¹⁶⁴Ho β⁻ decay (28.8 min) 1973KaZW,1966Jo07,1954Br96

	History							
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh and Jun Chen [#]	NDS 147, 1 (2018)	30-Nov-2017					

Parent: ¹⁶⁴Ho: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=28.8 \text{ min } 5$; $Q(\beta^-)=961.4 \ 14$; $\%\beta^-$ decay=40 5

¹⁶⁴Ho-J^{π},T_{1/2}: From ¹⁶⁴Ho Adopted Levels.

¹⁶⁴Ho-Q(β^{-}): from 2017Wa10.

¹⁶⁴Ho-% β^- decay: % β^+ % ε =60 5, % β^- =40 5, from I(K x ray) and I γ of 1973KaZW, I(ce) of 1966Jo07, and α values (for 73 γ and 91 γ); see earlier evaluation by 1974Bu30 for details.

T_{1/2}: 1972Ka19, 1972Dr04, 1966Jo07. Others: 1966Se07, 1961We02, 1954Ha19, 1954Br96, 1950Wi13, 1950Wa12, 1938Po05. γ, K-x ray: 1973KaZW, 1972Dr04, 1968Da23, 1966Jo07. Others: 1972Ka19, 1971Pa02, 1966Se07, 1957Mi67, 1954Br96. β^- , β^+ , $\beta\gamma$ coin: 1966Se07, 1954Br96. Others: 1966Jo07, 1950Wi13.

 $I(\beta^+)/I(\beta^-) < 5 \times 10^{-4} (1954Br96).$

 $\beta\gamma$ (t): 1968Se02, 1963Fo02, 1954Br96.

γγ: 1973KaZW, 1966Se07, 1954Br96.

ce: 1966Jo07, 1957Mi67, 1954Br96. I(ε) (73 level in ¹⁶⁴Dy)/I(β^-) to 91 level=1.49 *11* (calculated by 1974Bu30 from data of 1973KaZW).

X-ray and γ -ray intensities:

 $I(K\alpha_1 \text{ x ray, Ho})=1000 (1973KaZW), 655 (1972Dr04).$

I(K*α*₁ x ray, Dy)=1280 25 (1973KaZW), 1356 (1972Dr04).

 $I(K\alpha_1 \text{ x ray, Er})=76.2 (1973KaZW), 76 (1972Dr04).$

I(73γ in ¹⁶⁴Dy)=91 6 (1973KaZW), 81 (1972Dr04).

 $I(91\gamma \text{ in } {}^{164}\text{Er})=127 8, 103 (1972Dr04).$

¹⁶⁴Er Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}		
91.39 <i>3</i>	2+	1.47 ns 5	$T_{1/2}$: $\beta\gamma$ (t). Weighted average of 1.4 ns 5 (1954Br96), 1.43 ns 5 (1963Fo02), 1.52 ns 6 (1968Se02). Other: 1963De21.

[†] From $E\gamma$ data.

[‡] From Adopted Levels.

β^{-} radiations

The decay scheme is complete from total energy absorbed=384 keV 38 (from RADLST code) as compared to $Q(\beta^-) \times \% \beta^-$ branching ratio=384 keV 48.

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(870.0 14)	91.39	12 2	5.7 1	av $E\beta$ =286.13 54 E(decay): 875 20 (1966Se07),≈900 (1954Br96). $I\beta^{-}$: 60 20 (1966Se07).
(961.4 14)	0.0	28 5	5.5 1	av $E\beta$ =321.65 55 E(decay): 965 20 (1966Se07), 990 30 (1954Br96). $I\beta^-$: 100 (1966Se07).

[†] From $\%\beta^-=40.5$ and $I(\beta^-)$ (to 91 level)/ $I(\beta^-)=0.31$ from $I(ce)(91\gamma)/I(\beta^-)=25.1$ (1966Jo07) and $\alpha(91\gamma)=4.2$.

[‡] Absolute intensity per 100 decays.

¹⁶⁴Ho $β^-$ decay (28.8 min) 1973KaZW,1966Jo07,1954Br96 (continued)

 $\gamma(^{164}\text{Er})$

I γ normalization: I(β^-) to 91 level is deduced as 31% of total β^- decay from I(ce)(91 γ)/I(β^-)=25.1 (1966Jo07) and α (91 γ)=4.15.

$$\frac{E_{\gamma}}{91.39 \ 3} \quad \frac{I_{\gamma}^{\dagger}}{100} \quad \frac{E_i(\text{level})}{91.39} \quad \frac{J_i^{\pi}}{2^+} \quad \frac{E_f}{0.0} \quad \frac{J_f^{\pi}}{0^+} \quad \frac{K_f}{E2} \quad \frac{\alpha^{\ddagger}}{4.15} \quad \frac{\alpha^{\ddagger}}{\alpha(\text{K})=1.314 \ 19; \ \alpha(\text{L})=2.17 \ 3; \ \alpha(\text{M})=0.528 \ 8}{\alpha(\text{N})=0.01397 \ 20; \ \alpha(\text{P})=5.51\times10^{-5} \ 8} \\ E_{\gamma}: \text{ from Adopted Gammas.} \\ \alpha(\text{K})\text{exp}=1.31 \ 11 \ (1968\text{Bo}37), \ \alpha(\text{K})\text{exp}=1.25 \ 9 \ (1973\text{KaZW}). \\ \text{Measured I(ceK)}=87, \ I(ceL)=104, \ I(ceM)=45 \ (1966\text{Jo07}); \text{ these are intensities}/1000 \ \beta^- \text{ decays.} \\ \beta^- \text{ decays. Note that 1966\text{Jo07} deduce 26\% \\ \text{from the same data, which seems incorrect.} \end{cases}$$

 † For absolute intensity per 100 decays, multiply by 0.023 3.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁶⁴Ho $β^-$ decay (28.8 min) 1973KaZW,1966Jo07,1954Br96

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

