¹⁶²**Dy**(*α*,**2n***γ*) **1984Fi07,1976We24**

	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen [#]	NDS 147, 1 (2018)	30-Nov-2017

Includes 165 Ho(p,2n γ); 165 Ho(d,3n γ); 164 Dy(3 He,3n γ); 164 Dy(α ,4n γ).

1984Fi07 (also 1982Fi06): ¹⁶²Dy(α ,2n γ) E=24 MeV and ¹⁶⁵Ho(p,2n γ) E=23 MeV. Measured E γ , I γ , $\gamma\gamma$, ce, $\gamma(\theta)$. Main results are from (α ,2n γ).

1976We24: E=24 MeV. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$. Data for g.s. band up to 12⁺, γ band up to 7⁺ and for 7⁻ isomer. Others:

1983Na14: ¹⁶⁴Dy(α ,4n γ) E=47 MeV. Measured $\gamma(\theta)$ and ce data for 436 γ from 12⁺ bandhead of Super band.

1980Ya03: 164 Dy(α ,4n γ) E=51 MeV.

1977Dr03: ¹⁶⁵Ho(d,3n γ) E=18-24 MeV. Measured E γ , I γ , γ (t), excitation functions. Deduced ground-state band up to 12⁺ and lifetime for 7⁻ state at 1985 through intensity of delayed transitions.

1976Da10: ¹⁶⁴Dy(α ,4n γ) E=45 MeV and ¹⁵⁴Sm(¹⁴C,4n γ) E=62 MeV. Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma(t)$, $\gamma(\theta)$ for ground-state band up to 18⁺.

1974Ba07: ¹⁶⁴Dy(α ,4n γ) E=46-97 MeV. Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma(\theta)$, $\alpha\gamma(t)$ for g.s. band up to 16⁺.

1972Fe08: ¹⁶³Dy(α ,3n γ), ¹⁶⁴Dy(α ,4n γ) E=40 MeV. Measured relative cross sections of prompt and delayed γ rays for g.s. band up to 16⁺ and γ band up to 8⁺.

1970Je09: ¹⁶²Dy(α ,2n γ) E=21.8 and 27.4 MeV; ¹⁶⁴Dy(³He,3n γ) E=21.8 MeV; ¹⁶⁵Ho(d,3n γ) E=17.4 MeV; ¹⁶⁵Ho(p,2n γ)

E=16.8 and 21.4 MeV. Measured $\sigma(E\gamma)$ for g.s. band up to 14⁺, γ band up to 9⁺ and β band up to 10⁺.

1969Mi03: E=19.2-31.7 MeV. Measured $\sigma(E\gamma)$ for g.s. band members.

1969Ka03: E=27.5 MeV. Measured E γ , I γ . Deduced g.s. band up to 10⁺.

1966Mo01: E=27-52 MeV. Measured γ . Deduced g.s. band up to 10^+ .

1966Gr04 (also 1963Ha39): ¹⁶⁵Ho(p,2n γ) E=12 MeV. Measured ce, γ ce coin. Deduced ground-state, γ , and β bands up to 8⁺. Cross section and multiplicity measurements:

1973Sa14: analysis of g.s. band data up to 14^+ from (α ,xn).

1983Ma32 (also 1979Na05,1979Ki05): 162 Dy(α ,2n γ), 164 Dy(α ,4n γ) E=50-120 MeV. Measured neutron multiplicity and production cross sections.

The following levels (deexciting transitions) proposed by 1976We24 (with spins in the range of 6 to 8) have been omitted due to lack of confirmation in other studies: 1698.5 (501.1 γ , 1083.3 γ); 1788.5 (430.7 γ , 1174 γ); 1922.5 (178 γ , 378 γ , 564 γ); 2140.4 (218 γ , 596 γ); 2360.4 (220 γ , 438 γ , 616 γ) and 2952.1 (1030 γ , 1164 γ).

¹⁶⁴Er Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0 ^b	0^{+}	
91.389 <mark>b</mark> 10	2^{+}	
299.47 <mark>b</mark> 3	4+	
614.39 <mark>b</mark> 6	6+	
860.79 [°] 7	2+	
946.36 [°] 7	3+	
1024.60 ^b 8	8+	
1058.23 ^c 9	4+	From relative γ -branching ratios, a 967.8 γ should have been seen in (α ,2ng) with expected intensity of 4.4 units.
1197.52 ^c 7	5+	
1308 ^{ad} 4	2+	
1358.50 ^C 7	6+	
1468.87 ^d 11	(4^{+})	
1495.4 ^{<i>f</i>} 5	$(2^{-})^{\#}$	
1507.67 11	(6+)	J^{π} : from Fig. 3a in 1984Fi07, not given in authors; Table 1.
1518.09 ^b 11	10+	

¹⁶²Dy(α,2nγ) **1984Fi07,1976We24** (continued)

¹⁶⁴Er Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}^{(a)}$
1544.73 [°] 8	7+	
1553.47 ^e 11	(5 ⁻)	
1609.7 ^{<i>f</i>} 5	$(4^{-})^{\#}$	
1664.27 <mark>8</mark> 11	5-	
1702.70 ^h 13	$(4^+)^{\#}$	
1706.69 ^d 11	6+	
1726.1 5		
1744.62 ⁸ 9	6-	
1744.90 [°] 9	8+	
1763.59 ^e 12	(7^{-})	
1797.70 [†] 12	5-	
1806.2 ^h 10	$(5^+)^{\#}$	
1813.77 ^f 10	6-	
1845.40 <mark>8</mark> 9	7-	
1929.5 <mark>h</mark> 10	$(6^+)^{\#}$	
1964.6 ^g 4	8-	
1976.84 ^C 11	9+	
1985.01 ⁱ 11	7-	22.0 ^{&} ns 15
2005.40 ^j 13	8+	
2017.99 <i>f</i> 12	7 ^{-#}	
2046.5 20		
2054.60 ^e 13	(9-)	
2068.90 ^d 13	8+	
2081.7 ^h 5	(7^{+})	
2082.79 ^b 15	12^{+}	
2090.71 ^f 9	8-	
2093.60 13		
2108.60 ^g 13	(9 ⁻)	
2141.5 20		
2151.4 10		
2163.51 ¹ 15	(8 ⁻)	
2184.29° <i>12</i>	10 ⁺	
2240.1? <i>J</i> 10	$(10^+)^{m}$	
2261.4 ⁸ 4	10	
2278.9 ⁿ 10	$(8^+)^{m}$	
2337.30 13	(9 ⁻)	
2356.4 20		
2363.31 18	(9^{-})	
2408.198 15	(11 ⁻)	
2420.83 ^J 12	(10^{-})	
2448.1.5	10+	
2462.694 15	10+ #	
2470.1° 10	$(11^{-})^{m}$	
24/9.15 13	(11)'	
2+03.4 20	12+	
2319.5^{j} 4	12^{-1}	
2583.40° 20	(10^{-1})	
2591.0 10 2631 48 7	(12^{-})	
2001.70 /	(12)	

¹⁶²**Dy**(α ,2**n** γ) **1984Fi07,1976We24** (continued)

¹⁶⁴Er Levels (continued)

E(level) [†]	J π ‡		Co	omments	
2702.60 ^b 18	14+				
2815.2 ⁸ 4	(13 ⁻)				
2822.1 ^{<i>i</i>} 4	(11^{-})				
3066.8 <mark>8</mark> 9	(14 ⁻)				
3263.0 ^b 4	16+	J^{π} : from 1976Da10.			
3768.5 ^b 4	18^{+}	J^{π} : from 1976Da10.			

- [†] From least-squares fit to $E\gamma$ data.
- [±] As proposed by 1984Fi07, based on $\gamma(\theta)$ and ce data, and band structures. See also Adopted Levels.
- [#] As suggested by 1984Fi07. This assignment is considered as tentative (evaluators) due to lack of supporting experimental evidence, thus it is not given in Adopted Levels.
- [@] From $\gamma\gamma(t)$, no evidence for a level of $T_{1/2}>5$ ns.
- [&] Weighted average of 23 ns +7–5, 24.1 ns +36–27 and 21.6 ns 15 (1977Dr03) in (d,3n γ) for γ (t) of 241 γ , 241 γ (from 1744 level) and 208 γ (from 299 level).
- ^{*a*} Level and J^{π} from 1966Gr04 in (p,2n γ). Level energy is 1314 keV in Adopted Levels.
- ^{*b*} Band(A): $K^{\pi}=0^+$ ground-state band.
- ^{*c*} Band(B): $K^{\pi}=2^+ \gamma$ -vibrational band.
- ^d Band(C): $K^{\pi}=0^+$ band.
- ^{*e*} Band(D): $K^{\pi}=0^{-}$.
- ^{*f*} Band(E): $K^{\pi}=2^{-}$. This band is not listed in Adopted Levels due to uncertain spin assignments (evaluators).
- ^{*g*} Band(F): $K^{\pi}=5^{-}$. Probable configuration=v5/2[642]v5/2[523], but mixing expected between $K^{\pi}=5^{-}$, $K^{\pi}=0^{-}$ octupole band and $K^{\pi}=2^{-}$ band.
- ^{*h*} Band(G): $K^{\pi} = (4^+)$. Probable configuration=v3/2[521] + v5/2[523]. This band is not listed in Adopted Levels due to uncertain spin assignments (evaluators).
- ^{*i*} Band(H): $K^{\pi}=7^{-}$. Configuration= $\pi7/2[404]+\pi7/2[523]$ based on its feeding in β decay from $K^{\pi}=6^{-},\pi7/2[404]+\nu5/2[523]$ isomeric state in ¹⁶⁴Tm. γ -decay to $K^{\pi}=0^{+}$ band members shows small admixture of K=0 or 1 components.
- ^{*j*} Band(I): Super (S) band. Configuration= $v_{13/2}^2$. This band is not listed in Adopted Levels due to uncertain spin assignments (evaluators).

 $\gamma(^{164}\text{Er})$

The following γ rays assigned by 1974Ba07 to ¹⁶⁴Er have been omitted: 217.5, 505.6 and 577.6. These are not confirmed in any other study. α (K)exp, A₂ and A₄ values are from 1984Fi07, unless indicated otherwise by another reference.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^{‡j}	α k	Comments
80.6 5	0.35	1744.62	6-	1664.27	5-			A ₂ =-0.56 <i>11</i> Mult.: negative A ₂ is consistent with $\Delta J=1$, dipole or quadrupole. Mult=E2 in Adopted Levels, Gammas dataset based on ce data in ε decay.
91.39 [#] 1	18	91.389	2+	0.0	0+	E2	4.15	A ₂ =+0.33 <i>1</i> $\alpha(K)$ =1.314 <i>19</i> ; $\alpha(L)$ =2.17 <i>3</i> ; $\alpha(M)$ =0.528 <i>8</i> $\alpha(N)$ =0.1194 <i>17</i> ; $\alpha(O)$ =0.01397 <i>20</i> ; $\alpha(P)$ =5.51×10 ⁻⁵ <i>8</i> I _y : 1.8 relative to 100 for 315y seems too low by a factor of 10. I _y (91)/I _y (315)=0.30 (1976We24). Additional information 1. Other A ₂ and A ₄ : 1976We24.
119.2 5	< 0.5	1964.6	8-	1845.40	7-			
139.5 <i>1</i>	1.2	1985.01	7-	1845.40	7-			A ₂ =+0.28 4; A ₄ =-0.05 6 Additional information 9. Mult.: $\gamma(\theta)$ data are consistent with ΔJ =0, dipole, although, 1976We24 give δ =+5.0 +55-47, and dominant E2 in ¹⁶⁴ Tm ε decay (5.1 min). Other A2, A4: 1976We24.
152.8 5	< 0.5	2261.4	10-	2108.60	(9 ⁻)			
178.5 1	2.1	2163.51	(8^{-})	1985.01	7-			$A_2 = +0.28 \ 3$
199.8 1	2.1	2363.31	(9)	2163.51	(8)			
208.08" 3	69.2	299.47	4+	91.389	2+	E2	0.221	A ₂ =+0.25 <i>I</i> ; A ₄ =-0.06 <i>I</i> $\alpha(K)=0.1445 2I$; $\alpha(L)=0.0587 9$; $\alpha(M)=0.01396 20$ $\alpha(N)=0.00318 5$; $\alpha(O)=0.000394 6$; $\alpha(P)=6.87\times10^{-6} 10$ I _y : 147 5 (1976We24). Additional information 2. Other $\gamma(\theta)$: 1976We24, 1976Da10, 1974Ba07.
219.9 5	<3.2 ^{<i>a</i>}	1964.6	8-	1744.62	6-			
220.1 1	<3.2 ^{<i>a</i>}	2583.40	(10 ⁻)	2363.31	(9 ⁻)			
235	0.5	2240.1?	(10^+)	2005.40	8^+			
239.0 5	0.3 4 8	2822.1 1985.01	(11) 7 ⁻	2385.40	(10) 6^{-}			$A_{2}=+0.06.23$; $A_{4}=-0.35.31$ (1976We24); $A_{2}=+0.22.2$ (1984Fi07)
251.2 <i>I</i>	0.82	1197.52	, 5+	946.36	3+			
277.0 1	1.1	2090.71	8-	1813.77	6-	(E2)	0.0882	A ₂ =+0.30 7; A ₄ =-0.10 9 α (K)=0.0633 9; α (L)=0.0192 3; α (M)=0.00451 7 α (N)=0.001031 15; α (O)=0.0001314 19; α (P)=3.21×10 ⁻⁶ 5
279 ¹		2519.3	12^{+}	2240.1?	(10^{+})			
296.9 5	<2.4 ^b	2261.4	10-	1964.6	8-	С		

						162 Dy (α ,2 n γ)	19841	Fi07,1976We2	4 (continued)
							γ (¹⁶⁴ Er)) (continued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	J_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. [‡] j	δ^{\ddagger}	α^k	Comments
298.7 5	<2.4 ^b	2005.40	8+	1706.69	6+	с			
300.3 1	2.9	1358.50	6+	1058.23	4+	E2		0.0688	α (K)exp=0.061 9 α (K)=0.0504 7; α (L)=0.01423 20; α (M)=0.00333 5 α (N)=0.000762 11; α (O)=9.80×10 ⁻⁵ 14; α (P)=2.60×10 ⁻⁶ 4
314.87 [#] 5	100.0	614.39	6+	299.47	4+	E2		0.0597	A ₂ =+0.23 <i>I</i> ; A ₄ =-0.11 <i>I</i> α (K)=0.0442 <i>7</i> ; α (L)=0.01199 <i>I7</i> ; α (M)=0.00280 <i>4</i> α (N)=0.000641 <i>9</i> ; α (O)=8.28×10 ⁻⁵ <i>I2</i> ; α (P)=2.29×10 ⁻⁶ <i>4</i> Additional information 3. Other $\gamma(\theta)$: 1976We24, 1976Da10, 1974Ba07.
330.2 <i>1</i> 346.1 <i>1</i>	1.2 0.8 <i>3</i>	2420.83 2090.71	(10 ⁻) 8 ⁻	2090.71 1744.62	8- 6-				$A_2 = +0.12 \ II$ $A_2 = +0.22 \ 4$
347.2 1	1.6 3	1544.73	7+	1197.52	5+				A ₂ for $346.1+347.2$. A ₂ =+0.22 4 A ₂ for $346.1+347.2$
370.0 <i>5</i> 386.6 <i>1</i>	0.34 3.0	2631.4 1744.90	(12 ⁻) 8 ⁺	2261.4 1358.50	10 ⁻ 6 ⁺	E2		0.0329	A ₂ = -0.06 21 A ₂ =+0.17 5; A ₄ =-0.17 5; α (K)exp=0.025 3 α (K)=0.0253 4; α (L)=0.00588 9; α (M)=0.001359 19 α (N)=0.000312 5; α (O)=4.12×10 ⁻⁵ 6; α (P)=1.358×10 ⁻⁶ 19 Additional information 8. Other α (0)=102(V)=24
407.1 5	< 0.5	2815.2	(13^{-})	2408.19	(11 ⁻)				Other $\gamma(\theta)$: 1976we24.
410.00 [#] 10	54.6	1024.60	8+	614.39	6+	E2		0.0279	A ₂ =+0.28 <i>I</i> ; A ₄ =-0.08 <i>I</i> ; α (K)exp=0.020 <i>3</i> α (K)=0.0217 <i>3</i> ; α (L)=0.00484 <i>7</i> ; α (M)=0.001116 <i>16</i> α (N)=0.000257 <i>4</i> ; α (O)=3.41×10 ⁻⁵ <i>5</i> ; α (P)=1.172×10 ⁻⁶ <i>17</i> Additional information 5.
432.0 1	4.0	1976.84	9+	1544.73	7+	E2		0.0242	A ₂ =+0.34 5; A ₄ =+0.05 6; α (K)exp=0.020 <i>I</i> α (K)=0.0189 <i>3</i> ; α (L)=0.00409 <i>6</i> ; α (M)=0.000940 <i>I4</i> α (N)=0.000216 <i>3</i> ; α (O)=2.89×10 ⁻⁵ <i>4</i> ; α (P)=1.031×10 ⁻⁶ <i>I5</i>
435.4 5	< 0.8 ^d	3066.8	(14 ⁻)	2631.4	(12 ⁻)	е			
436.5 5	<0.8 ^d	2519.3	12+	2082.79	12+	M1(+E2) ^e	<0.35	0.0481 <i>16</i>	A ₂ =+0.35 4; A ₄ =-0.02 3 α (K)exp=0.045 4 (1983Na14) α (K)=0.0405 14; α (L)=0.00595 15; α (M)=0.00132 3 α (N)=0.000307 8; α (O)=4.44×10 ⁻⁵ 12; α (P)=2.45×10 ⁻⁶ 9 Mult.,δ: from $\gamma(\theta)$ and α (K)exp.
439.4 1	4.2	2184.29	10+	1744.90	8+	E2		0.0231	A ₂ =+0.50 4; α (K)exp=0.0200 15 α (K)=0.0181 3; α (L)=0.00388 6; α (M)=0.000890 13 α (N)=0.000205 3; α (O)=2.74×10 ⁻⁵ 4; α (P)=0.80×10 ⁻⁷ 14
443.9 1	4.6	2420.83	(10 ⁻)	1976.84	9+	E1		0.00730	$a_{1}(Y)=0.000205, a_{1}(Y)=2.14\times10^{-4}, a_{1}(Y)=9.09\times10^{-114}$ $A_{2}=+0.47, 7; A_{4}=+0.01, 8; \alpha(K)\exp<0.004$ $\alpha(K)=0.00618, 9; \alpha(L)=0.000871, 13; \alpha(M)=0.000192, 3$ $\alpha(N)=4.44\times10^{-5}, 7; \alpha(O)=6.31\times10^{-6}, 9; \alpha(P)=3.29\times10^{-7}, 5$
458.5 5	0.50	2822.1	(11 ⁻)	2363.31	(9 ⁻)				

S

From ENSDF

 $^{164}_{68}\mathrm{Er}_{96}$ -5

¹⁶⁴₆₈Er₉₆-5

						¹⁶² D	$y(\alpha, 2\mathbf{n}\gamma)$ 19	084Fi07,1976	We24 (continued)
							$\gamma(^{16}$	⁴ Er) (continue	ed)
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡] j	δ^{\ddagger}	α^{k}	Comments
493.5 <i>1</i>	19.6	1518.09	10+	1024.60	8+	E2		0.01701	A ₂ =+0.19 2; A ₄ =-0.08 2; α (K)exp=0.0144 <i>I</i> α (K)=0.01352 <i>I</i> 9; α (L)=0.00271 <i>4</i> ; α (M)=0.000618 9 α (N)=0.0001425 20; α (O)=1.93×10 ⁻⁵ 3; α (P)=7.47×10 ⁻⁷ <i>II</i> Additional information 7. Other α (0)=107(V)=24, 107(D=10, 1074D=07)
502.3 1	1.5	2479.15	(11)+	1976.84	9+	E2		0.01625	Other $\gamma(\theta)$: 1976 we24, 1976 Da10, 1974 Ba07. $\alpha(K) \exp = 0.0141 \ I4$ $\alpha(K) = 0.01295 \ I9; \ \alpha(L) = 0.00257 \ 4; \ \alpha(M) = 0.000586 \ 9$ $\alpha(N) = 0.0001350 \ I9; \ \alpha(\Omega) = 1.83 \times 10^{-5} \ 3; \ \alpha(P) = 7.17 \times 10^{-7} \ I0$
505.5 2		3768.5	18+	3263.0	16+				$A_{2}=+0.36$ 12 (1976Da10) E_{γ} : from 1976Da10. L_{γ} : $I_{\gamma}(505)/I_{\gamma}(315)=0.024$ 12 (1976Da10)
520.3 1	1.3	1544.73	7+	1024.60	8+	E2+M1	2.1 +26-7	0.018 3	$\begin{array}{l} \alpha(K) \exp = 0.0145 \ 20 \\ \alpha(K) \exp = 0.0145 \ 20 \\ \alpha(K) = 0.00146 \ 23; \ \alpha(L) = 0.00259 \ 24; \ \alpha(M) = 0.00059 \ 5 \\ \alpha(N) = 0.000136 \ 12; \ \alpha(O) = 1.87 \times 10^{-5} \ 19; \ \alpha(P) = 8.3 \times 10^{-7} \ 15 \\ \text{Uncertainty of } 0.0002 \ \text{seems too low, evaluators consider } 0.0020 \end{array}$
534 <i>1</i> 537.0 <i>5</i> 546 0 <i>1</i>	<0.5 1.6 4 3 2 6	2278.9 2081.7 2090 71	(8 ⁺) (7 ⁺) 8 ⁻	1744.90 1544.73	8+ 7+ 7+				Additional information 10. $\alpha(K) \exp = 0.0011.6$
547.2 1	2.8 6	1744.62	6-	1197.52	5 ⁺	(E1)		0.0046	$\alpha(K)\exp - 0.0011 \text{ G}$ $\alpha(K)\exp - 0.0011 \text{ G}$ $\alpha(K)\exp - 0.0011 \text{ G}$ $\alpha(K)\exp - 546.0 + 547.2.$
560.5 2		3263.0	16+	2702.60	14+				$A_2 = +0.31 \ I5; \ A_4 = +0.04 \ 22 \ (1974Ba07); \ A_2 = +0.42 \ 8 \ (1976Da10)$ $E_{\gamma}: \ from \ 1976Da10.$ $I_{\gamma}: \ I_{\gamma}(560)/I_{\gamma}(315) = 0.037 \ I2 \ (1976Da10), \ 0.057 \ I7 \ (1974Ba07).$
564.7 1	6.0	2082.79	12+	1518.09	10+	E2		0.01210	A ₂ =+0.37 3; A ₄ =-0.11 5 (1976Da10); α (K)exp=0.092 7 α (K)=0.00976 14; α (L)=0.00182 3; α (M)=0.000414 6 α (N)=9.56×10 ⁻⁵ 14; α (O)=1.307×10 ⁻⁵ 19; α (P)=5.45×10 ⁻⁷ 8 Additional information 11.
583.2 1	3.0	1197.52	5+	614.39	6+	M1+E2	3.1 8	0.0124 9	Other $\gamma(\theta)$: 19/4Ba0/, 19/6We24. $\alpha(K)\exp=0.0097 \ 10$ $A_2=-0.10 \ 11; \ A_4=-0.04 \ 15 \ (1976We24)$ $\alpha(K)=0.0101 \ 8; \ \alpha(L)=0.00178 \ 9; \ \alpha(M)=0.000401 \ 18$ $\alpha(N)=9.3\times10^{-5} \ 5; \ \alpha(O)=1.28\times10^{-5} \ 7; \ \alpha(P)=5.7\times10^{-7} \ 5$ Additional information 6. δ : from $\alpha(K)\exp$. Other: $+0.02 \ +111-2 \ \text{or} \ +12 \ +\infty-7 \ (1976We24)$ from $\alpha(R)$
616.3 <i>1</i>	2.1	1813.77	6-	1197.52	5+	E1		0.00356	A ₂ =-0.54 10; α (K)exp=0.0054 12 α (K)=0.00302 5; α (L)=0.000418 6; α (M)=9.18×10 ⁻⁵ 13 α (N)=2 13×10 ⁻⁵ 3; α (Q)=3 05×10 ⁻⁶ 5; α (P)=1 634×10 ⁻⁷ 23
619.8 <i>1</i>	0.74	2702.60	14+	2082.79	12+	Q			$A_2=+0.385; A_4=-0.108 (1976Da10)$ Other $\gamma(\theta): 1974Ba07.$
634.6 <i>5</i> 646.9 <i>1</i>	<0.5 1.8	1495.4 946.36	(2 ⁻) 3 ⁺	860.79 299.47	2+ 4+	E2+M1	2.7 10	0.0099 13	α (K)exp=0.0081 12

6

From ENSDF

 $^{164}_{68}{
m Er}_{96}$ -6

¹⁶⁴₆₈Er₉₆-6

						¹⁶² Dy (α ,2	nγ) 1984Fi07 ,	1976We24 (co	ntinued)
							γ ⁽¹⁶⁴ Er) (con	ntinued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.‡j	δ^{\ddagger}	α^{k}	Comments
663.3 <i>5</i> 666.2 <i>1</i>	<0.5 0.65	1609.7 2184.29	(4 ⁻) 10 ⁺	946.36 1518.09	3 ⁺ 10 ⁺	M1(+E2)	<0.9	0.0149 20	$\alpha(K)=0.0081 \ 12; \ \alpha(L)=0.00137 \ 13; \ \alpha(M)=0.00031 \ 3 \\ \alpha(N)=7.1\times10^{-5} \ 7; \ \alpha(O)=9.9\times10^{-6} \ 11; \ \alpha(P)=4.6\times10^{-7} \ 8 \\ \alpha(K)\exp=0.015 \ 4 \\ \alpha(K)=0.0125 \ 17; \ \alpha(L)=0.00184 \ 20; \ \alpha(M)=0.00041 \ 5 \\ \alpha(N)=9.5\times10^{-5} \ 10; \ \alpha(D)=1.27\times10^{-5} \ 16; \ \alpha(D)=7.5\times10^{-7} \ 11 \\ \alpha(N)=0.5\times10^{-5} \ 10; \ \alpha(D)=1.27\times10^{-5} \ 10; \ \alpha(D)=7.5\times10^{-7} \ 11 \\ \alpha(N)=0.5\times10^{-5} \ 10; \ \alpha(D)=1.27\times10^{-5} \ 10; \ \alpha(D)=7.5\times10^{-7} \ 11 \\ \alpha(N)=0.5\times10^{-5} \ 10; \ \alpha(D)=1.27\times10^{-5} \ 10; \ \alpha(D)=7.5\times10^{-7} \ 11 \\ \alpha(N)=0.5\times10^{-5} \ 10; \ \alpha(D)=0.5\times10^{-7} \ 11 \\ \alpha(N)=0.5\times10^{-5} \ 10; \ \alpha(D)=0.5\times10^{-7} \ 10; \\alpha(D)=0.5\times10$
720.1 <i>1</i>	2.8	1744.90	8+	1024.60	8+	E2+M1	-1.5 +8-30	0.0090 26	$\begin{aligned} \alpha(N) &= 9.5 \times 10^{-10}, \ \alpha(O) = 1.57 \times 10^{-10}, \ \alpha(P) = 7.5 \times 10^{-11} \\ \delta: \text{ from } \alpha(\text{K}) \text{exp.} \\ A_2 &= +0.21 \ 21; \ A_4 &= -0.20 \ 26 \ (1976 \text{We24}) \\ \alpha(\text{K}) \text{exp} &= 0.0058 \ 5 \\ \alpha(\text{K}) &= 0.0075 \ 23; \ \alpha(\text{L}) &= 0.0012 \ 3; \ \alpha(\text{M}) &= 0.00026 \ 6 \\ \alpha(\text{N}) &= 6.1 \times 10^{-5} \ 14; \ \alpha(\text{O}) &= 8.6 \times 10^{-6} \ 21; \ \alpha(\text{P}) &= 4.4 \times 10^{-7} \ 14 \\ \delta: \ -1.5 \ +8 - 30 \ \text{or} \ +12 \ +\infty -7 \ (1976 \text{We24}) \ \text{from } \gamma(\theta). \ \alpha(\text{K}) \text{exp} \\ \text{gives } \delta &< 2.8, \ \text{supporting the lower value.} \end{aligned}$
722 ^l	< 0.5	2240.1?	(10^{+})	1518.09	10^{+}				
732	< 0.25 <i>f</i>	1929.5	(6+)	1197.52	5+	8			
732.4 5	< 0.25 <i>f</i>	2815.2	(13 ⁻)	2082.79	12^{+}	8			
744.2 1	6.0	1358.50	6 ⁺	614.39	6 ⁺	M1+E2	3.7 +19-8	0.0068 3	A ₂ =-0.24 <i>14</i> ; A ₄ =-0.04 <i>18</i> (1976We24) A ₂ =+0.14 <i>3</i> ; α(K)exp=0.0056 <i>2</i> α(K)=0.00559 <i>23</i> ; α(L)=0.00092 <i>3</i> ; α(M)=0.000205 <i>7</i> α(N)=4.75×10 ⁻⁵ <i>15</i> ; α(O)=6.67×10 ⁻⁵ <i>22</i> ; α(P)=3.19×10 ⁻⁷ <i>15</i> δ: from α(K)exp. Other: -1.9 + <i>16</i> - <i>10</i> or >+3.3 (1976We24) from γ(θ) supporting the lower value.
758.8 1	9.4	1058.23	4 ⁺	299.47	4+	E2(+M1)	>+7	0.00618 15	A ₂ =-0.24 <i>10</i> ; A ₄ =-0.11 <i>14</i> (1976We24); A ₂ =+0.05 <i>4</i> ; α (K)exp=0.0053 <i>5</i> α (K)=0.00510 <i>13</i> ; α (L)=0.000841 <i>13</i> ; α (M)=0.000189 <i>4</i> α (N)=4.37×10 ⁻⁵ <i>9</i> ; α (O)=6.11×10 ⁻⁶ <i>13</i> ; α (P)=2.90×10 ⁻⁷ <i>8</i> δ : -1.2 +4-10 or >+7 (1976We24), α (K)exp giving dominant E2 supports higher value.
769.9 ^{&} 2	2.8	860.79	2+	91.389	2+	E2(+M1)	>1.8	0.00725 11	α (K)exp=0.0050 <i>10</i> α (K)=0.00604 9; α (L)=0.000943 <i>14</i> ; α (M)=0.000210 <i>3</i> α (N)=4.88×10 ⁻⁵ 7; α (O)=6.93×10 ⁻⁶ <i>10</i> ; α (P)=3.50×10 ⁻⁷ 5
820.6 <i>I</i> 841.9 <i>I</i>	1.4 1.5	1845.40 1702.70	7- (4 ⁺)	1024.60 860.79	8 ⁺	E1		0.00199	$ α(K) = 0.00505 α(K) = 0.00505 α(K) = 0.001698 24; α(L) = 0.000231 4; α(M) = 5.07 \times 10^{-5} 7 α(N) = 1.178 \times 10^{-5} 17; α(O) = 1.694 \times 10^{-6} 24; α(P) = 9.26 \times 10^{-8} 13 Mult.: α(K)exp gives E1+M2 with δ=0.44 4; also consistent with E2, but ΔJπ suggests E1. M2 component of 16% is less likely from RUL, assuming the level half-life is <20 ns or so. $
854 [@] 5	0.1	1468.87	(4^+)	614.39	6^+	F0.341	2.0.7	0.0050 (
855.0 <i>1</i>	9.6	946.36	3+	91.389	2+	E2+M1	-2.8 7	0.0052 4	A ₂ =-0.28 4; A ₄ =-0.08 4 α (K)=0.0043 3; α (L)=0.00067 4; α (M)=0.000150 8

 \neg

¹⁶⁴₆₈Er₉₆-7

					¹⁶² Dy (α ,2n	γ) 1984Fi07	,1976We24 (co	ontinued)
						γ ⁽¹⁶⁴ Er) (co	ontinued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡] j	δ^{\ddagger}	α^{k}	Comments
								$\alpha(N)=3.47\times10^{-5} \ I8; \ \alpha(O)=4.9\times10^{-6} \ 3; \ \alpha(P)=2.47\times10^{-7} \ I8$ Additional information 4. δ : from A ₂ =-0.28 4, A ₄ =-0.08 4. Other: +0.13 26 or -7.7 +51-\infty (from $\gamma(\theta)$, 1976We24).
860.3 ^{&} 2	2.3	860.79	2+	0.0 0+	E2		0.00461	α (K)exp=0.0036 <i>I</i> α (K)=0.00383 <i>6</i> ; α (L)=0.000609 <i>9</i> ; α (M)=0.0001361 <i>19</i> α (N)=3.16×10 ⁻⁵ <i>5</i> ; α (O)=4.45×10 ⁻⁶ <i>7</i> ; α (P)=2.17×10 ⁻⁷ ₃
890.1 <i>I</i>	0.70	2408.19	(11 ⁻)	1518.09 10+	E1		1.70×10 ⁻³	α(K)exp=0.0046 3 $ α(K)=0.001452 21; α(L)=0.000197 3; α(M)=4.32×10^{-5} 6 $ $ α(N)=1.003×10^{-5} 14; α(O)=1.444×10^{-6} 21; $ $ α(P)=7.94×10^{-8} 12 $ Mult.: $α(K)exp$ gives E1+M2 with $δ=0.49 3$; also consistent with E2+M1, $δ=1.5 3$ but $ΔJ^{π}$ suggests E1. M2 component of 19% is less likely from RUL, assuming the level half-life is <20 ns or so.
898.1 <i>1</i>	13.1	1197.52	5+	299.47 4+	M1+E2	-2.1 +11-5	0.0049 4	A2=-0.22 7; A4=+0.08 11 (1976We24); α (K)exp=0.0041 3 α (K)=0.0041 4; α (L)=0.00063 4; α (M)=0.000139 9 α (N)=3.24×10 ⁻⁵ 21; α (O)=4.6×10 ⁻⁶ 4; α (P)=2.37×10 ⁻⁷ 21 δ : from α (K)exp, sign from $\gamma(\theta)$. Other: -4.8 +15-59 or 0.00 +7-14 (1976We24) from $\alpha(\theta)$
930.1 <i>1</i>	6.0	1544.73	7+	614.39 6+	E2+M1	-2.4 3	0.00442 15	A ₂ =-0.32 <i>10</i> ; A ₄ =+0.31 <i>15</i> (1976We24); A ₂ =-0.47 <i>3</i> ; α (K)exp=0.0046 <i>3</i> α (K)=0.00370 <i>13</i> ; α (L)=0.000563 <i>16</i> ; α (M)=0.000125 <i>4</i> α (N)=2.91×10 ⁻⁵ <i>9</i> ; α (O)=4.14×10 ⁻⁶ <i>13</i> ; α (P)=2.13×10 ⁻⁷ <i>8</i> δ : from 1984Fi07. Others: -6.5 +22-55 (1976We24), 1.1 <i>2</i> from α (K)exp.
939.1 ^{<i>l</i>} 5	0.7 5	1553.47	(5 ⁻)	614.39 6+	E1		1.54×10 ⁻³	$\alpha(K) \exp = 0.0010 I$ $\alpha(K) = 0.001312 I9; \ \alpha(L) = 0.0001775 25;$ $\alpha(M) = 3.89 \times 10^{-5} 6$ $\alpha(N) = 9.04 \times 10^{-6} I3; \ \alpha(O) = 1.303 \times 10^{-6} I9;$ $\alpha(P) = 7.18 \times 10^{-8} I0$
944.6 <i>1</i> 952 952.6 <i>5</i> 961.3 5	$0.89 < 1.5^{h} < 1.5^{h} = 0.35$	2462.69 2470.1 1976.84 2479.15	10^{+} (11 ⁻) 9 ⁺ (11) ⁺	$\begin{array}{cccc} 1518.09 & 10^{+} \\ 1518.09 & 10^{+} \\ 1024.60 & 8^{+} \\ 1518.09 & 10^{+} \end{array}$	E2+M1+E0 <i>i</i> <i>i</i>		0.0144 5	α(K)exp=0.0115 4
980.8 1	1.7	2005.40	8+	1024.60 8+	E2+M1+E0		0.0114 19	α(K)exp=0.0091 15

 ∞

From ENSDF

 $^{164}_{68}{
m Er}_{96}$ -8

 $^{164}_{68}{
m Er}_{96}{
m -8}$

						¹⁶² D	$\mathbf{y}(\alpha, 2\mathbf{n}\gamma)$	1984Fi07,19	76We24 (continued)
								$\gamma(^{164}\text{Er})$ (conti	inued)
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	J_i^{π}	E _f	J_f^{π}	Mult. [‡] j	δ^{\ddagger}	α^{k}	Comments
1001.2 5	0.44	2519.3	12+	1518.09	10+	E2		0.00335	$\begin{aligned} &\alpha(\text{K})\exp=0.0041 \ 11\\ \text{A}_2=+0.40; \ \text{A}_4=-0.16 \ (1983\text{Na14})\\ &\alpha(\text{K})=0.00280 \ 4; \ \alpha(\text{L})=0.000429 \ 6; \ \alpha(\text{M})=9.54\times10^{-5} \ 14\\ &\alpha(\text{N})=2.21\times10^{-5} \ 4; \ \alpha(\text{O})=3.14\times10^{-6} \ 5; \ \alpha(\text{P})=1.596\times10^{-7} \ 23 \end{aligned}$
1009 [@] 5		1308	2+	299.47	4+				
1030.0 <i>1</i>	2.7	2054.60	(9 ⁻)	1024.60	8+	E1		1.30×10^{-3}	α (K)exp=0.0011 2 α (K)=0.001105 16; α (L)=0.0001488 21; α (M)=3.26×10 ⁻⁵ 5 α (N)=7.58×10 ⁻⁶ 11; α (O)=1.004×10 ⁻⁶ 16; α (R)=6.06×10 ⁻⁸ 0
1044.3 <i>1</i>	1.5	2068.90	8+	1024.60	8+	E2+M1	1.3 7	0.0040 9	$\begin{array}{l} \alpha(N) = 7.58 \times 10^{-5} II; \ \alpha(O) = 1.094 \times 10^{-5} IO; \ \alpha(P) = 6.06 \times 10^{-5} g \\ \alpha(K) \exp = 0.0030 \ II \\ \alpha(K) = 0.0034 \ 8; \ \alpha(L) = 0.00049 \ IO; \ \alpha(M) = 0.000109 \ 22 \\ \alpha(D) = 2.5 \ 10^{-5} 5 g \\ \alpha(D) = 2.6 \ 10^{-5} 5 g \\ \alpha(D) = 2.6 \ 10^{-7} 5 g \\ \alpha(D$
1049.9 <i>1</i>	3.0	1664.27	5-	614.39	6+	E1		1.25×10^{-3}	$\alpha(N)=2.5\times10^{-5} \text{ ; } \alpha(O)=3.6\times10^{-6} \text{ 8; } \alpha(P)=2.0\times10^{-7} \text{ 5}$ $\alpha(K)\exp=0.0006 \text{ 2}$ $\alpha(K)=0.001067 \text{ 15; } \alpha(L)=0.0001436 \text{ 21; } \alpha(M)=3.14\times10^{-5} \text{ 5}$
1059.1 <i>1</i>	2.7	1358.50	6+	299.47	4+	E2		0.00299	$\alpha(N)=7.31\times10^{-6} \ 11; \ \alpha(O)=1.055\times10^{-6} \ 15; \ \alpha(P)=5.85\times10^{-8} \ 9 \\ \alpha(K)=0.0019 \ 2 \\ \alpha(K)=0.00250 \ 4; \ \alpha(L)=0.000378 \ 6; \ \alpha(M)=8.40\times10^{-5} \ 12 $
1069.0 <i>1</i>	0.62	2093.60		1024.60	8+	M1+E2	0.9 5	0.0042 8	$\alpha(N)=1.95\times10^{-5} 3; \alpha(O)=2.78\times10^{-6} 4; \alpha(P)=1.426\times10^{-7} 20$ $\alpha(K)\exp=0.0031 10$ $\alpha(K)=0.0036 7; \alpha(L)=0.00051 8; \alpha(M)=0.000113 18$ $\alpha(K)=2.6\times10^{-5} 4 x^{-2}(O)=2.8\times10^{-6} 6 x^{-2}(O)=2.1\times10^{-7} 4$
1084.0 <i>1</i>	3.2	2108.60	(9-)	1024.60	8+	E1		1.18×10 ⁻³	$\alpha(N)=2.6\times10^{-5} 4; \ \alpha(O)=5.8\times10^{-5} 6; \ \alpha(P)=2.1\times10^{-4} 4$ A ₂ =-0.40 4; \ \alpha(K)exp=0.0014 2 \(\alpha(K)=0.001007 14; \ \alpha(L)=0.0001353 19; \ \alpha(M)=2.96\times10^{-5} 5 (N)=(-0.001007 14; \alpha(L)=0.0001353 19; \alpha(L)=0
1092.3 <i>1</i>	2.0	1706.69	6+	614.39	6+	M1(+E2)	<0.4	0.00483 17	$\alpha(N)=0.39\times10^{-7} 10; \ \alpha(O)=9.94\times10^{-7} 14; \ \alpha(P)=5.55\times10^{-7} 8$ $\alpha(K)=0.00409 \ 14; \ \alpha(L)=0.000577 \ 19; \ \alpha(M)=0.000127 \ 4$ $\alpha(N)=2.97\times10^{-5} \ 10; \ \alpha(O)=4.31\times10^{-6} \ 14; \ \alpha(P)=2.43\times10^{-7} \ 9$
1111.7 5	0.32	1726.1		614.39	6+				
1149.2 <i>1</i>	2.9	1763.59	(7 ⁻)	614.39	6+	E1		1.07×10 ⁻³	A ₂ =-0.31 <i>12</i> ; α (K)exp=0.0009 <i>2</i> α (K)=0.000906 <i>13</i> ; α (L)=0.0001214 <i>17</i> ; α (M)=2.66×10 ⁻⁵ <i>4</i> α (N)=6.18×10 ⁻⁶ <i>9</i> ; α (O)=8.93×10 ⁻⁷ <i>13</i> ; α (P)=4.98×10 ⁻⁸ <i>7</i> ; α (IPF)=7.39×10 ⁻⁶ <i>11</i>
1169.4 <i>1</i>	1.8	1468.87	(4+)	299.47	4+	M1(+E2)	<0.5	0.00405 19	$A_{2}=+0.31 I5; \ \alpha(K)\exp=0.0043 7$ $\alpha(K)=0.00343 I6; \ \alpha(L)=0.000483 2I; \ \alpha(M)=0.000106 5$ $\alpha(N)=2.48\times10^{-5} II; \ \alpha(O)=3.61\times10^{-6} I6; \ \alpha(P)=2.03\times10^{-7} I0;$ $\alpha(PE)=3.05\times10^{-6} 7$
1183.3 <i>I</i>	1.1	1797.70	5-	614.39	6+	E1		1.02×10 ⁻³	$\alpha(\mathbf{M} + \mathbf{J}) = 5.05 \times 10^{-7} \mathbf{I}$ $\alpha(\mathbf{K}) = 0.0012 6$ $\alpha(\mathbf{K}) = 0.000860 12; \ \alpha(\mathbf{L}) = 0.0001151 17; \ \alpha(\mathbf{M}) = 2.52 \times 10^{-5} 4$ $\alpha(\mathbf{N}) = 5.86 \times 10^{-6} 9; \ \alpha(\mathbf{O}) = 8.47 \times 10^{-7} 12; \ \alpha(\mathbf{P}) = 4.73 \times 10^{-8} 7;$ $\alpha(\mathbf{M} = 1.642 \times 10^{-5} 24)$
1208.2 <i>1</i>	0.56	1507.67	(6 ⁺)	299.47	4+	(E2)		0.00230	$\alpha(\text{IFF})=1.043\times10^{-5} 24$ $\alpha(\text{K})\exp=0.0025 9$ $\alpha(\text{K})=0.00193 3; \alpha(\text{L})=0.000284 4; \alpha(\text{M})=6.30\times10^{-5} 9$

9

						¹⁶² Dy	(α ,2n γ) 19	84Fi07,1976We24 (continued)		
$\gamma(^{164}\text{Er})$ (continued)										
F.Ť	LŤ	F.(level)	īπ	Ec	īπ	Mult ‡j	o ^k	Comments		
Lγ	lγ	$L_l(level)$	^J i	Lf	f	Ivituit.	u	Comments		
								α (N)=1.463×10 ⁻⁵ 21; α (O)=2.09×10 ⁻⁶ 3; α (P)=1.101×10 ⁻⁷ 16; α (IPF)=5.99×10 ⁻⁶ 9 Mult.: α (K)exp gives M1,E2, but ΔJ^{π} consistent with E2.		
1217 [@] 5		1308	2+	91.389	2+					
1231.1 <i>1</i>	4.9	1845.40	7-	614.39	6+	E1	9.74×10^{-4}	$A_2 = -0.39 4$; $A_4 = +0.04 5$; $\alpha(K) \exp = 0.0005 1$		
								$\alpha(K)=0.000801$ 12; $\alpha(L)=0.0001071$ 15; $\alpha(M)=2.34\times10^{-5}$ 4		
								α (N)=5.45×10 ⁻⁶ 8; α (O)=7.88×10 ⁻⁷ 11; α (P)=4.41×10 ⁻⁸ 7; α (IPF)=3.53×10 ⁻⁵ 5		
1254.0 <i>1</i>	0.95	1553.47	(5 ⁻)	299.47	4+					
1312.7 <i>1</i>	0.84	2337.30	(9 ⁻)	1024.60	8+					
1364.6 4	4.1	1664.27	5-	299.47	4+					
1370.7 5	0.46	1985.01	7-	614.39	6+					
1375 ^{^w 5}		1468.87	(4^{+})	91.389	2+					
1391 ¹		2005.40	8+	614.39	6+					
1403.6 <i>1</i>	0.96	2017.99	7-	614.39	6+					
1423.5 5	1.1 6	2448.1		1024.60	8+					
1454.5 7	0.6 4	2068.90	8+	614.39	6+					
1498.7 7	1.7 7	1/9/./0	5-	299.47	4 ⁺					
1537 1	2.8 10	2151.4		614.39	6' 0+					
130/1	1.0 0	2391.0		614.20	8 · 6 +					
1742 2	2611	200.4 2046 5		200 47	0 4+					
1842.2	3815	2141 5		299.47	4 ⁺					
1869 2	1.1 5	2483.4		614.39	6 ⁺					

[†] From $(\alpha, 2n\gamma)$ E=24 MeV at 120° (1984Fi07) unless otherwise stated. $\Delta(E\gamma)=0.1$ assigned for strong transitions (I $\gamma>0.5$) and 0.5 for weak and unresolved peaks, as suggested by 1984Fi07. $\Delta(I\gamma)=5\%$.

[±] From $\alpha(K)$ exp and $\gamma(\theta)$ data of 1984Fi07. The $\delta(E2/M1)$ values based on $\alpha(K)$ exp values have been deduced here by the evaluators.

[#] Precise value from 1970Je09, measured using curved-crystal spectrometer. Values from other studies are in agreement, but less precise.

[@] From 1966Gr04. $\Delta(E\gamma)=5$ keV assigned (evaluators) based on comparison with $E\gamma$ known from other reactions.

[&] $\Delta(E\gamma)$ assigned as 0.2 keV (evaluators) due to poor fit.

^a 3.2 for 219.9+220.1. ^b 2.4 for 296.9+298.7.

^c $A_2 = +0.18 \ 10, \ A_4 = -0.02 \ 11. \ \alpha(K) \exp = 0.054 \ 9 \ for \ 296.9 + 298.7.$

^d 0.8 for 435.4+436.5.

 e A₂=+0.30 6, A₄=-0.06 8. α (K)exp=0.020 1 for 435.4+436.5.

^f 0.25 for 732+732.4.

 $^{g} \alpha(K) \exp < 0.004$ for 732+732.4.

^h 1.5 for 952+952.6.

¹⁶²**Dy**(α ,2**n** γ) 1984Fi07,1976We24 (continued)

 $\gamma(^{164}\text{Er})$ (continued)

ⁱ A₂=-0.25 8 for 952+952.6.
^j From Adopted Gammas for levels below 800 keV.
^k Additional information 12.
^l Placement of transition in the level scheme is uncertain.

¹⁶⁴₆₈Er₉₆

¹⁶⁴₆₈Er₉₆

¹⁶²**Dy**(α,2**n**γ) 1984Fi07,1976We24

¹⁶⁴₆₈Er₉₆

¹⁶⁴₆₈Er₉₆

(2⁻) 1495.4

¹⁶⁴₆₈Er₉₆