Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh and Jun Chen [#]	NDS 147, 1 (2018)	30-Nov-2017		

 $Q(\beta^{-})=6390\ 50;\ S(n)=4970\ SY;\ S(p)=9950\ SY;\ Q(\alpha)=-2800\ SY$ 2017Wa10 Estimated uncertainties (syst,2017Wa10): $\Delta S(n)=130,\ \Delta S(p)=320,\ \Delta Q(\alpha)=230.$ $S(2n)=10820\ 120,\ S(2p)=21590\ 320,\ Q(\beta^{-}n)=-140\ 110\ (syst,2017Wa10).$

2008Os02: ¹⁶⁴Eu identified in U(p,X) at E(p)=24 MeV on target of natural uranium in the form of uranium carbide. The fission fragments mass separated as metallic ions and implanted on to a tape transport system. Measured β , $\beta\gamma$ coin, $\gamma\gamma$ coin, $T_{1/2}$. The ¹⁶⁴Eu isotope was identified by observing K-x rays of Gd, and five γ rays from its decay, including the 73.3 and 168.8 keV γ rays, which are close in energy to those observed by 2004Jo17 and assigned as 2⁺ to 0⁺ and 4⁺ to 2⁺ transitions in ¹⁶⁴Gd, respectively.

Additional information 1.

2007Ha57 (same group as 2008Os02): source prepared by 238 U(p,F) at E(p)=32 MeV at JAEA facility. Fission products were ionized and separated online using Tokai-ISOL mass separator. Measured Q(β^-) using total absorption gamma-ray spectrometer of BGO detector. Deduced mass excess=-53320 410 (2007Ha57), value includes systematic predictions in mass evaluations.

2014Ha38, 2010Ha38: measured $Q(\beta^{-})$ using total absorption spectrometer of clover Ge detector and 4π BGO detectors serving as Compton suppressors at JAEA facility. Measured $Q(\beta^{-})=6393$ keV 50.

- 2017Wu04: ¹⁶⁴Eu nuclide was produced at the RIBF-RIKEN facility using the ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon. Two experiments, optimized for the transmission of ¹⁵⁸Nd and ¹⁷⁰Dy ions, were carried out with average beam intensities of 7 pnA and 12 pnA, respectively. The identification of the nuclide of interest was made in the BigRIPS separator by determining the atomic number and the mass-to-charge ratio of the ion using the TOF-B ρ - Δ E method. The reaction products were transported through the ZeroDegree spectrometer and implanted into the beta-counting system WAS3ABi that was surrounded by the EURICA array comprising of 84 HPGe detectors. The typical implantation rate was ≈100 ions/s. Measured (implanted ions)(β ⁻)t, (implanted ions)(β -) γ -t, (implanted ions) γ -t correlations, and half-life of the decay of ¹⁶⁴Eu.
- 2017Pa25: ¹⁶⁴Eu isomer populated in ⁹Be(²³⁸U,F), E=345 MeV/nucleon reaction at RIBF, RIKEN facility using the BigRIPS and ZeroDegree spectrometers for separation and identification of in-flight fission fragments. Delayed gamma rays were detected using EURICA (Euroball-RIKEN Cluster) array, consisting of 84 HPGe crystal. Measured E γ , delayed γ spectra. Deduced evidence for a micro-second isomer in ¹⁶⁴Eu from the observation of delayed γ rays of 53.7, 89.5, 120.4 and 214 keV from the excited states of ¹⁶⁴Eu, but neither an exact half-life nor the decay scheme could be obtained.

¹⁶⁴ Eu	Levels
-------------------	--------

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
0	(3)	4.15 s 20	$%\beta^{-}=100$ E(level): the observed ¹⁶⁴ Eu fragments are assumed to correspond to the g.s. J ^π : configuration= $\pi 5/2[413]$ or $\pi 5/2[532] \otimes v1/2[521]$ on the basis of systematics of proton orbital in ¹⁵⁹ Eu and neutron orbital in ¹⁶⁷ Dy, Gallagher-Moszkowski coupling rules, and possible β feeding of the (4 ⁺) level in ¹⁶⁴ Gd. Theoretical calculations by 1997Mo25 imply 1 ⁺ to 6 ⁺ from $\Omega = 5/2^+$ proton orbital and $\Omega = 7/2^+$ neutron orbital. 2017Au03 give 0 ⁻ from systematics. T _{1/2} : from weighted average of 3.80 s 56 (2017Wu04, from a fit to the (implanted ions) β^- -t decay curve using the least-squares and maximum-likelihood methods, including contributions from the parent, daughter and grand-daughter decays, and a constant background); and 4.2 s 2 (2008Os02, γ
0+x			 decay curves, weighted average of four values from decay curves for 73.3γ and 168.8γ). T_{1/2}: in the micro-second domain, based on observation of delayed γ rays up to 2 μs following the implantation of ¹⁶⁴Eu fragments (2017Pa25). Following γ rays depopulate the isomer according to γ-spectrum shown in Fig. 16 of 2017Pa25: 53.7, 89.5, 120.4 and 214 keV.