168 W α decay (50.9 s)

Type Author

Type Author Citation Literature Cutoff Date

Full Evaluation Balraj Singh and Jun Chen[#] NDS 147, 1 (2018) 30-Nov-2017

Parent: 168 W: E=0.0; J^{π} =0+; $T_{1/2}$ =50.9 s 19; $Q(\alpha)$ =4500 11; % α decay=0.0032 10

¹⁶⁸W-T_{1/2}: From ¹⁶⁸W Adopted Levels (2010Ba27).

 168 W-Q(α): From 2017Wa10.

¹⁶⁸W-%α decay: %α=3.2×10⁻³ 10 (from ¹⁶⁸W Adopted Levels, 2010Ba27). Other: 2.7×10^{-3} 5 or 3.6×10^{-3} 6 was derived by 1991Me05 from their measured value of I γ (178.5 γ from ε decay)/I α =4.1×10⁻⁵ 6, depending on whether the 178.5 γ is E2 or E1, respectively. Ti(178.5 γ) was taken by 1991Me05 to represent >90% of ε decays.

¹⁶⁴Hf Levels

 $\frac{\text{E(level)}}{0.0} \quad \frac{\text{J}^{\pi}}{0^{+}}$

 α radiations

 $\frac{\text{E}\alpha}{4399 \ 12} \quad \frac{\text{E(level)}}{0.0} \quad \frac{\text{I}\alpha^{\ddagger}}{97.7 \ 23} \quad \frac{\text{HF}^{\dagger}}{1.0}$

Comments $E\alpha$: measured by 1991Me05.

I α : only one α group was observed. An upper limit of 4.6% of α decay is calculated for an unobserved 4193-keV α to the 2⁺ state at 211.05 keV in ¹⁶⁴Hf by requiring Hf(4193 α)>1. I α (4399 α)=97.7 23 per 100 α decays is used in computing the r₀ parameter.

 $^{^{\}dagger}$ r₀(164 Hf)=1.56 4 is deduced from Hf(4399 α)=1.0.

^{\ddagger} For absolute intensity per 100 decays, multiply by 3.2×10^{-5} 10.