			History			
	Туре	Author		Citation	Literature	e Cutoff Date
	Full Evaluation	Balraj Singh and Ju	n Chen [#] NDS	147, 1 (2018)	30-N	Jov-2017
Q(β ⁻)=-4039 24; S(n)= S(2n)=15751.0 3, S(2p) Other reactions: ¹⁶⁴ Er double electron ca ¹⁵⁹ Tb(⁷ Li,X): 2011Pr06 ¹²⁴ Sn(⁴⁰ Ar,xn): 2004Na strength function. ¹⁶² Dy(⁵⁸ Ni, ⁵⁶ Fe): 19961 ¹⁶⁴ Dy(n,n) E=low: 1997 ¹⁶⁴ Dy(γ , γ): Mossbauer: Hyperfine structure, isot 1986Ch07, 1985Net Mass measurements: 20 For theoretical nuclear s ENSDF dataset as d Additional information	58846 5; S(p)=685 =12339.35 <i>14</i> (201 apture: 2011EI08. I . Measured E γ , I γ 03. Measured E γ , I γ 03. Measured tr 7Kn01. 1968Mu01, 1967N ope shifts, and rms 99, 1985Be34, 196 11EI08, 1972Ba08 structure calculation ocument records. 1.	3.32 13; $Q(\alpha)=1304$. 17Wa10). Measured $Q(\beta^-)$ valu . Deduced ratios of c $I\gamma$, (recoil) γ -coin. De ansfer probability. Mu11. Measured g fa s radius for ground st 7Ca21, 1965Vo02. , 1963De30. ns, consult NSR data	92 <i>17</i> 2017Wa e using a Pennin, ross sections from educed GDR para ctor. ate: 2000As04, 1 base, for about 30	a10 g-trap. n different react ameters, angular 1993Kr22, 1990 00 references. <i>A</i>	tion channe r momentu Ji07, 1987 About 90 o	els. m dependence of Ok03, 1987Ah03, f these are listed in the
			¹⁶⁴ Er Levels			
Nomenclature for qua: A: $v5/2[642], \alpha = +1/2$. B: $v5/2[642], \alpha = -1/2$. E: $v5/2[523], \alpha = +1/2$. F: $v5/2[523], \alpha = -1/2$.	siparticle labels:					
		Cross	Reference (XREI	F) Flags		
A E C I		ay (28.8 min) E y (1.95 min) F y (5.1 min) G γ) H	160 Gd(9 Be,5n γ 160 Gd(9 Be,5n γ 162 Dy(α ,2n γ) 164 Er(γ , γ')):E=59 MeV):E=57 MeV	I ¹⁶⁴ E J ¹⁶⁴ E K Coul L ¹⁶⁶ E	$r(n,n'\gamma)$ r(d,d') lomb excitation r(p,t)

E(level) [†]	J ^{π‡}	T _{1/2}	XREF	Comments
0.0@	0+	stable	ABCDEFGHI JKL	The rms charge radius $(\langle r^2 \rangle)^{1/2}$: 5.2389 fm 35 (2013An02 evaluation). See also 2009An12 for trends in nuclear radii.
91.380 [@] 22	2+	1.569 ns <i>34</i>	ABCDEFGHI JKL	μ =0.697 <i>15</i> (1968Mu01,2014StZZ) Q<0 (1981Hu02,2016St14) B(E2) \uparrow =5.48 <i>4</i> (1977Ro27) μ : Mossbauer effect (1968Mu01). Other: 0.686 <i>16</i> (transient-field integral

PAC method,1996Br09).

- Q: reorientation method (1981Hu02).
- J^{π} : E2 γ to 0⁺.
- T_{1/2}: from 2016Pr01 evaluation, based on γγ(t) and βγ(t) in ¹⁶⁴Ho decay, (ce)γ(t) in ¹⁶⁴Tm decay, and B(E2) in Coulomb excitation. Measured values are: B(E2)=5.48 4 (1977Ro27), 5.04 35 (1960El07); mean lifetimes τ=2.140 ns 120 (1970Mo39), 2.190 ns 90 (1968Se02), 2.060 ns 70 (1963Fo02), 2.499 ns 46 (1963De21), 2.020 ns 720 (1954Br96).

¹⁶⁴Er Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments			
				μ: Mossbauer effect.			
299.43 [@] 3	4+	86 ps 9	BCDEFG IJKL	μ=+1.46 <i>15</i> (1997A125,2014StZZ) B(E4)↑=0.014 +43-14 (1977Ro27) μ: IPAC method (1997A125). Other: +1.36 8 from transient-field method (1996Br09). J ^π : stretched E2 γ to 2 ⁺ .			
614.39 [@] 5	6+		CDEFG IJKL	μ =+1.884 90 (1996Br09,2014StZZ) μ : transient-field integral PAC method. J ^{π} : stretched E2 γ to 4 ⁺ ; band member.			
860.25 ^{&} 3	2+	1.9 ps 2	B D G IJKL	$\mu =+0.808 \ 60 \ (1996Br09, 2014StZZ)$ $Q=2.4 \ 3 \ (1983Hu01, 2016St14)$ $B(E2)\uparrow=0.148 \ 6 \ (1982Ro07)$ $\mu: \text{ transient-field integral PAC method.}$ $Q: \text{ reorientation method In Coulomb excitation (1983Hu01).}$ $J^{\pi}: E2 \ \gamma \text{ to } 0^{+}.$ $T_{1/2}: \text{ from B(E2) (1982Ro07).}$			
946.34 <mark>&</mark> 5	3+		BCD FG I	J^{π} : E2+M1 γ s to 2 ⁺ and 4 ⁺ .			
1024.62 [@] 7	8+	2.59 ps 14	CDEFG I K	μ =+2.72 <i>13</i> (1996Br09,2014StZZ) μ : transient-field integral PAC method. J ^{π} : stretched E2 γ to 6 ⁺ . T _{1/2} : Doppler-broadened line shape in Coulomb excitation.			
1058.49 <mark>&</mark> 8	4+		BCD G IJK	J^{π} : $\Delta J=(0)$, E2(+M1) γ to 4 ⁺ ; E2 γ to 2 ⁺ ; band member.			
1197.48 ^{&} 6	5+		CDEFG I	J^{π} : E2+M1 gammas to 4 ⁺ and 6 ⁺ .			
1246.06 ^{<i>a</i>} 5	0^{+}		B I L	XREF: L(1248). J^{π} : E0 transition to 0 ⁺ .			
1314.56 ^a 4	2+		B G I JKL	XREF: L(1308). J^{π} : E2 γ to 0 ⁺ .			
1358.73 ^{&} 12	6+		CDE G I K	J ^{π} : Δ J=2, E2 γ s to 4 ⁺ ; E2+M1 γ to 6 ⁺ .			
1386.74 ^j 4	1-		B HIJ	J^{π} : E1 γ to 0^+ .			
1416.57 5	0^{+}		B I L	J^{π} : E0 transition to 0^+ .			
1433.98 ^J 5	3-		в іјк	B(E3) \uparrow =0.15 3 (1982Ro07) J ^{π} : E1 γ s to 2 ⁺ and 4 ⁺ .			
1469.72 ^{<i>a</i>} 25	4 ⁺		B G I J	J^{π} : E0 admixture in γ to 4 ⁺ .			
1483.69 4	21		B LJK B C T	J [*] : E2 γ to U ⁺ .			
1507 62 10			G	3,4 ⁺ .			
1518.08 [@] 11	10+	1.01 ps 5	DEFG K	μ =+3.18 34 (1996Br09,2014StZZ) μ : transient-field integral PAC method. T _{1/2} : from Doppler-broadened line shape and Coul. ex. (1977Ke06,1980Ya03).			
1545.10 ^{&} 9	7+		CDE G	J^{π} : E2+M1 γ s to 6 ⁺ and 8 ⁺ .			
1555.3 <i>j</i> 3	(5)-		GΙ	J^{π} : E1 γ to 6 ⁺ ; γ to 4 ⁺ ; band member.			
1568.67 14	(3-)		в іјк	B(E3) $\uparrow=0.091$ 34 (1982R007) J ^{π} : γ s to 2 ⁺ and 4 ⁺ ; probable E3 excitation in (d,d').			
1577.79 5	1-		B I L	J^{π} : E1 γ to 2 ⁺ ; γ to 0 ⁺ .			
1610.26 <i>17</i>	(4 ⁻ ,5 ⁻)		CG	J^{*} : γ s to 3^{+} and 4^{+} ; (E1) γ from (5 ⁺), 1683 level.			
1640.2.5			Т	J^{π} : γ to 4^+ .			
1664.21 [°] 7	5-	<0.08 ns	CDEFG I	$T_{1/2}$: $\gamma\gamma(t)$ (1973Ch28) in ¹⁶⁴ Tm ε decay (5.1 min).			
1683.40 9	(5 ⁺)		С	J^{π} : E1 γ to 6 ⁺ ; γ to 4 ⁺ . Configuration= $\nu 5/2[523] \otimes \nu 5/2[642]$, $K^{\pi}=5^-$. J^{π} : γ s to 3 ⁺ and 5 ⁺ ; possible β feeding from 6 ⁻ parent state.			

Continued on next page (footnotes at end of table)

¹⁶⁴Er Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
1702.2 5			G 1	J^{π} : γ to 2 ⁺ , 4 ⁺ suggested in (α , 2n γ).
1702.20 4	0^{+}		B I 1	J^{π} : E0 transition to 0 ⁺ .
1706.7 ^{<i>a</i>} 5	$(6)^+$		GI 1	J^{π} : M1(+E2) γ to 6 ⁺ : γ to 4 ⁺ : band member.
1715 34 7	(2^{-})		B	I^{π} . E1 γ from $I=1^{(+)}$. γ to 3 ⁺
1726 12 10	(2)		G	
1741 6 3			т	
1711.05	(-	0.00		II , $E1 \dots f_2 f_2^+$, $E2 \dots f_2^-$, hand member
1/44.55 0	0	0.22 ns 3	CDEFG 1	J^{*} : El γ to J^{*} , E2 γ to J^{*} ; band member.
0_				$T_{1/2}$: from $\gamma\gamma(t)$ (19/3Ch28) in ¹⁰⁴ Tm ε decay.
1744.88 ^{&} 11	8+		DEG K	J^{π} : E2 γ to 6 ⁺ , γ to 8 ⁺ .
1763.8 ^j 4	$(7)^{-}$		C G	J^{π} : E1 γ to 6 ⁺ .
1765.86 4	0^{+}		B I	J^{π} : E0 transition to 0^+ .
1788.35 6	2+		B I	J ^{π} : E0 admixture in γ to 2 ⁺ .
1798.4 4	$(5)^{-}$		C G I J	J^{π} : $\Delta J=1$, E1 γ to 6^+ ; γ to 4^+ .
1806.5 10			G	J^{π} : γ to 4^+ .
1813.99 14	(6) ⁻		G	J^{π} : $\Delta J=1$, E1 γ to 5 ⁺ .
1833.41 4	2+		B I	J^{π} : E0 admixture in γ to 2 ⁺ .
1841.7? 4	(0^{+})		В	J^{π} : possible E0 transition to 0 ⁺ .
1845.54 ^C 7	7-		CDEFG I	J^{π} : E1 γ s to 8 ⁺ and 6 ⁺ .
1861.46? 19	$(0,1,2)^+$		В	J^{π} : E2 γ to 2 ⁺ . Possible β feeding from 1 ⁺ .
1875 26 7	1(+)#		R HT	I^{π} : (M1) γ between 2173 0 ⁺ and 1875 I=1 levels
10/3.207	2+		R T	I^{π} : F0 admixture in γ to 2^+
1020 5 10	2			J. Eo admixture in y to 2 . I^{π} : χ to 5 ⁺
1053 02 6	2+		R TI	I^{π} : F0 admixture in α to 2^{+}
1955.92.0	2		B IJ	\mathbf{J} . Lo admixture in \mathbf{y} to \mathbf{Z} .
1901.290	(0-)			
1964.34 ^{cc} 12	(8)		DEG	T^{π} (2 ⁺ 1 4 ⁺ 1 4 ⁺ 1 (2 ⁺) (1 10 1 ⁺ 6 2 ⁺
1969.6 0	(2',3',4')		ŢŢ	$J^{\prime\prime}$: gammas to 2 ⁺ and 4 ⁺ ; population in (d,d') disfavors 3 ⁺ .
1977.15 [°] 9	9+		DE G	J^{π} : $\Delta J=2$, E2 γ to 7 ⁺ ; band member.
1985.06 ^g 6	7-	23.0 ns 12	CDEFG	J ^{π} : M1 γ to 6 ⁻ ; E2+M1 γ to 7 ⁻ ; 6 ⁻ rejected by γ to 8 ⁺ and RUL;
				also $\log ft=5.0$ from 6 ⁻ parent.
				Configuration= $\pi 7/2[523] \otimes \pi 7/2[404]$.
				$T_{1/2}$: weighted average of 22.7 ns 17, 23.3 ns 16 in ¹⁶⁴ Tm ε decay
				(5.1 min) and 21.6 ns 15 in $(\alpha, 2n\gamma)$.
2002.6 4	$(2^+ \text{ to } 5^-)$		IJ	J^{π} : gammas to 4 ⁺ and 3 ⁻ .
2005.4 5	8+		G	J^{π} : E0 admixture in γ to 8^+ .
2018.0 10			G	J^{π} : γ to 6^+ .
2022.50 8			B I	
2025.77 6	(2^{+})		B I	J^{π} : gammas to 0^+ and 2^+ .
2032.1? 2			В	
2035.43 20	1#		B HIJ	
2046.4 20			G	
2054.6 ^j 10	$(9)^{-}$		G	J^{π} : E1 γ to 8 ⁺ .
$2068.9^{a}.6$	$(8)^+$		G	I^{π} : E2+M1 γ to 8 ⁺ γ to 6 ⁺
2069 38 15	$(1^{-}2^{-})$		R TI	I^{π} : M1 F2 γ to (2^{-}) ; γ s to 2^{+} and 3^{-} ; possible ε feeding from 1^{+}
2082.1.5	(1,2)		G	I^{π} , γ to 7^+
2002.10	12+	0.62 m 10	DEEC V	T from Doppler broadened line shape and Coul. av
2082.81 - 12	12	0.05 ps 10	DEFG K	$1_{1/2}$: from Doppler-broadened line shape and Coul. ex.
				(197/Kc00, 1960 1005).
and oci is				$J : \Delta J - 2, EZ \gamma \downarrow U \downarrow U .$
2091.00 11	(8 ⁻)		DE G	
2093.62? 12			G	J [*] : M1+E2 γ to 8 ⁺ suggests 9 ⁺ ,8 ⁺ ,7 ⁺ , but the placement of the γ
2 4 0 0 7 5 6 1 1	0-			ray is uncertain.
2108.57° 11	9-		DE G	J': E1 γ to 8^+ .
2141.4 20			G	
2151.4 10			G	

Continued on next page (footnotes at end of table)

¹⁶⁴Er Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comments
2163.67 ^h 8	(8 ⁻)		CDEFG		
2168.1 3			В		
2173.04 5	0^{+}		B I		J^{π} : E0 transition to 0 ⁺ .
2184.31 ^{&} 12	10^{+}		DE G	K	J^{π} : M1+E2 γ to (10) ⁺ , E2 γ to 8 ⁺ .
2240.2? 6			G		
2254.24 9	(10-)		R I		
2261.274 13	(10)		DEG		π , E0 admixture in α to 2^+
2278.38 0	2		G	1	J = EO admixture in y to 2 = . XREF (2288)
2337	(3^{-})			, j	J^{π} : probable E3 excitation in (d,d').
2337.32 12	(9 ⁻) [#]		G		1
2339.99 10	(8)		F		J^{π} : γ to 7^{-} .
2356.4 20			G		
2363.58 ^g 9	(9 ⁻)		DEFG		
2370.6 3	.#		C		
2404.2 7	1"		H		
2408.18° 15	11		DE G		J^{\prime} : El γ to 10 ⁺ .
2416.2 7	1"		Н		
2421.13 12	$(10)^{-}$		DE G		J^{Λ} : El γ to (9) ⁺ .
2444.55 0	(2)		Б		J : (E1) gammas to T and (S) .
2462.68^{a} 15	10^{+}		G		J^{π} : E0 admixture in γ to 10 ⁺ .
2470.1 ^j 10	(11^{-})		G		J^{π} : γ to 10 ⁺ : possible band member.
2479.48 ^{&} 11	11+		DE G		J^{π} : E2 γ to (9) ⁺ .
2483.4 20			G		
2519.05 ^b 25	12^{+}		DE G		J^{π} : $\Delta J=2$, E2 γ to 10 ⁺ , M1(+E2) γ to 12 ⁺ .
2525.85 10	(9)		F		J^{π} : γ to (8 ⁻).
2541.03 17	$(1^+, 2^+)$		В		J^{π} : (E2) γ to $1^{(+)}$; possible γ to 0^+ .
2577.2 7	1#		Н		
2583.67 ⁿ 10	(10 ⁻)		DEFG		
2591.6 10			G		
2631.23 ^{<i>a</i>} 14	(12^{-})		DE G		
2640.2 7	1"		Н		
2702.58 ^{^w} 16	14+	0.27 ps 4	DE G	К	$T_{1/2}$: deduced by evaluators from B(E2) \downarrow (620 γ)=2.3 3 in Coul. ex.
2720 57 11	(10)		F		(1980 Ya03), assuming 100% branch for 620γ .
2729.5711	(10)	0.76 m + 67.24	DE	v	J. γ to (7). The deduced by evolutions from $D(EQ)/(540t) = 1.5.7$ in Coull, as
2133.3 3	12	0.70 ps + 07 - 24	DE	K	$(1980Ya03)$, assuming 100% branch for 549 γ
2747 2 7	1#		н		
2759.01 9	(9 ⁻)		F		J^{π} : γ to 7 ⁻ .
2762.2 7	1#		н		
2800.45 ⁱ 14	(12^{-})		DE		
2815.21 [°] 15	13-		DE G		J^{π} : $\Delta J=1$, E1(+M2) γ to 12 ⁺ ; $\Delta J=2 \gamma$ to 11 ⁻ .
2822.55 ^g 14	(11^{-})		DEFG		
2823.50? 21			В		
2874.78 ⁰ 14	14+		DE	K	J^{π} : stretched E2 γ to 12 ⁺ ; band member.
2933.2 7	1#		Н		
2950.26 10	(11)		F		J^{n} : γ s to (9) and (10 ⁻).
2966.2 7	1"		_ H		\mathbf{I}^{T} (0=) 1 (0=)
2980.56 9	(10)		F		J ^{γ} : γ s to (8) and (9).

Continued on next page (footnotes at end of table)

¹⁶⁴Er Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comments				
3018.0 10	1#		Н						
3027.3 ^{&} 5	13+		DE						
3028.76 15			В						
3066.6 ^{<i>d</i>} 4	(14 ⁻)		DE G						
3079.4 ^h 4	(12 ⁻)		DE						
3133.2 7	1#		Н						
3179.2 7	1#		Н						
3220.2 7	1 [#]		Н		_				
3221.18 9	(11 ⁻)		F		J^{π} : γ s to (9 ⁻) and (10 ⁻).				
3244.35 ^t 24	(14 ⁻)		DE						
3263.09 18	16+	>0.30 ps	DE G I	K	J ^{<i>n</i>} : $\Delta J=2$, E2 γ to 14 ⁺ . T _{1/2} : deduced by evaluators from B(E2) \downarrow (561 γ)<2.8 in Coul. ex. (1980Ya03) and using the γ -branching ratios for 388 γ and 561 γ .				
3267.0 ^{&} 6	14+	0.69 ps +61-22	DE I	K	T _{1/2} : deduced by evaluators from B(E2) \downarrow (534 γ)=1.9 9 in Coul. ex. (1980Ya03), assuming 100% branch for 534 γ .				
3281.01 ^{<i>c</i>} 18	15-		DE						
3303.1 3	$(6^{-},7^{-})$		C		J^{n} : gammas to (8 ⁻) and 7 ⁻ ; log <i>ft</i> =5.8 from 6 ⁻ .				
3377.57 ^e 11	(13) (12^+)	68 ns 2	D F		4-qp state with configuration= $v(5/2[523],5/2[642])\otimes \pi(7/2[523],7/2[404])$.				
					$T_{1/2}$: 555 γ (t) (2012Sw02). Other: \geq 170 ns (1997Ba63).				
3408.2 3			В						
3411.2 ^{^w} 4	16+	0.21 ps 4	DE I	K	T _{1/2} : deduced by evaluators from B(E2) \downarrow (709 γ)=1.5 3 in Coul. ex. (1980Ya03), assuming 100% branch for 709 γ .				
3458.2 7	1#		Н						
3518.7 ^{&} 6	(15^+)		DE						
3534.58? 7	(2^{+})		В		J^{A} : (E2) γ to 0 ⁺ .				
3541.0 <i>10</i>	1,2"		Н						
3545.67 8	(13') 1#		DF						
3551.27	$1^{"}$		н						
3559.0 5	(10)		DE						
3629.67 10	2^{+}		В		J^{π} : E2 γ to 0 ⁺ .				
3734.5 ^e 8	(14^+)		DF						
3752.0 10	1#		Н						
3760.0 ⁱ 4	(16 ⁻)		DE						
3768.19 11	$(1^+, 2^+)$		В		J^{π} : (E2) γ to 2^+ , γ to 0^+ .				
3768.59 ⁰ 19	18+		DE G						
3800.7 ^{C} 6	(16^+)		DE						
3804.9° 5	1/ (15 ⁺)		DE						
3942.7 10	(13 ⁺) 1#								
3944.1 10 4017 0 & 7	(17^+)		п						
4017.9 7 4105.6 d 7	(17)		DE						
4121.2° 5	18+			ĸ					
4169.4 ^e 11	(16^+)		DF	IX.					
4344.5 ⁱ 6	(18 ⁻)		DE						
4345.7 <mark>b</mark> 4	20+		DE						

E(level) [†]	J ^{π‡}	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
4364.3 <mark>&</mark> 8	(18+)	D	5678 ⁱ 2	(22 ⁻)	Е	7999.3 ^e 19	(28+)	D
4384.9 [°] 5	(19 ⁻)	DE	5704.1 ^c 11	(23 ⁻)	DE	8095.1 ^C 20	(29 ⁻)	D
4413.1 ^{<i>f</i>} 12	(17^{+})	D F	5729.1 ^b 8	24+	DE	8338.1 ^b 19	30^{+}	D
4590.1 <mark>&</mark> 8	(19+)	DE	5857.7 ^e 15	(22^{+})	D	8396.6 ^f 20	(29+)	D
4673.2 ^e 13	(18^{+})	D	6052.9 ^d 13	(24 ⁻)	DE	8533.9 ^d 22	(30 ⁻)	D
4702.0 ^d 8	(20 ⁻)	DE	6186.5 ^f 16	(23 ⁺)	D	8803.9 ^e 20	(30 ⁺)	D
4868.4 [@] 6	20^{+}	DE	6442.1 ^c 15	(25 ⁻)	D	9016.1 ^c 23	(31-)	D
4948.2 ^{<i>f</i>} 13	(19+)	D	6526.6 ^e 17	(24^{+})	D	9225.6 ^f 22	(31+)	D
4987.4 ⁱ 12	(20 ⁻)	E	6529.1 ^b 13	26+	D	9342.1 ^b 22	32+	D
5000.1 ^b 6	22^{+}	DE	6814.9 ^d 17	(26 ⁻)	D	9492.0 ^d 24	(32 ⁻)	D
5018.2 [°] 7	(21^{-})	DE	6878.4 ^f 17	(25^+)	D	9658.9 ^e 23	(32 ⁺)	D
5230.6 <mark>&</mark> 9	(21^{+})	D	7238.1 ^c 18	(27 ⁻)	D	10001.1 ^c 25	(33-)	D
5238.1 ^e 14	(20+)	D	7241.0 ^e 18	(26+)	D	10410.1 ^b 24	34+	D
5349.9 ^d 9	(22 ⁻)	DE	7399.1 ^b 16	28^{+}	D	10515 ^d 3	(34 ⁻)	D
5541.4 ^{<i>f</i>} 15	(21 ⁺)	D	7614.6 ^f 19	(27 ⁺)	D	11049 ^c 3	(35 ⁻)	D
5651.5 [@] 8	22+	D	7640.9 ^d 20	(28 ⁻)	D	11549 ^b 3	36+	D

¹⁶⁴Er Levels (continued)

[†] From least-squares fit to $E\gamma$ data. Uncertainties of the following γ rays were doubled due to their somewhat poor fits: 318 γ from 2278 level, 666 γ from 1911 level and 689 γ from 2173 level. With adjustment, only the energies of six γ rays out of a total of about 400 γ rays deviate by $\approx 3 \sigma$. Reduced $\chi^2 = 1.9$ as compared to critical $\chi^2 = 1.3$.

[‡] For high-spin (J>7) levels, populated mostly in in-beam reactions ((¹⁸O,4n γ), (⁹Be,5n γ) and (α ,2n γ)), the assignments are based on multipolarities and ΔJ extracted from $\gamma(\theta)$ and ce data in (α ,2n γ); $\gamma(\theta)$ and $\gamma($ lin pol) in (⁹Be,5n γ); and $\gamma(\theta)$ data in (¹⁸O,4n γ); combined with associated band structures. All ΔJ =2 transitions are assumed as stretched E2 and ΔJ =1, mixed transitions as M1+E2 when there is no evidence for long-lived (>20 ns or so) states. In such reactions, spins are assumed to be in ascending order as the excitation energy increases, due to yrast nature of level population.

[#] Population in (γ, γ') .

- [@] Band(A): $K^{\pi}=0^+$ g.s. band.
- [&] Band(B): $K^{\pi}=2^+ \gamma$ band.
- ^{*a*} Band(C): $K^{\pi}=0^+$ band. Band based on 1246 level.
- ^b Band(D): $K^{\pi}=12^+$ band. Band based on 2519 level. Configuration=AB.
- ^{*c*} Band(E): $K^{\pi} = 5^{-}, \alpha = 1$. Configuration=AE.
- ^{*d*} Band(e): $K^{\pi}=5^{-}$ band, $\alpha=0$. Configuration=AF.
- ^{*e*} Band(F): $K^{\pi} = 12^+$, 4-qp band, $\alpha = 0$. Configuration= $\nu(5/2[523], 5/2[642]) \otimes \pi(7/2[523], 7/2[404])$ (2015Ko14).
- ^{*f*} Band(f): $K^{\pi}=12^+$, 4-qp band, $\alpha=1$. Configuration= $\nu(5/2[523],5/2[642])\otimes\pi(7/2[523],7/2[404])$ (2015Ko14).
- ^{*g*} Band(G): $K^{\pi}=7^{-}$ band, $\alpha=1$. Configuration= $\pi7/2[523] \otimes \pi7/2[404]$ (2015Ko14).
- ^{*h*} Band(g): $K^{\pi} = 7^{-}$ band, $\alpha = 0$. Configuration= $\pi 7/2[523] \otimes \pi 7/2[404]$ (2015Ko14).
- ^{*i*} Band(H): Band based on (8), α =0.
- ^{*j*} Band(I): Probable $K^{\pi}=0^{-}$, octupole band. Band proposed by 1984Fi07.

	Adopted Levels, Gammas (continued)										
						$\gamma(^{164})$	Er)				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	δ^{a}	$\alpha^{\boldsymbol{b}}$	$I_{(\gamma+ce)}$	Comments		
91.380	2+	91.39 <i>1</i>	100	0.0 0+	E2		4.14		$\alpha(K)=1.314 \ 19; \ \alpha(L)=2.17 \ 3; \ \alpha(M)=0.528 \ 8 \\ \alpha(N)=0.1194 \ 17; \ \alpha(O)=0.01396 \ 20; \\ \alpha(P)=5.51\times10^{-5} \ 8 \\ B(E_2)(W_{\rm H})=206 \ 5 $		
299.43	4+	208.08 3	100	91.380 2+	E2		0.221		$\alpha(K)=0.1445 \ 21; \ \alpha(L)=0.0587 \ 9; \ \alpha(M)=0.01396 \ 20$ $\alpha(N)=0.00318 \ 5; \ \alpha(O)=0.000394 \ 6; $ $\alpha(P)=6.87\times10^{-6} \ 10$ B(E2)(W,u,)=2.6×10 ² \ 3		
614.39	6+	314.97 4	100	299.43 4+	E2		0.0596		$\alpha(K)=0.0441 \ 7; \ \alpha(L)=0.01197 \ 17; \ \alpha(M)=0.00279 \ 4$ $\alpha(N)=0.000640 \ 9; \ \alpha(O)=8.27\times10^{-5} \ 12; $ $\alpha(P)=2.29\times10^{-6} \ 4$		
860.25	2+	561.5 <i>3</i> 768.92 <i>4</i>	3.0 5 100 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E2 E2(+M1)	>1.8	0.01228 0.00725 <i>11</i>		B(E2)(W.u.)=1.6 4 B(E2)(W.u.)=9 2; B(M1)(W.u.)<0.0036 D(E2)(W.u.)=5 2.6		
946.34	3+	860.29 4 86.24 <i>12</i>	84.5	860.25 2 ⁺	E2 E2+M1		4.8 5		B(E2)(W.U.)=5.5 0 $\alpha(K)=2.6 \ 11; \ \alpha(L)=1.7 \ 12; \ \alpha(M)=0.4 \ 3$ $\alpha(N)=0.09 \ 7; \ \alpha(O)=0.011 \ 7; \ \alpha(P)=0.00014 \ 9$		
		646.94 7	21 3	299.43 4+	E2+M1	2.7 10			Mult., δ : from ce data in (α ,2n γ); ce data in ε decay (1.95 min) gives M1,E2.		
		855.01 7	100 9	91.380 2+	E2+M1	-2.8 7			Mult., δ : δ from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$, mult from ce data in ε decay (1.95 min).		
1024.62	8+	410.22 7	100	614.39 6+	E2		0.0279		$\begin{aligned} \alpha(\mathbf{K}) &= 0.0216 \ 3; \ \alpha(\mathbf{L}) = 0.00484 \ 7; \ \alpha(\mathbf{M}) = 0.001114 \ 16 \\ \alpha(\mathbf{N}) &= 0.000256 \ 4; \ \alpha(\mathbf{O}) = 3.40 \times 10^{-5} \ 5; \\ \alpha(\mathbf{P}) &= 1.171 \times 10^{-6} \ 17 \\ \mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}.) &= 343 \ 19 \end{aligned}$		
1058.49	4+	198.4 [‡] 3	100.7	860.25 2+	$E_2(\mathbf{M}_1)$	7			Mult S. farm on and (()) in (, 2m) and an date		
		138.83 9	100 /	299.43 4	E2(+M1)	>+7			in ε decay (1.95 min).		
		967.8 <i>3</i>	47 16	91.380 2+	E2				This γ seen in both the activities of ¹⁶⁴ Tm ε . From relative branching ratios, this γ should have been seen in (α .2ng).		
1197.48	5+	251.0 2	5.1 5	946.34 3+							
		583.21 10	18.8 12	614.39 6+	E2+M1	3.1 8	0.0124 9				
		898.05 6	100 5	299.43 4+	E2+M1	-2.5 +17-7	0.0047 4		Mult., δ : from ce data in ε decay (5.1 min) and $(\alpha, 2n\gamma)$; sign from $\gamma(\theta)$, where $\delta = -4.8 + 15 - 59$ or $0.00 + 7 - 14$ from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.		
1246.06	0+	385.3 7	0.8 4	860.25 2+	E2		0.0332		α (K)=0.0255 4; α (L)=0.00595 9; α (M)=0.001374 21 α (N)=0.000316 5; α (O)=4.17×10 ⁻⁵ 7; α (P)=1.369×10 ⁻⁶ 21		
		1154.66 5	100 3	91.380 2+	E2						
		1246.1 4		0.0 0+	E0			0.65 12	$q_{\rm K}^2$ (E0/E2)=2.5 4, X(E0/E2)=0.25 4 (2005Ki02 evaluation).		

 \neg

 $^{164}_{68}\mathrm{Er}_{96}$ -7

$\gamma(^{164}\text{Er})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ^{a}	$\alpha^{\boldsymbol{b}}$	Comments
1314.56	2+	68.49 14		1246.06	0^{+}	(E2)		13.09 22	α (K)=2.03 3; α (L)=8.47 15; α (M)=2.06 4 α (N)=0.466 8; α (O)=0.0540 10; α (P)=0.0001027 15
		368.2 ^{‡d} 3		946.34	3+				
		454.6 1	2.2 11	860.25	2+	E2		0.0211	α (K)=0.01661 24; α (L)=0.00348 5; α (M)=0.000798 12 α (N)=0.000184 3; α (O)=2.47×10 ⁻⁵ 4; α (P)=9.10×10 ⁻⁷ 13
		1015.15 [°] 7	<26	299.43	4+	(E2)			
		1223.14 5	100 3	91.380	2+	M1+E2+E0			$\rho^2(\text{E0})=0.0053\ 27\ (\text{review by 1999Wo07}).$
		1314.3 2	56 <i>3</i>	0.0	0^{+}	E2			$B(E2)(W.u.)=0.23$ 12 from $B(E2)\uparrow=0.006$ 3 in Coul. ex. (1982Ro07).
1358.73	6+	300.0 3	65 15	1058.49	4+	E2		0.0691	$\alpha(K)=0.0506 \ 8; \ \alpha(L)=0.01429 \ 21; \ \alpha(M)=0.00334 \ 5$ $\alpha(N)=0.000765 \ 11; \ \alpha(O)=9.83\times10^{-5} \ 15; \ \alpha(P)=2.60\times10^{-6} \ 4$
		744.1 2	100 30	614.39	6+	E2+M1	3.7 +19-8	0.0068 3	Mult., δ : from ce data in (α ,2n γ). Other: δ =-1.9 +16-11 or >7 from $\gamma(\theta)$ in (α ,2n γ).
		1059.3 10	40 5	299.43	4^{+}	E2			
1386.74	1-	140.6 [‡] 2		1246.06	0^+				
		526.3 ^{‡d} 4		860.25	2^{+}				
		1295.36 5	100 3	91.380	2^{+}	E1			
		1386.69 5	66 4	0.0	0^{+}	E1			
1416.57	0^{+}	170.6 [‡] 3		1246.06	0^+	(E0)			
		1325.17 5	100 3	91.380	2+	E2			
		1416.6 1		0.0	0^{+}	E0			$q_{\rm K}^2$ (E0/E2)=1.08 <i>19</i> , X(E0/E2)=0.14 <i>3</i> (2005Ki02 evaluation).
1433.98	3-	574.2 [‡] 4		860.25	2^{+}				
		1134.60 5	57 5	299.43	4 ⁺	E1			
		1342.59 7	100 5	91.380	2*	EI			
1469.72	4+	855 ^{<i>a</i>}	100.00	614.39	6^+				
		1170.2 3	100/20	299.43	4'	M1+E2+E0			Mult.: from ce data in ε decay (1.95 min). Other: M1(+E2), δ <0.5 from ce data in (¹⁸ O,4n γ).
		1378.5 4	20 20	91.380	2^{+}				
1483.69	2+	168.9 [‡] 3		1314.56	2^{+}				
		237.6 [‡] 3		1246.06	0^+				
		623.5 [‡] 4		860.25	2^{+}				
		1184.30 5	100 12	299.43	4^{+}	E2			
		1392.48 5	81 4	91.380	2^{+}	M1+E2+E0		0.021 9	$\rho^2(E0)=0.095$ (review by 1999Wo07).
		1483.2 3	46 19	0.0	0+	E2			$B(E2)(W.u.)=1.1 \ 3 \text{ from } B(E2)\uparrow=0.030 \ 9 \text{ in Coul. ex.}$ (1982Ro07).
1495.05		547.9 [‡] 4		946.34	3+				
		634.6 5	100	860.25	2+				
1507.6?	10+	1208.2	100	299.43	4^+	50		0.01701	$\mathbf{D}(\mathbf{F}_{2})(\mathbf{M}) \rightarrow 252,10$
1518.08	10' 7+	495.46 10	100	1024.62	8' 5+	E2		0.01/01	B(E2)(w.u.)=333 18
1545.10	/	520.3 5	28 6	1024.62	3 8 ⁺	E2+M1	2.1 +26-7	0.018 3	Mult δ : from ce data in (α .2n γ).

 ∞

					A	dopted Le	vels, Gam	mas (contin	ued)	
						$\gamma(1)$	⁶⁴ Er) (con	tinued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [#]	δ^{a}	$\alpha^{\boldsymbol{b}}$	$I_{(\gamma+ce)}$	Comments
1545.10	7+	930.5 4	100 13	614.39	6+	E2+M1	-2.4 3			Mult., δ : from $\gamma(\theta)$ data in (α ,2n γ). Other: δ =1.1 2 from ce data in (α ,2n γ).
1555.3	(5) ⁻	358.0 5	30 10	1197.48	5+	e				
		941.0 5 1255 5 5	40 12	614.39 200.43	6^+	E1				
1568.67	(3 ⁻)	1268.4 5	41 16	299.43	4 4 ⁺					
		1477.1 4	100 25	91.380	2+					
1577.79	1-	190.6^{+} 3		1386.74	1- 0+					
		331.0 * 3 1486.27 17	100 10	1246.06 91.380	$\frac{0}{2^+}$	E1				
		1577.72 8	26.2 16	0.0	$\bar{0}^{+}$	(E1)				
1610.26	(4 ⁻ ,5 ⁻)	551.5 5	16 3	1058.49	4^+					
1631.5		$136.1 \frac{1}{2} d^{-2}$	100 0	940.54 1705.05	3					
1051.5		$572.9^{\ddagger d} 4$		1058.49	4+					
		$685.0^{\ddagger d} 4$		946.34	3+					
		1017.2	<10	614.39	6+					γ not reported in ε decay (1.95 min).
		1332.0 5	100 40	299.43	4+					γ not reported in ε decay (1.95 min).
1640.2		582.0 5	100 20	1058.49	4+ 4+					
1664 21	5-	1049 86 9	42 2	614 39	4 6 ⁺	F1@				$B(F1)(W_{H}) > 7.2 \times 10^{-7}$
1001.21	5	1019.00 9	12 2	011.55	0	LI				Reduced hindrance factor $f_{\nu} \le 34.3$, $\nu = 4$ (2015Ko14
										evaluation).
		1364.68 9	100 6	299.43	4+	[E1]				$B(E1)(W.u.) > 7.8 \times 10^{-7}$ Reduced hindrance factor f <33.6 y=4 (2015Ko14
										evaluation).
1683.40	(5 ⁺)	73.0 <i>3</i>	73 12	1610.26	$(4^{-},5^{-})$	(E1)		0.743 14		$\alpha(K)=0.611\ 11;\ \alpha(L)=0.1037\ 19;\ \alpha(M)=0.0230\ 5$
										$\alpha(N)=0.00524 \ 10; \ \alpha(O)=0.000685 \ 13;$
		486.00 8	27.8	1197.48	5+					$a(\mathbf{r})=2.04\times10^{-2}$ 5
		624.6 2	100 12	1058.49	4+					
		736.9 2	88 27	946.34	3+					
1702.2		841.9 5	100	860.25	2+					
1702.20	0^{+}	218.5 3	3.8 13	1483.69	2+	F 1		0.01(20		
		313.440	11.9 0	1380.74	1	EI		0.01038		
		387.74	<0.6	1314.50	2' 0+	EO			0.14.3	$a^{2}(E0/E2) = 0.08 \ 10 \ X(E0/E2) = 0.69 \ 14 \ (2005K;02)$
		430.4 2		1240.00	0	LU			0.14 J	$q_{\rm K}(10/12) = 0.76$ 17, $\Lambda(10/12) = 0.09$ 14 (2005K102) evaluation).
		842.06 5	36 2	860.25	2^{+}	E2				·
		1610.71 5	100 3	91.380	2+	E2				
		1702.1 4		0.0	0^{+}	E0			0.057 13	$q_{\rm K}^2$ (E0/E2)=0.38 9, X(E0/E2)=0.073 18 (2005Ki02 evaluation).

 $^{164}_{68}{
m Er}_{96}$ -9

From ENSDF

 $^{164}_{68}\mathrm{Er}_{96}$ -9

			Adopte	d Levels, Gam	umas (continu	ed)	
I_{γ}^{\dagger}	E_{f}	J_f^{π}	Mult. [#]	δ ^a	<i>αb</i>	$I_{(\gamma+ce)}$	Comments
100 35 57 30 100 28 87 22	614.39 299.43 1577.79 946.34 860.25 614.39 860.25 209.43	$ \begin{array}{c} 6^+ \\ 4^+ \\ 1^- \\ 3^+ \\ 2^+ \\ 6^+ \\ 2^+ \\ 4^+ \end{array} $	M1(+E2) [@]	<0.4			
65 22	91.380	2+			6.00		
13.4 14	1664.21	5-	E2		6.88		α (K)=1.682 24; α (L)=3.99 6; α (M)=0.971 15 α (N)=0.219 4; α (O)=0.0255 4; α (P)=7.35×10 ⁻⁵ 11 B(E2)(W.u.)=8.8×10 ² 16
2.8 10	1545.10	7^{+}	[E1]		0.0524		$B(E1)(W.u.)=1.6\times10^{-6}$ 7
5.7 4	1358.73	6^{+}	[E1]		0.0101		$B(E1)(W.u.)=4.6\times10^{-7} 8$
100 5	1197.48	5^{+}	E1		0.00459		$B(E1)(W.u.)=2.8\times10^{-6} 5$
6.9 6	614.39	6^{+}	[E1]		0.0011		$B(E1)(W.u.)=2.2\times10^{-8} 4$
100 40	1358.73	6^{+}	E2 ^{&}		0.0329		$\alpha(K)=0.0253 4; \alpha(L)=0.00588 9; \alpha(M)=0.001359$

20

 α (N)=0.000312 5; α (O)=4.12×10⁻⁵ 6;

Mult., δ : from ce and $\gamma(\theta)$ data in (α ,2n γ); also $\gamma(\ln \text{ pol})$ in (^9Be ,5n γ),E=59 MeV.

 $q_{K}^{2}(E0/E2)=2.9$ 7, X(E0/E2)=2.1 6 (2005Ki02)

 $q_{\rm K}^2$ (E0/E2)=2.3 4, X(E0/E2)=0.47 8 (2005Ki02 evaluation).

 $\alpha(P)=1.358\times10^{-6}\ 20$

 I_{γ} : other: 233 in (α ,2n γ).

evaluation).

 E_{γ}^{\dagger}

1092.4 8

1407 *1*

1111.7

881.0 4

1442.4 5

1651.5 10

199.4 2 385.59 14 547.08 7

1130.06 10

386.6 4

80.27 9

137.7 2 768.7 854.9

 \mathbf{J}_i^{π}

 $(6)^{+}$

 (2^{-})

6-

 8^{+}

 E_i (level) 1706.7

1715.34

1726.1?

1741.6

1744.55

1744.88

		720.1 2	77 45	1024.62	8+	E2+M1	-1.5 +8-30		
1763.8	(7)-	1149.4 4	100	614.39	6+	E1			
1765.86	0^{+}	451.3 ^d	< 0.6	1314.56	2^{+}				
		519.76 21		1246.06	0^+	E0			0.39 13
		905.70 5	32 2	860.25	2+	E2			
		1674.34 5	100 <i>3</i>	91.380	2^{+}	E2			
		1765.8 4		0.0	0^+	E0			0.32 6
1788.35	2^{+}	474.2 2	4.7 16	1314.56	2^{+}	M1+E2+E0		0.10 4	
		729.3 4	7.8 16	1058.49	4^{+}				
		1489.15 <i>11</i>	100 11	299.43	4^{+}	E2			
		1696.86 <i>6</i>	61 <i>3</i>	91.380	2^{+}	M1+E2+E0		0.0048 15	
		1788.4 <i>4</i>	9.4 16	0.0	0^{+}				
1798.4	(5)-	1184.3 5	65	614.39	6+	E1 [@]			
		1498.6 6	100	299.43	4^{+}				
1806.5		748	100	1058.49	4+				
1813.99	(6)-	616.3 5	100	1197.48	5+	E1			
1833.41	2^{+}	973.4 4	9 <i>3</i>	860.25	2^{+}				
		1533.93 5	64 <i>3</i>	299.43	4^{+}	E2			
		1742.09 5	100 3	91.380	2^{+}	M1+E2+E0		0.0055 19	

 $^{164}_{68}\mathrm{Er}_{96}$ -10

From ENSDF

 $^{164}_{68}\mathrm{Er}_{96}$ -10

					Ad	opted Levels,	Gammas	s (continued)	
						γ ⁽¹⁶⁴ Er)	(continu	ned)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ ^a	$\alpha^{\boldsymbol{b}}$	Comments
1833.41 1841.7?	2 ⁺ (0 ⁺)	1833.35 <i>16</i> 358.0 <i>4</i>	48 6 100 <i>30</i>	0.0 1483.69	0^+ 2 ⁺	E2 E2		0.0409	$\alpha(K)=0.0311\ 5;\ \alpha(L)=0.00763\ 11;\ \alpha(M)=0.00177\ 3$ $\alpha(N)=0.000406\ 6;\ \alpha(O)=5.32\times10^{-5}\ 8;\ \alpha(P)=1.649\times10^{-6}\ 24$
		1750.2 <i>6</i> 1841.6 ^{<i>d</i>}	30 10	91.380 0.0	2^+ 0^+	(E0)			
1845.54	7-	101.0 ^d 820.78 <i>11</i>	<0.25 32.3 <i>15</i>	1744.55 1024.62	6 ⁻ 8 ⁺	E1			
1861.46?	(0,1,2)+	1231.13 7 377.77 24	100 5 20 10	614.39 1483.69	6^+ 2 ⁺ 2 ⁺	E1 [@]		0.01210	
1875.26	1 ⁽⁺⁾	546.9 5 159.93 <i>3</i>	40 10	1715.34	(2 ⁻)	E2 E1		0.01310	α (K)=0.0784 <i>11</i> ; α (L)=0.01184 <i>17</i> ; α (M)=0.00262 <i>4</i> α (N)=0.000602 <i>9</i> ; α (O)=8.26×10 ⁻⁵ <i>12</i> ; α (P)=3.77×10 ⁻⁶ <i>6</i> E _v .I _v .Mult.: from ¹⁶⁴ Tm ε decay (1.95 min) only.
		305.9 ^{<i>d</i>} 4 1015.15 ^{<i>c</i>} 7 1783.6 2	40 <i>10</i> <240 100 <i>10</i>	1568.67 860.25 91.380	(3 ⁻) 2 ⁺ 2 ⁺				
1911.27	2+	1873.5 ^{<i>d</i>} 5 524.52 9 666.5 ^{<i>c</i>} 6 1819.78 9	90 <i>10</i> 15 <i>3</i> <8 100 <i>5</i>	0.0 1386.74 1246.06 91.380	0^+ 1^- 0^+ 2^+	E1 (E2) E2+M1+E0		0.0036 10	E_{γ} : level-energy difference=665.2.
1929.5 1953.92	2+	1910.92 ^{<i>d</i>} 9 732 1093.4 5 1654 9 4	12 <i>I</i> 100 7 <i>3</i> 7 3	0.0 1197.48 860.25 299.43	0^+ 5^+ 2^+ 4^+	E2 E2			
1961.29		1851.57 1862.52 5 383.0 4 465.3 4 574.2 4 1015.15 ^C 7 1661.2 4 1869.3 ^C 10	100 5	91.380 1577.79 1495.05 1386.74 946.34 299.43 91.380	2^+ 1^- 3^+ 4^+ 2^+	M1+E2+E0		0.0030 8	
1964.34	(8 ⁻)	118.7 2	70 <i>30</i>	1845.54	7- 6-	$(M1+E2)^{\&}$		1.65 10	
1969.6	(2+,3-,4+)	219.92 1671.5 10 1877.5 7	60 20 100 25	299.43 91.380	0 4 ⁺ 2 ⁺	(E2)**		0.164	
1977.15	9+	431.95 7	100 8	1545.10	7+ 8+	$E2^{@}$		0.0242	
1985.06	7-	139.44 8	32.0 11	1845.54	7-	E2+M1	15 5	0.872	B(M1)(W.u.)= 2.5×10^{-7} 17; B(E2)(W.u.)=1.40 10 α (K)=0.457 7; α (L)=0.319 5; α (M)=0.0769 12;

 $^{164}_{68}{
m Er}_{96}$ -11

					A	uopteu Leveis,	Gamma	s (continu	
						γ ⁽¹⁶⁴ Er)	(continu	ued)	
E _i (level)	J^{π}_i	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ ^a	α b	Comments
1985.06	7-	240.49 <i>3</i>	100 3	1744.55	6-	M1		0.242	$\alpha(N)=0.0174 \ 3$ $\alpha(O)=0.00209 \ 3; \ \alpha(P)=1.97\times10^{-5} \ 3$ Mult.: (M1) assumed in ¹⁶⁰ Gd(⁹ Be,5ny) (2012Sw02). Assuming M1, reduced hindrance factor f _v =1.81×10 ⁴ 12, v=1 (2015Ko14 evaluation, using branching ratio=32.5 12). $\alpha(K)=0.204 \ 3; \ \alpha(L)=0.0301 \ 5; \ \alpha(M)=0.00668 \ 10$ $\alpha(N)=0.001557 \ 22; \ \alpha(O)=0.000225 \ 4; \ \alpha(P)=1.248\times10^{-5} \ 18$ B(M1)(W.u.)=3.47×10 ⁻⁵ 23 Paducad hindrance factor f =3.02×10 ⁴ 17, v=1 (2015Ko14)
		626.4 8	0.6 4	1358.73	6+	[E1]			evaluation). B(E1)(W.u.)= $1.2 \times 10^{-10} 8$ Reduced hindrance factor $f_{\nu}=310 50$, $\nu=4$ (2015Ko14 avaluation)
		960.5 2	3.0 4	1024.62	8+	[E1]			B(E1)(W.u.)=1.67×10 ⁻¹⁰ 25 Reduced hindrance factor f_y =43.4 16, y =6 (2015Ko14 evaluation using branching ratio=2.8 6)
		1370.73 10	10.8 7	614.39	6+	[E1]			B(E1)(W.u.)= 2.07×10^{-10} 18 Reduced hindrance factor f_{ν} =40.6 8, ν =6 (2015Ko14 avaluation using branching ratio=12.2 11)
2002.6 2005.4	(2 ⁺ to 5 ⁻) 8 ⁺	568.4 5 1703.5 7 298.7 5 980.8 5	100 <i>30</i> 39 20	1433.98 299.43 1706.7 1024.62	3 ⁻ 4 ⁺ (6) ⁺ 8 ⁺	E2+M1+E0			evaluation, using branching ratio=12.2 11).
2018.0		1391 ^d 1403.6	100	614.39 614.39	6 ⁺ 6 ⁺				
2022.50		589.0 ^d 6 635.10 ^c 25 2022.55 8	133 <i>42</i> <114 100 <i>14</i>	1433.98 1386.74 0.0	3 ⁻ 1 ⁻ 0 ⁺				E_{γ} : from $(n,n'\gamma)$ only.
2025.77	(2+)	711.2 ^{<i>d</i>} 4 780.1 4 1165.45 5 1934.96 ^{<i>c</i>} 15	4 <i>I</i> 4 <i>I</i> 100 5 <22	1314.56 1246.06 860.25 91.380	2+ 0+ 2+ 2+	E2 (E2)			E_{γ} : level-energy difference=1934.37.
		2026 ^d 1	15 7	0.0	0^+				E_{γ} : from $(n,n'\gamma)$ only.
2032.1?		786.06 ^d 14	100	1246.06	0^{+}				
2035.43	1	721.1 ^{<i>a</i>} 7 1943.5 <i>4</i> 2035.60 23 1747 2	18 9 59 14 100 18 100	1314.56 91.380 0.0 299.43	2^+ 2^+ 0^+ 4^+				
2054.6 2068.9	(9) ⁻ (8) ⁺	1030.0 1044.3 1454.5 7	100 100 40	1024.62 1024.62 614.39	8 ⁺ 8 ⁺ 6 ⁺	E1 [@] E2+M1	1.3 7		

From ENSDF

Т

	Adopted Levels, Gammas (continued)													
						$\gamma(^{164}$	Er) (conti	nued)						
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [#]	δ^{a}	α b	$I_{(\gamma+ce)}$	Comments				
2069.38	(1 ⁻ ,2 ⁻)	355.00 22 635.10 ^c 25 1978.0 2	67 7 <107 100 7	1715.34 1433.98 91.380	(2^{-}) 3^{-} 2^{+}	M1,E2		0.064 22						
2082.1	10+	537.0 5	100	1545.10	7 ⁺	50		0.01010		$\mathbf{D}(\mathbf{FO})(\mathbf{W}) \ge \mathbf{OOA}/\mathbf{Z}$				
2082.81 2091.00	12' (8 ⁻)	564.73 6 277.0 1 346.1 1 546.0 1		1518.08 1813.99 1744.88 1545.10	10 ⁺ (6) ⁻ 8 ⁺ 7 ⁺	E2 (E2)		0.01210		B(E2)(W.u.)=294 47 Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ and RUL.				
2093.62?		1069.0 ^d 1	100	1024.62	8+	M1+E2 [@]	0.9 5							
2108.57 2141.4	9-	1083.95 9 1842 2	100 100	1024.62 299.43	8^+ 4^+	E1								
2151.4	(8^{-})	1557 1	100	014.39	0' 7-									
2168.1	(0)	142.3 3	100 <i>43</i>	2025.77	(2+)									
		1110.5 ^{<i>a</i>} 8	43 29	1058.49	4+									
2172.04	0+	1869.3° 10	43 29	299.43	4^{+}			0.1257						
2173.04	0'	298.09 21	8 2	1875.26	2 ⁺	(M1)		0.1357						
		407.0 <i>1</i>	<1	1765.86	0^{+}	E0			0.07 1	q _K ² (E0/E2)=0.69 <i>12</i> , X(E0/E2)=1.18 <i>20</i> (2005Ki02 evaluation).				
		595.17 5	62 2	1577.79	1-	E1								
		689.63 12	15 2	1483.69	2+	E2				E_{γ} : level-energy difference=689.16.				
		858.3	<2	1314.56	2 ⁺	50			051	² (E0/E2) 4.0.0 X(E0/E2) 4.1.0 (2005X'02)				
		926.6 4		1246.06	0'	EO			0.5 1	q_{K}^{c} (E0/E2)=4.8 9, X(E0/E2)=4.1 8 (2005Ki02) evaluation).				
		1312.25 14	55 <i>11</i> 100 5	860.25	2+	E2 E2								
		2172.5 4	100 5	0.0	0^{+}	E2 E0			1.5 4	$q_{K}^{2}(E0/E2)=8.1$ 18, X(E0/E2)=2.6 6 (2005Ki02 evaluation).				
2184.31	10^{+}	439.43 8	100 12	1744.88	8+	E2		0.0231						
2240 22		666.2 <i>1</i> 235 d	62 30	1518.08 2005 4	10 ⁺ 8 ⁺	M1(+E2) [@]	<0.9	0.0149 20						
2210.2.		233 722 d	100	1518.08	10+									
2254.24		1955.20 11	100	299.43	4 ⁺					Level-energy difference=1954.80.				
2261.27	(10^{-})	152.70 12	17 7	2108.57	9-	(M1+E2) ^{&}		0.74 12						
	()	296.93 7	100 6	1964.34	(8-)	(E2) ^{&}		0.071						
2278.38	2^{+}	318.6 6	100 0	1961.29		(22)		0.071		E_{γ} : level-energy difference=317.0.				
		794.6 5	12 4	1483.69	2+	M1+E2+E0		0.058 30		,				
		844.7 <i>1</i>	≈12	1433.98	3-					E_{γ} : level-energy difference=844.35.				
		963.9 ^d 3	21 4	1314.56	2+	M1+E2+E0		0.040 20						
		1417.96 8	100 8	860.25	2+	E2								

Line J ^a /2 L ^a /2 <thl<sup>a/2 L^a/2 <thl<sup>a/2 <thl<sup>a/2 <thl<sup>a/2</thl<sup></thl<sup></thl<sup></thl<sup>										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							γ (¹⁶⁴ Er) (continu	ied)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J	f^{π}	Mult. [#]	δ^{a}	α b	Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2278.38	2+	2186.4 <i>4</i> 2278.09 <i>12</i>	21 <i>4</i> 46 5	91.380 2 ⁻ 0.0 0 ⁻	+ +	M1+E2+E0 (E2)		0.025 10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2278.9		534 <i>I</i>	100	1744.88 8	+				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2337.32	(9 ⁻)	1312.7 <i>1</i>	100	1024.62 8	+				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2339.99	(8)	355.0 1	100	1985.06 7	-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2356.4		1742 2	100	614.39 6	+				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2363.58	(9 ⁻)	199.75 9 379	100	2163.67 (8 1985.06 7 ⁻	3 ⁻) -				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2370.6		385.51 25	100	1985.06 7	_				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2404.2	1	2313	183 53	91.380 2	+				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2404	100	0.0 0	+				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2408.18	11-	890.1 <i>1</i>	100	1518.08 10	0^{+}	E1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2416.2	1	2325	83 20	91.380 2	+				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2416	100	0.0 0	+				
2444.53 (2 ⁺) 484.04 1961.29 729.34 7 1 1715.34 (2 ⁻) 875.43 19 7 1 1568.67 (3 ⁻) (E1) 1057.81 5 100 4 1386.74 1 ⁻ (E1) 1584.04 5.8 15 8052 2 ⁺ 2488.1 1423.5 5 100 1024.62 8 ⁺ 2448.1 1423.5 5 100 1024.62 8 ⁺ 2460.1 (11 ⁻) 952 100 1518.08 10 ⁺ 2470.1 (11 ⁻) 952 100 1518.08 10 ⁺ 2479.48 11 ⁺ 502.33 6 100 1977.15 9 ⁺ E2 [@] 961.3 ^d 24 1518.08 10 ⁺ 2483.4 1869 2 100 614.39 6 ⁺ 2519.05 12 ⁺ 279 ^d 2240.2? 334.4 4 81.33 2184.31 10 ⁺ 436.5 5 100 15 2082.81 12 ⁺ M1(+E2) [@] <0.35 0.0481 16 α (K)=0.0405 14; α (L)=0.00595 15; α (M)=0.00132 3 α (N)=0.000307 8; α (O)=4.44×10 ⁻⁵ 12; α (P)=2.45×10 ⁻⁶ 9 2525.85 (9) 185.9 1 97 16 239.99 (8) 362.1 1 100 8 2163.67 (8 ⁻) 2541.03 (1 ⁺ ,2 ⁺) 666.5 ^c 3 <50 1875.26 1 ⁽⁺⁾ (E2) 775.47 ^d 22 70.20 1765.86 0 ⁺ 2483.6 148 28 91.380 2 ⁺ 2577.2 1 2486 148 28 91.380 2 ⁺ 2577.3 100 20.0 0 ⁺ 2577.4 100 25 2363.58 (9 ⁻)	2421.13	(10) ⁻	330.2 <i>1</i> 443.9 <i>1</i>	45 7 100 <i>10</i>	2091.00 (8	3 ⁻) +	E1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2444.53	(2^{+})	484.0 4		1961.29					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· /	729.3 4	71	1715.34 (2	2-)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			875.43 19	71	1568.67 (3	3-)	(E1)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1057.81 5	100 4	1386.74 1	-	(E1)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1584.0 4	5.8 15	860.25 2	+				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2353.0 ^{cd} 2	<26	91.380 2	+				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2448.1		1423.5 5	100	1024.62 8	+				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2462.68	10^{+}	944 6 1	100	1518.08 10	0^{+}	$E_{2+M1+E0}^{@}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2470.1	(11^{-})	952	100	1518.08 10	0+	<u>E2 1111 E0</u>			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2479 48	11+	502 33 6	100	1977 15 9	+	F2 [@]			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-1710	11	0.02.000	24	1510.00 1/	0+	12			E france (a Dava) andre
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2102 1		901.5	24	614 20 6	+				E_{γ} : from $(\alpha, 2n\gamma)$ only.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2483.4	101	1809 Z	100	014.39 0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2519.05	12+	2794		2240.2?	o.+				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			334.4 4	81 33	2184.31 10	0+	0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			436.5 5	100 15	2082.81 12	2+	M1(+E2)	< 0.35	0.0481 16	$\alpha(K)=0.0405 \ 14; \ \alpha(L)=0.00595 \ 15; \ \alpha(M)=0.00132 \ 3$ $\alpha(N)=0.000307 \ 8; \ \alpha(O)=4.44\times10^{-5} \ 12; \ \alpha(P)=2.45\times10^{-6} \ 9$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1001.2 5	67	1518.08 10	0+	E2 [@]			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2525.85	(9)	185.9 <i>1</i>	97 16	2339.99 (8	3)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(-)	362.1 1	100 8	2163.67 (8	3-)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2541.03	$(1^+, 2^+)$	666.5 [°] 3	<50	1875.26 1	(+)́	(E2)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		、 ,=)	775 47 <mark>0</mark> 22	70.20	1765.86	+				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2449 3 2	100 10	91 380 2	+				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2577.2	1	2486	148 28	91 380 2	+				
2583.67 (10 ⁻) 220.1 <i>I</i> 100 25 2363.58 (9 ⁻)	2011.2		2577	100	0.0 0	+				
	2583.67	(10^{-})	220.1 1	100 25	2363.58 (9) _)				

 $^{164}_{68}\mathrm{Er}_{96}$ -14

From ENSDF

 $^{164}_{68}\mathrm{Er}_{96}$ -14

					has (continued)			
						<u>1</u>	$\gamma(^{164}\text{Er})$ (cont	inued)
E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	${ m J}_f^\pi$	Mult. [#]	δ ^a	Comments
2583.67 2591.6	(10 ⁻)	419.9 ^d 6 1567 <i>1</i>	≈8 100	2163.67 1024.62	(8 ⁻) 8 ⁺			
2631.23 2640.2	(12 ⁻) 1	369.96 6 2549 2640	100 71 7 100	2261.27 91.380	(10^{-}) 2 ⁺ 0 ⁺	(E2) ^{&}		
2702.58	14+	619.76 <i>11</i>	100	2082.81	12 ⁺	E2		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ and $({}^{18}\text{O}, 4n\gamma)$; linear pol in $({}^{9}\text{Be}, 5n\gamma), E=59$ MeV.
2729.57	(10)	203.7 <i>1</i> 389.6 <i>1</i>	100 6 37 4	2525.85 2339.99	(9) (8)			$B(E2)(W.u.)=432\ 56\ \text{from}\ B(E2)\downarrow=2.3\ 3\ \text{in Coul. ex.}\ (1980Ya03).$
2733.3	12+	549.0 4	100	2184.31	10+	(E2)		B(E2)(W.u.)=282 <i>132</i> from B(E2)↓=1.5 7 in Coul. ex. (1980Ya03). Mult.: ΔJ =(2),(Q) from $\gamma(\theta)$ in (⁹ Be,5n γ),E=59 MeV; population in Coul. ex.
2747.2	1	2656 2747	46 <i>20</i> 100	91.380 0.0	2^+ 0 ⁺			
2759.01	(9-)	595.1 <i>1</i> 773.9 <i>1</i>	19 8 100 <i>14</i>	2163.67 1985.06	(8 ⁻) 7 ⁻			
2762.2	1	2671 2762	93 <i>20</i> 100	91.380 0.0	2^+ 0^+	Q-		
2800.45 2815.21	(12 ⁻) 13 ⁻	379.32 7 407.1 4 722.4 1	100 50 25	2421.13 2408.18	$(10)^{-}$ 11 ⁻ 12 ⁺	$(E2)^{\alpha}$ Q	0.040.26	Mult St from $\alpha(0 \text{ in pol})$ in $(^{9}\text{Do 5nd})$
2822.55	(11 ⁻)	239.0 <i>3</i> 458.5 <i>4</i>	$100\ 10$ $100\ 25$ $100\ 50$	2082.81 2583.67 2363.58	(10^{-}) (9^{-})	$EI(\pm IVI2)$	-0.040 20	Mult., o . from $\gamma(\sigma, \min por)$ in (* $Be, Sir\gamma$).
2823.50?		753.4 <i>4</i> 797.9 <i>3</i> 862.7 <i>4</i>	60 20 100 20	2069.38 2025.77 1961.29	$(1^{-},2^{-})$ (2^{+})			
2874.78	14+	1876.97 355.74	100 40 23 13	946.34 2519.05	3 ⁺ 12 ⁺	D0 ^{<i>k</i>}		
2933.2	1	791.98 / 2842 2933	100 / 132 26 100	2082.81 91.380 0.0	12^{+} 2^{+} 0^{+}	E2		
2950.26	(11)	220.7 <i>1</i> 366.6 <i>1</i> 424 4 <i>1</i>	95 27 65 10	2729.57 2583.67 2525.85	(10) (10 ⁻)			
2966.2	1	2875 2966	100 <i>11</i> 194 <i>35</i> 100	91.380 0.0	2^+ 0^+			
2980.56	(10 ⁻)	221.7 <i>1</i> 616.9 <i>1</i> 816.8 <i>1</i>	57 <i>12</i> 25 <i>4</i> 100 <i>10</i>	2759.01 2363.58 2163.67	(9 ⁻) (9 ⁻) (8 ⁻)			
3018.0	1 12 ⁺	3018	100	0.0	0^+	$(0)^{\&}$		
3027.3	13	341.8 4	100	24/9.48	11			

 $^{164}_{68}\mathrm{Er}_{96}$ -15

 $^{164}_{68}\mathrm{Er}_{96}$ -15

From ENSDF

	Adopted Levels, Gammas (continued)													
							γ ⁽¹⁶⁴ Er) (c	continued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^{π}	Mult. [#]	$\alpha^{\boldsymbol{b}}$	Comments						
3028.76		1460.20 <i>16</i> 1714.1 2 1969.6 <i>5</i>	100 <i>13</i> 52 <i>3</i> 27 7	1568.67 1314.56 1058.49	(3^{-}) 2 ⁺ 4 ⁺									
3066.6 3079.4	(14 ⁻) (12 ⁻)	435.4 <i>3</i> 256.8 <i>4</i> 496	100 100	2631.23 2822.55 2583.67	(12^{-}) (11^{-}) (10^{-})	Q ^{&}								
3133.2	1	3042 3133	47 <i>14</i> 100	91.380 0.0	2^+ 0^+									
3179.2	1	3088 3179	40 <i>11</i> 100	91.380 0.0	2^+ 0^+									
3220.2	1	3129 3220	154 27 100	91.380 0.0	2^+ 0^+									
3221.18	(11 ⁻)	240.6 <i>1</i> 462.3 <i>1</i> 637.5 <i>1</i> 857.5 <i>1</i>	100 <i>10</i> 16 2 39 <i>4</i> 71 5	2980.56 2759.01 2583.67 2363.58	(10 ⁻) (9 ⁻) (10 ⁻) (9 ⁻)									
3244.35	(14 ⁻)	443.9 2	100	2800.45	(12 ⁻)	(Q) <mark>&</mark>								
3263.09	16+	388.4 <i>3</i>	22 7	2874.78	14+	(E2) ^{&}		$B(E2)(W.u.) < 7.2 \times 10^2$						
3267.0	14+	560.50 <i>11</i> 533.7 ^c 3	100 <i>10</i> 100	2702.58 2733.3	14+ 12+	E2 ^{&} (E2)	0.01233	B(E2)(W.u.)<526 from B(E2) \downarrow <2.8 in Coul. ex. (1980Ya03). B(E2)(W.u.)=357 <i>170</i> from B(E2) \downarrow =1.9 9 in Coul. ex. (1980Ya03). Mult.: ΔJ=(2),(Q) from $\gamma(\theta)$ in (⁹ Be,5n γ),E=59 MeV; population in Coul. ex.						
3281.01	15-	465.8 1	100 14	2815.21	13-	Q ^{&}								
3303.1	(6 ⁻ ,7 ⁻)	578.4 6 1139.5 <i>3</i> 1317.6 <i>10</i>	48 25 100 <i>10</i> 26 <i>16</i>	2702.58 2163.67 1985.06	14 ⁺ (8 ⁻) 7 ⁻	D&								
3352.3	(13 ⁻)	273.2	83	3079.4	(12^{-})									
3377.57	(12+)	529.7 4 156.4 <i>1</i>	22 2	3221.18	(11 ⁻)	(E1)	0.0992	$\alpha(K)=0.0831 \ 12; \ \alpha(L)=0.01258 \ 18; \ \alpha(M)=0.00278 \ 4$ $\alpha(N)=0.000640 \ 9; \ \alpha(O)=8.77\times10^{-5} \ 13; \ \alpha(P)=3.99\times10^{-6} \ 6$ B(E1)(W.u.)=1.29×10 ⁻⁷ \ 13 Mult.: from $\alpha(exp)$ In (⁹ Be,5n γ) (2012Sw02).						
		427.3 1	21 1	2950.26	(11)	[D]	0.030 22	Reduced hindrance factor $t_{\nu}=2.78\times10^{-7}$ I2, $\nu=2$ (2015Ko14 evaluation).						
		555.0 1	100 3	2822.55	(11 ⁻)	[E1]		B(E1)(W.u.)= 1.31×10^{-8} 7 Reduced hindrance factor f =93.4.8 y=4 (2015Ko14 evaluation)						
		1294.8 <i>3</i>	2.0 3	2082.81	12+	[M1]		B(M1)(W.u.)= $2.0 \times 10^{-9} 4$ Reduced hindrance factor f_v =6.17 9, v =11 (2015Ko14 evaluation).						
		1859.5 ^d 6	0.4 2	1518.08	10+	[E2]		B(E2)(W.u.)= 1.9×10^{-8} 10 Reduced hindrance factor $f_v=5.9$ 3, $v=10$ (2015Ko14 evaluation).						
3408.2		1840.8 7	33 16	1568.67	(3 ⁻)			· · · · · · · · · · · · · · · · · · ·						

From ENSDF

γ (¹⁶⁴Er) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments
3408.2		1974.5 5 3108.2 4	100 <i>17</i> 42 9	1433.98 299.43	3 ⁻ 4 ⁺		
3411.2	16+	3315.6 ⁴ 5	50 8 100	91.380 2702.58	2 ⁺ 14 ⁺	(F2) <mark>&</mark>	$R(F2)(W_{H}) = 282.56$ from $R(F2) = 1.5.3$ in Coul. ex. (1080Va02)
3458.2	10	3367	2.9×10^2 12	91.380	2^{+}	(L2)	$D(E2)(W.u.) = 262.50$ from $D(E2)_{4} = 1.5.5$ fri Cour. ex. (1960 1805).
2510 7	(15+)	3458	100	0.0	0^+		
3518.7 3534.58?	(15^+) (2^+)	491.4 <i>4</i> 1361.53 <i>5</i>	100 100 5	3027.3 2173.04	13^{+} 0 ⁺	(E2)	
	(-)	1623.9 ^d 3	71 9	1911.27	2+	()	
		2052.5 ^{cd} 5	<36	1483.69	2+		
3541.0	1,2	3541	100	0.0	0^+		
3545.0 3551.2	(13°)	3460	58 24	91.380	(12^{+}) 2^{+}		
000112	-	3551	100	0.0	$\bar{0}^{+}$		
3559.6	(16 ⁻)	493.0 3	100	3066.6	(14^{-})		
3002.2	1	3602	46 <i>13</i> 100	0.0	0^{+}		
3629.67	2+	1350.9 5	74	2278.38	2+		
		2052.5 ^{cd} 5 2383.61 9 2570.9 5	<7 100 5 10 1	1577.79 1246.06 1058.49	1^{-} 0 ⁺ 4 ⁺	E2	
3734.5	(14 ⁺)	189 357	100	3545.6 3377.57	(13^+) (12^+)		
3752.0	I	5152	100	0.0	0^{+}	0	
3768.19	(10) $(1^+,2^+)$	1894.4 <i>4</i>	50 12	5244.55 1875.26	(14) $1^{(+)}$	Q	$E_{\rm ex}$: level-energy difference=1893.0.
	(- ,-)	1934.96 ^{<i>c</i>} 15	<312	1833.41	2+	(E2)	
		2353.0 ^{cd} 2 2521.77 14	<225 100 <i>12</i>	1416.57 1246.06	$0^+ 0^+$	0	
3768.59	18^+	505.50 6	100	3263.09	16^+	Q ^{&}	
3800.7	(16')	533.7 3	100	3267.0	14'	0 ^{&}	
3804.9 3942.7	(15^+)	525.94 208 307	100	3281.01 3734.5 3545.6	(14^+) (12^+)	Q	
3944.1	1	3944	100	0.0	0^+		
4017.9	(17 ⁺)	499.2 4	100	3518.7	(15^{+})	(Q) <mark>&</mark>	
4105.6	(18 ⁻)	546.0 5	100	3559.6	(16 ⁻)	(Q) <mark>&</mark>	
4121.2	18^+	710.0 3	100	3411.2	16^+	(E2) <mark>&</mark>	
+109.4	(10)	435		3734.5	(13^{+}) (14^{+})		

$^{164}_{68}\mathrm{Er}_{96}$ -17

From ENSDF

 $^{164}_{68}\mathrm{Er}_{96}$ -17

$\gamma(^{164}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
4344.5	(18 ⁻)	584.4 4	100	3760.0	(16 ⁻)		6526.6	(24^{+})	340	6186.5	(23 ⁺)
4345.7	20^{+}	577.1 <i>3</i>	100	3768.59	18+	Q&			669	5857.7	(22^{+})
4364.3	(18^{+})	563.6 5	100	3800.7	(16^{+})	-	6529.1	26^{+}	800	5729.1	24+
4384.9	(19 ⁻)	580.0 2	100	3804.9	17^{-}		6814.9	(26 ⁻)	762	6052.9	(24 ⁻)
4413.1	(17^{+})	244		4169.4	(16^{+})		6878.4	(25^{+})	352	6526.6	(24^{+})
1500 1	(10+)	470	100	3942.7	(15^+)		7220 1	(27-)	692	6186.5	(23^+)
4590.1	(19^+)	572.2.2	100	4017.9	(17^{+})		7238.1	(27^{-})	796	6442.1	(25^{-})
46/3.2	(18^{+})	260		4413.1	(1/')		/241.0	(26^{+})	362	68/8.4	(25^{+})
1702.0	$\langle 2 \rangle = \langle 2 \rangle$	506 4 2	100	4109.4	(10)	08	7200 1	20+	/14	6520.0	(24)
4/02.0	(20)	596.4 <i>3</i>	100	4105.6	(18)	Q	76146	(27^{+})	8/0	0529.1 7241.0	20°
4000.4	(10^{+})	141.2 4 275	100	4121.2	(18^+)		/014.0	(27)	515 737	7241.0 6878.4	(20) (25^+)
4940.2	(19)	535		4073.2	(10^{-})		7640.9	(28^{-})	826	6814.9	(25^{-})
4987.4	(20^{-})	642.9	100	4344.5	(17^{-})		7999.3	(28^+)	385	7614.6	(27^+)
5000.1	22+	654.4 <i>4</i>	100	4345.7	20+	Q ^{&}			758	7241.0	(26 ⁺)
5018.2	(21^{-})	633.3 4	100	4384.9	(19 ⁻)	(Q) <mark>&</mark>	8095.1	(29 ⁻)	857	7238.1	(27^{-})
5230.6	(21^{+})	640.5 4	100	4590.1	(19 ⁺)		8338.1	30+	939	7399.1	28+
5238.1	(20^{+})	290		4948.2	(19 ⁺)		8396.6	(29 ⁺)	397	7999.3	(28^+)
		565		4673.2	(18^{+})				782	7614.6	(27^{+})
5349.9	(22 ⁻)	647.9 <i>4</i>	100	4702.0	(20 ⁻)		8533.9	(30 ⁻)	893	7640.9	(28 ⁻)
5541.4	(21^{+})	303		5238.1	(20^+)		8803.9	(30^{+})	407	8396.6	(29^+)
5651 5	22+	593 792 1 4	100	4948.2	(19')		0016-1	(21-)	805	2005 1	(28^+)
5051.5	22.	/05.14	100	4808.4	20*		9010.1	(31)	921	8095.1	(29)
5678	(22^{-})	691 ⁴	100	4987.4	(20^{-})		9225.6	(31^{+})	829	8396.6	(29^{+})
5704.1	(23)	685.9 8 720.0 5	100	5018.2	(21)		9342.1	32^{+}	1004	8338.1	30^{+}
58577	(22^{+})	729.0 J 316	100	5541.4	(21^+)		9492.0	(32^+)	950 855	8803.0	(30^+)
5657.7	(22)	620		5238.1	(21^{-})		10001 1	(32^{-})	985	9016.1	(30^{-})
6052.9	(24^{-})	703		5349.9	(23^{-})		10410.1	34+	1068	9342.1	32^+
6186.5	(23^+)	329		5857.7	(22^+)		10515	(34 ⁻)	1023	9492.0	(32^{-})
	< -)	645		5541.4	(21+)		11049	(35 ⁻)	1048	10001.1	(33-)
6442.1	(25 ⁻)	738		5704.1	(23 ⁻)		11549	36+	1139	10410.1	34+

[†] When a level is populated in more than one reaction, values are taken from weighted averages of all available data of comparable precision, from the following datasets: ¹⁶⁴Tm ε decay (1.95 min); ¹⁶⁴Tm ε decay (5.1 min); ¹⁵⁰Nd(¹⁸O,4n\gamma); and ¹⁶⁰Gd(⁹Be,5n\gamma),E=59 MeV (this dataset used mainly for I γ values as $\Delta E\gamma$ are not provided). Selected data for a few levels are also available from ¹⁶⁰Gd(⁹Be,5n γ),E=57 MeV and ¹⁶⁴Er(n,n' γ). For J=1 states values are generally from ¹⁶⁴Er(γ , γ').

[‡] Weak γ ray from ¹⁶⁴Tm ε decay (1.95 min) only, branching is not available.

[#] From ce data in ε decay (1.95 min) for γ rays from low-spin (J \leq 3), and from ce and $\gamma(\theta)$ in (α ,2n γ), $\gamma(\theta)$ and linear polarization in (¹⁸O,4n γ) and

From ENSDF

$\gamma(^{164}\text{Er})$ (continued)

 $({}^{9}\text{Be},5n\gamma)$,E=59 MeV for γ rays from higher spin (J>3) levels. Exceptions are noted. Mult=Q indicates Δ J=2, quadrupole (likely to be E2), and D+Q indicates $\Delta J=1$, dipole+quadrupole (likely to be M1+E2). Further RUL for E2 and M2 transitions is used to assign (E2) or (M1+E2), assuming level half-life is <20 ns or so. All data for pure E0 or for those with E0 admixture are from 1990Ad07 in 164 Tm ε decay (1.95 min). See this dataset for details of conversion electron measurements for E0 transitions.

[@] From $\gamma(\theta)$ in (¹⁸O,4n γ).

& From $\gamma(\theta)$, and linear polarization for selected transitions in (⁹Be,5n γ),E=59 MeV.

^{*a*} From ce data in ε decay (1.95 min) and/or in (α ,2n γ).

^b Additional information 2.

^c Multiply placed.

^d Placement of transition in the level scheme is uncertain.

From ENSDF

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Legend

stable

 $^{164}_{68}{\rm Er}_{96}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{164}_{68}{\rm Er}_{96}$

¹⁶⁴₆₈Er₉₆

¹⁶⁴₆₈Er₉₆

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁶⁴₆₈Er₉₆

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁶⁴₆₈Er₉₆

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Legend

γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

From ENSDF

 $^{164}_{68}\mathrm{Er}_{96}$ -39

