6 3	100	4262.0 18+	Ĕ2		0.00941	Σ_{j} . Item (Σ_{j} , Σ_{j}), Σ_{j} , Σ_{j} below from (Σ_{j} , Σ_{j}).
5009.3	(19 ⁻)	674.0 <i>3</i>	100	4335.2 (17 ⁻)	Q			
5259.2	(19 ⁻)	645		4614.2 (17-)				
5250 5	(20-)	924	100	4335.2 (17 ⁻)	0			
5358.7	(20^{-})	592.8 <i>3</i>	100	4765.9 (18-)	Q			

S

From ENSDF

 $^{164}_{72}\mathrm{Hf}_{92}\mathrm{-5}$

$\gamma(^{164}\text{Hf})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	α &	Comments
5669.0	(21^{-})	659.7.3	100	5009.3	(19^{-})	(\mathbf{O})		
5698.6	22+	760.0 3	100	4938.6	20+	E2	0.00727	
5894.0	(21^{-})	635		5259.2	(19 ⁻)			
		885		5009.3	(19-)			
5981.5	(22^{-})	622.8 <i>3</i>	100	5358.7	(20^{-})	Q		E_{ν} : unresolved from 623.3.
6335.0	(23^{-})	665.9 <i>3</i>	100	5669.0	(21^{-})	Q		
6544.1	24+	845.5 <i>3</i>	100	5698.6	22+	Q		
6601.7	(23^{-})	708		5894.0	(21^{-})			
		933		5669.0	(21^{-})			
6672.7	(24 ⁻)	691.2 <i>3</i>	100	5981.5	(22^{-})	Q		
7061.5	(25^{-})	726.5 3	100	6335.0	(23 ⁻)	Q		
7350.0	(25^{-})	749		6601.7	(23 ⁻)			
7442.8	(26 ⁻)	770.1 <i>3</i>	100	6672.7	(24 ⁻)	(Q)		
7457.7	26^{+}	913.6 <i>3</i>	100	6544.1	24^{+}	Q		
7872.9	(27^{-})	811.3 <i>3</i>	100	7061.5	(25 ⁻)	Q		
8166.4	(27-)	817		7350.0	(25 ⁻)			
8291.7	(28^{-})	848.9 <i>3</i>	100	7442.8	(26 ⁻)	(Q)		
8435.8	28^{+}	978.1 <i>3</i>	100	7457.7	26^{+}	(Q)		
8763.9	(29 ⁻)	891.0 <i>3</i>	100	7872.9	(27^{-})	Q		
8989.7	(29 ⁻)	824	100	8166.4	(27^{-})			
9084.4	(29 ⁻)	918		8166.4	(27^{-})			
9215.2	(30 ⁻)	923.5 <i>3</i>	100	8291.7	(28 ⁻)	(Q)		
9418.4	30^{+}	982.6 10	100	8435.8	28^{+}			
9726.0	(31 ⁻)	962.0 <i>3</i>	100	8763.9	(29 ⁻)	(Q)		
9770.1	(31-)	781		8989.7	(29 ⁻)			
10100.0		1006	100	8763.9	(29 ⁻)	(0)		
10190.0	(32^{-})	9/4.7 3	100	9215.2	(30^{-})	(Q)		
10228.1	(32^{-})	1013		9215.2	(30^{-})			
10411.4	32+	993		9418.4	30+			
10598.5	(33)	829	100	9770.1	(31)			
10754.0	(22-)	872	100	9726.0	(31)			
10/54.0	(33)	1028		9726.0	(31)			
110/4.1	(34)	846		10228.1	(32)			
11057 5	(24-)	884	100	10190.0	(32)			
11237.3	(34)	1029.5 10	100	10228.1	(32)			
11428.4	(25^{-})	1017		10411.4	32^{-}			
11494.3	(33)	890 1020		10398.3	(33)			
11/04.0	(33)	032	100	10734.0	(33)			
12000.1	(30^{-})	952 1040	100	110/4.1	(34^{-})			
12300.5	(30)	056		11237.3	(34)			
12430.3	36+	1054		11494.3	34+			
12402.4	(37^{-})	1004		1178/10	(35 ⁻)			
12/0/.0	(37)	1005		11/04.0	(35)			

6

 $^{164}_{72}\mathrm{Hf}_{92}\text{--}6$

 $^{164}_{72}\mathrm{Hf}_{92}\text{--}6$

γ (¹⁶⁴Hf) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
12992.1	(38 ⁻)	986	12006.1	(36 ⁻)	14540.5	(41 ⁻)	1073	13467.5	(39 ⁻)	16830	(45 ⁻)	1165	15665	(43 ⁻)
13390.5	(38-)	1084	12306.5	(36 ⁻)	14851.0	(41^{-})	1049	13802.0	(39-)	17413	(46 ⁻)	1181	16232	(44-)
13467.5	(39 ⁻)	1017	12450.5	(37 ⁻)	15106.1	(42^{-})	1079	14027.1	(40^{-})	18643	(48^{-})	1230	17413	(46 ⁻)
13802.0	(39-)	1015	12787.0	(37-)	15665	(43 ⁻)	1124	14540.5	(41^{-})					
14027.1	(40 ⁻)	1035	12992.1	(38 ⁻)	16232	(44 ⁻)	1126	15106.1	(42 ⁻)					

[†] From weighted averages of data from ¹²⁰Sn(⁴⁸Ti,4n γ) and ¹⁴⁸Sm(²⁰Ne,4n γ), when a level is populated in multiple datasets. Exceptions are noted. [‡] Weighted average includes data from ¹⁶⁴Ta ε decay. [#] From $\gamma(\theta)$, $\gamma\gamma(\theta)$ (DCO) and/or $\gamma($ lin pol) in ¹²⁰Sn(⁴⁸Ti,4n γ); $\gamma\gamma(\theta)$ (DCO) in ¹⁴⁸Sm(²⁰Ne,4n γ); and RUL when level half-life is known. The in-band transitions listed with mult=Q are most likely E2. ^(a) From $\gamma\gamma(\theta)$ (DCO) in ¹⁴⁸Sm(²⁰Ne,4n γ).

[&] Additional information 2.

From ENSDF

Level Scheme

Intensities: Relative photon branching from each level

 $^{164}_{72}{
m Hf}_{92}$

8

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁶⁴₇₂Hf₉₂

 $^{164}_{72}{
m Hf}_{92}$

 $^{164}_{72}{\rm Hf}_{92}$