## <sup>164</sup>**Tb** $\beta^-$ decay (3.0 min) **1971Gu18**

|                 | Histo                                  | ory               |                        |
|-----------------|----------------------------------------|-------------------|------------------------|
| Туре            | Author                                 | Citation          | Literature Cutoff Date |
| Full Evaluation | Balraj Singh and Jun Chen <sup>#</sup> | NDS 147, 1 (2018) | 30-Nov-2017            |

Parent: <sup>164</sup>Tb: E=0;  $J^{\pi}=(5^+)$ ;  $T_{1/2}=3.0 \text{ min } I$ ;  $Q(\beta^-)=3.89\times 10^3 I0$ ;  $\%\beta^-$  decay=100.0

 $^{164}$ Tb-J<sup> $\pi$ </sup>,T<sub>1/2</sub>: From  $^{164}$ Tb Adopted Levels.

<sup>164</sup>Tb-Q( $\beta^{-}$ ): From 2017Wa10.

The decay scheme of <sup>164</sup>Tb  $\beta^-$  decay is not considered (by evaluators) as well established. A large number of reported  $\gamma$  rays (with a total intensity of  $\approx 22\%$ ) remain unplaced. Several transitions are multiply placed which lead to intensity-balance problems for many levels.

1971Gu18: measured E $\gamma$ , I $\gamma$ , E( $\beta^-$ ), I( $\beta^-$ ),  $\gamma\gamma$ ,  $\beta\gamma$ , T<sub>1/2</sub>. Comparisons of experimental branching ratios with theory. Others:

1971Ka02 (also 1969KaZP,1970HeZH,1968DeZZ): measured E $\gamma$ , I $\gamma$ , E( $\beta^-$ ), I( $\beta^-$ ),  $\gamma\gamma$ ,  $\beta\gamma$ . 1971Ka02 mention that 109  $\gamma$  rays were seen and 88 of these were placed in a level scheme. The authors show a partial level scheme in the paper with about 40 transitions.

1968Mo14: measured  $E\gamma$ ,  $I\gamma$ ,  $E(\beta^{-})$ ,  $T_{1/2}$ . A total of 40  $\gamma$  rays reported.

Thesis by H.R. Martin, University of Arkansas (1967) (quoted by 1971Gu18). 39  $\gamma$  rays reported.

An 1804 level (decaying by 579 $\gamma$  and 681.4 $\gamma$ ) proposed by 1971Ka02 has been omitted here, since both these  $\gamma$  rays are ascribed by 1971Gu18 to long-lived impurities.

1960Al33: a 23-h activity assigned to <sup>164</sup>Tb decay. This long-lived activity in <sup>164</sup>Tb has not been confirmed in any of the later studies of <sup>164</sup>Tb decay.

#### <sup>164</sup>Dy Levels

| E(level) <sup>†</sup>   | $J^{\pi \ddagger}$ | Comments                                                                              |
|-------------------------|--------------------|---------------------------------------------------------------------------------------|
| 0.0                     | $0^{+}$            |                                                                                       |
| 73.37 5                 | 2+                 |                                                                                       |
| 242.22 7                | 4+                 |                                                                                       |
| 501.36 16               | 6+                 |                                                                                       |
| 761.75 10               | 2+                 |                                                                                       |
| 828.11 9                | 3+                 |                                                                                       |
| 916.00 10               | 4+                 |                                                                                       |
| 976.83 10               | 2-                 |                                                                                       |
| 1024.72 11              | 5+                 |                                                                                       |
| 1039.21 10              | 3-                 |                                                                                       |
| 1122.79 10              | 4-                 |                                                                                       |
| 1155.8 4                | $(6)^{+}$          |                                                                                       |
| 1225.08 11              | (5)-               |                                                                                       |
| 1393.8 4                | $(2^{+})$          |                                                                                       |
| 1587.88 13              | (4)-               |                                                                                       |
| 1607.7 4                | (4+)               |                                                                                       |
| 1686.4 3                | (5)                |                                                                                       |
| 1725.3 4                | $(1, 5, 2^{+})$    | E(level): the existence of this level is questioned by $201/Go0/$ in $(n,n'\gamma)$ . |
| 1770.23                 | (4,5,5')           |                                                                                       |
| 1932.5 4                | $(4,5^+)^{\bf X}$  |                                                                                       |
| 1953.0 4                | (4 <sup>+</sup> )  |                                                                                       |
| 1998.63 13              | (4 <sup>+</sup> )  |                                                                                       |
| 2157.72 18              | $(4^+)$            |                                                                                       |
| 2173.13 23              | $(4)^{+}$          |                                                                                       |
| 2194.70 22              | $(4^+)$            |                                                                                       |
| 2205.69 18              | (4')               |                                                                                       |
| 2241.13                 | (4.)               |                                                                                       |
| 2312.5?** 3             |                    |                                                                                       |
| 2752.7? <sup>#@</sup> 5 | (4)                |                                                                                       |
|                         |                    |                                                                                       |

## <sup>164</sup>Tb $β^-$ decay (3.0 min) 1971Gu18 (continued)

#### <sup>164</sup>Dy Levels (continued)

 $\begin{array}{c} E(\text{level})^{\dagger} & J^{\pi \ddagger} \\
 3001.6^{\#} 4 & (4^+, 5^+) \\
 3005.5^{\#} 5 & (4^+, 5, 6^+) \\
 3014.3 4 & (4^+, 5^+)
 \end{array}$ 

<sup>†</sup> From least-squares fit to  $E\gamma$  data.

<sup>‡</sup> From Adopted Levels.

<sup>#</sup> From 1971Ka02 only.

<sup>@</sup> This level is treated as uncertain (evaluators) since the deexciting transitions reported by 1971Ka02 are either not seen by 1971Gu18 or are placed elsewhere in the level scheme.

& Gammas to 3<sup>+</sup> and 5<sup>-</sup>, probable allowed/first forbidden  $\beta$  decay from (5<sup>+</sup>). J=(2,3)<sup>+</sup> from (n, $\gamma$ ) E=res for a 1932 level may correspond to a different level.

#### $\beta^{-}$ radiations

The decay scheme is incomplete as many  $\gamma$  rays are unplaced. The RADLST code gives total energy absorbed=4612 keV 114 in disagreement with Q( $\beta^-$ )=3890 keV 100.

Singles  $\beta$  spectrum (1971Gu18) indicate three branches of E( $\beta^-$ ) (I( $\beta^-$ )): 2950 150 ( $\approx 6\%$ ), 2260 150 ( $\approx 20\%$ ), 1700 100 (74%).  $\beta\gamma$  coin data (1971Gu18): E( $\beta^-$ )=1600 and 2200 with gate at 168.8 $\gamma$ ; 1600 and 2250 with gate at 211.05 $\gamma$ +215.0 $\gamma$ ; 1900 with gate at 344.83; 1800 with gate at 410.34; 1600 and 2200 with gate at 610.98; 1600 with gate at 617.82.

| E(decay)                  | E(level) | Ιβ <sup>-†#</sup> | $\log ft^{\dagger}$ | Comments                                                                                                                                         |
|---------------------------|----------|-------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| $(8.8 \times 10^2 \ 10)$  | 3014.3   | 7.0               | 5.0                 | av E $\beta$ =289 40                                                                                                                             |
| $(8.8 \times 10^2 \ 10)$  | 3005.5   | 0.4               | 6.2                 | av E $\beta$ =293 40                                                                                                                             |
| $(8.9 \times 10^2 \ 10)$  | 3001.6   | 1.2               | 5.8                 | av E $\beta$ =294 40                                                                                                                             |
| $(1.14 \times 10^3 @ 10)$ | 2752.7?  | 1.4               | 6.1                 | av Eβ=393 41                                                                                                                                     |
| $(1.58 \times 10^3 @ 10)$ | 2312.5?  | 2.1               | 6.4                 | av Eβ=577 <i>43</i>                                                                                                                              |
| $(1.64 \times 10^3 \ 10)$ | 2247.7   | 2.7               | 6.4                 | av E $\beta$ =605 44                                                                                                                             |
| $(1.68 \times 10^3 \ 10)$ | 2205.69  | 32.6              | 5.3                 | av Eβ=623 44                                                                                                                                     |
|                           |          |                   |                     | E(decay): $\approx 1600$ from B(617.82 $\gamma$ ) (1971Gu18).                                                                                    |
| $(1.70 \times 10^3 \ 10)$ | 2194.70  | 11.3              | 5.8                 | av Eβ=628 44                                                                                                                                     |
| $(1.72 \times 10^3 \ 10)$ | 2173.13  | 4.0               | 6.3                 | av E $\beta$ =637 44                                                                                                                             |
| $(1.73 \times 10^3 \ 10)$ | 2157.72  | 4.0               | 6.3                 | av Eβ=644 <i>44</i>                                                                                                                              |
| $(1.89 \times 10^3 \ 10)$ | 1998.63  | 6.7               | 6.2                 | av Eβ=713 44                                                                                                                                     |
|                           |          |                   |                     | E(decay): $\approx 1800$ from B(410.34 $\gamma$ ) coin (1971Gu18).                                                                               |
| $(1.94 \times 10^3 \ 10)$ | 1953.0   | 3.5               | 6.6                 | av Eβ=733 44                                                                                                                                     |
| $(1.96 \times 10^3 \ 10)$ | 1932.5   | 8.7               | 6.2                 | av Eβ=742 44                                                                                                                                     |
|                           |          |                   |                     | E(decay): $\approx 1900$ from B(344.8 $\gamma$ ) coin (1971Gu18).                                                                                |
| $(2.12 \times 10^3 @ 10)$ | 1770.2   | 1.6               | 7.0                 | av Eβ=813 45                                                                                                                                     |
| $(2.16 \times 10^3 @ 10)$ | 1725.3   | 0.4               | 7.7                 | av Eβ=833 <i>45</i>                                                                                                                              |
| $(2.20 \times 10^3 \ 10)$ | 1686.4   | 2.6               | 6.9                 | av E $\beta$ =850 45                                                                                                                             |
| $(2.28 \times 10^3 \ 10)$ | 1607.7   | 4.6               | 6.7                 | av E $\beta$ =885 45                                                                                                                             |
| $(2.30 \times 10^3 \ 10)$ | 1587.88  | 6.2               | 6.6                 | av Eβ=894 45                                                                                                                                     |
|                           |          |                   |                     | E(decay): $\approx 2200$ from B(610.89 $\gamma$ ) coin (1971Gu18).                                                                               |
| $(2.50 \times 10^3 @ 10)$ | 1393.8   | 2.6               | 7.1                 | av Eβ=981 45                                                                                                                                     |
| . ,                       |          |                   |                     | log $f$ =7.1 is too low for $\Delta J$ =(3), $\Delta \pi$ =no. Apparent I $\beta$ =2.6 may be due to missing $\gamma$ feeding to the 1394 level. |
| $(2.66 \times 10^3 \ 10)$ | 1225.08  | 2.7               | 7.2                 | av E $\beta$ =1057 45                                                                                                                            |

Continued on next page (footnotes at end of table)

## <sup>164</sup>Tb $\beta^-$ decay (3.0 min) 1971Gu18 (continued)

|                           |          |                   |                            | $\beta^-$ radiations (con | ntinued) |  |
|---------------------------|----------|-------------------|----------------------------|---------------------------|----------|--|
| E(decay)                  | E(level) | Ιβ <sup>-†#</sup> | $\log ft^{\dagger}$        |                           | Comments |  |
| $(2.73 \times 10^3 \ 10)$ | 1155.8   | 1.0               | 7.7                        | av Eβ=1088 46             |          |  |
| $(2.77 \times 10^3 \ 10)$ | 1122.79  | 2.0               | 7.4                        | av Eβ=1103 46             |          |  |
| $(2.85 \times 10^3 @ 10)$ | 1039.21  | <4.8 <sup>‡</sup> | >8.4 <sup>1</sup> <i>u</i> | av Eβ=1121 45             |          |  |
| $(2.91 \times 10^3 @ 10)$ | 976.83   | <3.2 <sup>‡</sup> | >7.3                       | av Eβ=1169 46             |          |  |
| $(3.65 \times 10^3 @ 10)$ | 242.22   | <5.2 <sup>‡</sup> | >7.5                       | av Eβ=1503 46             |          |  |
|                           |          |                   |                            |                           |          |  |

<sup>†</sup> All  $\beta$  feedings and associated log *ft* values are considered as approximate since the level scheme is not well established. From  $\beta\gamma$  coin data of 1971Gu18, large  $\beta$  feeding of 74% to 2190 *100* levels is indicated. Intensity balance leads to unrealistic negative feedings of  $\approx 5\%$  each to the 762, 828, and 916 levels, which must be due to unresolved problems in the level scheme.

<sup>‡</sup> No evidence of any  $\beta$  feeding from  $\beta\gamma$  coin (1971Gu18). Apparent  $\beta$  feeding from intensity balance is most likely due to decay scheme problems.

<sup>#</sup> Absolute intensity per 100 decays.

<sup>@</sup> Existence of this branch is questionable.

 $\gamma(^{164}\text{Dy})$ 

I $\gamma$  normalization:  $\Sigma$  (I( $\gamma$ +ce) of  $\gamma$  rays to g.s.)=100. No  $\beta^-$  feeding is expected to g.s. and 73 level, supported also by  $\beta\gamma$  coin. About 21% of the intensity is unplaced and the intensity balance for several levels is not satisfactory. In calculating normalization factor, it is assumed that all the ground-state transitions are accounted for.

| $E_{\gamma}$                        | $I_{\gamma}^{d}$    | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>†</sup> | $\alpha^{c}$ | Comments                                                                                                                                                                                                                             |
|-------------------------------------|---------------------|------------------------|----------------------|------------------|----------------------|--------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37.7 3                              | 1.0 5               | 2194.70                | (4 <sup>+</sup> )    | 2157.72          | (4 <sup>+</sup> )    | [M1]               | 6.57 19      | $\alpha(L) = 5.14 \ 15; \ \alpha(M) = 1.13 \ 4$                                                                                                                                                                                      |
| <sup>x</sup> 39.9 <i>3</i>          | 1.0 5               |                        |                      |                  |                      |                    |              | $\alpha(N)=0.261 8; \alpha(O)=0.0381 11; \alpha(P)=0.00216 6$                                                                                                                                                                        |
| <sup>x</sup> 57.2 <sup>&amp;</sup>  |                     |                        |                      |                  |                      |                    |              |                                                                                                                                                                                                                                      |
| <sup>x</sup> 68.16 <sup>&amp;</sup> |                     |                        |                      |                  |                      |                    |              |                                                                                                                                                                                                                                      |
| <sup>x</sup> 70.0 <sup>&amp;</sup>  | <b>a</b> a <b>a</b> |                        | <b>a</b> +           |                  | 0.±                  |                    |              |                                                                                                                                                                                                                                      |
| 73.37 5                             | 39 5                | 73.37                  | 2+                   | 0.0              | $0^+$                | E2                 | 8.89         | $\alpha(K)=2.15 \ 3; \ \alpha(L)=5.19 \ 8; \ \alpha(M)=1.247 \ 18 \ \alpha(N)=0.279 \ 4; \ \alpha(O)=0.0331 \ 5; \ \alpha(P)=9.41\times10^{-5} \ 14$                                                                                 |
| <sup>x</sup> 84.3 3                 | 2.0 5               |                        |                      |                  |                      |                    |              |                                                                                                                                                                                                                                      |
| <sup>x</sup> 86.7 3                 | 1.5 5               |                        |                      |                  |                      |                    |              |                                                                                                                                                                                                                                      |
| 98.09 10                            | 1.5 5               | 1122.79                | 4-                   | 1024.72          | 5+                   | E1                 | 0.325        | $\alpha(K)=0.271 4; \alpha(L)=0.0422 6; \alpha(M)=0.00925 14$<br>$\alpha(N)=0.00210 3; \alpha(O)=0.000286 4; \alpha(P)=1.247\times10^{-5} 18$                                                                                        |
| x98.72 10                           | 1.0 5               |                        |                      |                  |                      |                    |              |                                                                                                                                                                                                                                      |
| <sup>x</sup> 104.3 5                | 1.5 5               |                        |                      |                  |                      |                    |              |                                                                                                                                                                                                                                      |
| 123.22 5                            | 7.0 7               | 1039.21                | 3-                   | 916.00           | 4+                   | [E1]               | 0.1765       | $\alpha(K)=0.1480\ 21;\ \alpha(L)=0.0224\ 4;\ \alpha(M)=0.00490\ 7$<br>$\alpha(N)=0.001115\ 16;\ \alpha(O)=0.0001537\ 22;\ \alpha(P)=7.03\times10^{-6}\ 10$                                                                          |
| 131.0 5                             | 1.5 5               | 1155.8                 | (6)+                 | 1024.72          | 5+                   | M1                 | 1.109 20     | $\alpha(\mathbf{K})=0.934 \ 17; \ \alpha(\mathbf{L})=0.1369 \ 25; \ \alpha(\mathbf{M})=0.0301 \ 6$<br>$\alpha(\mathbf{N})=0.00695 \ 13; \ \alpha(\mathbf{O})=0.001018 \ 18; \ \alpha(\mathbf{P})=5.81\times10^{-5} \ 11$             |
| <sup>x</sup> 141.0 5                | 2.0 5               |                        |                      |                  |                      |                    |              |                                                                                                                                                                                                                                      |
| 148.76 5                            | 18.5 15             | 976.83                 | $2^{-}$              | 828.11           | 3+                   | E1                 | 0.1066       | $\alpha(\mathbf{K})=0.0896 \ 13; \ \alpha(\mathbf{L})=0.01330 \ 19; \ \alpha(\mathbf{M})=0.00291 \ 4$<br>$\alpha(\mathbf{N})=0.000664 \ 10; \ \alpha(\mathbf{O})=9.23\times10^{-5} \ 13; \ \alpha(\mathbf{P})=4.37\times10^{-6} \ 7$ |
| <sup>x</sup> 152.6 5                | 4 2                 |                        |                      |                  |                      |                    |              |                                                                                                                                                                                                                                      |
| 154                                 | $0.27^{b}$ 5        | 916.00                 | 4+                   | 761.75           | 2+                   | [E2]               | 0.573        | $L_{x}$ : deduced from branching ratio in Adopted Gammas.                                                                                                                                                                            |
| 159.45 20                           | 2.0 5               | 2157.72                | $(4^+)$              | 1998.63          | $(4^+)$              | [M1+E2]            | 0.57 7       | $\alpha(K)=0.42$ 12; $\alpha(L)=0.12$ 4; $\alpha(M)=0.027$ 10                                                                                                                                                                        |
|                                     |                     |                        |                      |                  |                      |                    |              | $\alpha$ (N)=0.0061 22; $\alpha$ (O)=0.00080 22; $\alpha$ (P)=2.4×10 <sup>-5</sup> 10                                                                                                                                                |
| 168.86 5                            | 120 6               | 242.22                 | 4+                   | 73.37            | $2^{+}$              | E2                 | 0.419        | $\alpha(K)=0.262$ 4; $\alpha(L)=0.1210$ 17; $\alpha(M)=0.0285$ 4                                                                                                                                                                     |
|                                     |                     |                        |                      |                  |                      |                    |              | $\alpha$ (N)=0.00643 9; $\alpha$ (O)=0.000801 12; $\alpha$ (P)=1.200×10 <sup>-5</sup> 17                                                                                                                                             |
| 174.4 3                             | 1.0 5               | 2173.13                | $(4)^{+}$            | 1998.63          | (4 <sup>+</sup> )    | [M1+E2]            | 0.44 6       | $\alpha(K)=0.33 \ 9; \ \alpha(L)=0.083 \ 23; \ \alpha(M)=0.019 \ 6$<br>$\alpha(N)=0.0044 \ 13; \ \alpha(O)=0.00058 \ 13; \ \alpha(P)=1.8\times10^{-5} \ 8$                                                                           |
| <sup>x</sup> 176.7 3                | 1.0.5               |                        |                      |                  |                      |                    |              |                                                                                                                                                                                                                                      |
| 185.84 20                           | 1.5 5               | 1225.08                | $(5)^{-}$            | 1039.21          | 3-                   | E2                 | 0.302        | $\alpha(K)=0.197 3; \alpha(L)=0.0811 12; \alpha(M)=0.0191 3$                                                                                                                                                                         |
|                                     |                     |                        |                      |                  |                      |                    |              | $\alpha(N)=0.00430$ 7; $\alpha(O)=0.000540$ 8; $\alpha(P)=9.25\times10^{-6}$ 14                                                                                                                                                      |
| 196.75 15                           | 1.0 5               | 1024.72                | 5+                   | 828.11           | 3+                   | [E2]               | 0.250        | $\alpha(K)=0.1666\ 24;\ \alpha(L)=0.0641\ 10;\ \alpha(M)=0.01504\ 22$                                                                                                                                                                |
|                                     |                     |                        |                      |                  |                      |                    |              | $\alpha$ (N)=0.00340 5; $\alpha$ (O)=0.000429 7; $\alpha$ (P)=7.92×10 <sup>-6</sup> 12                                                                                                                                               |
| 200.50 15                           | 2.0 10              | 1225.08                | (5)-                 | 1024.72          | 5+                   | [E1]               | 0.0483       | $\alpha$ (K)=0.0408 6; $\alpha$ (L)=0.00591 9; $\alpha$ (M)=0.001292 19<br>$\alpha$ (N)=0.000296 5; $\alpha$ (O)=4.16×10 <sup>-5</sup> 6; $\alpha$ (P)=2.06×10 <sup>-6</sup> 3                                                       |

4

 $^{164}_{66}\mathrm{Dy}_{98}\text{-}4$ 

| $ \frac{y(^{164}\text{Dy}) \text{ (continued)}}{206.805} \frac{I_y d}{7.9 \ lo} \frac{I_y d}{1122.79} \frac{E_f}{4^-} \frac{J_f^{\pi}}{916.00} \frac{J_f^{\pi}}{4^+} \frac{K_1}{E1} \frac{\alpha^c}{0.0446} \frac{\alpha^c}{\alpha(\text{K})=0.0376 \ 6; \ \alpha(\text{L})=0.00544 \ 8; \ \alpha(\text{M})=0.001189 \ 17}{\alpha(\text{N})=0.000272 \ 4; \ \alpha(\text{O})=3.84 \times 10^{-5} \ 6; \ \alpha(\text{P})=1.91 \times 10^{-6} \ 3}}{\alpha(\text{N})=0.000172 \ 4; \ \alpha(\text{O})=3.63 \times 10^{-5} \ 5; \ \alpha(\text{P})=1.91 \times 10^{-6} \ 3}{\alpha(\text{N})=0.0001259 \ 4; \ \alpha(\text{O})=3.63 \times 10^{-5} \ 5; \ \alpha(\text{P})=1.91 \times 10^{-6} \ 3}{\alpha(\text{N})=0.000258 \ 4; \ \alpha(\text{O})=3.63 \times 10^{-5} \ 5; \ \alpha(\text{P})=1.82 \times 10^{-6} \ 3}{\alpha(\text{N})=0.000258 \ 4; \ \alpha(\text{O})=3.63 \times 10^{-5} \ 5; \ \alpha(\text{P})=1.82 \times 10^{-6} \ 3}{\alpha(\text{N})=0.000258 \ 4; \ \alpha(\text{O})=3.64 \times 10^{-5} \ 5; \ \alpha(\text{P})=1.82 \times 10^{-6} \ 3}{\alpha(\text{N})=0.0001127 \ 15} \ \alpha(\text{N})=0.000258 \ 4; \ \alpha(\text{O})=3.64 \times 10^{-5} \ 5; \ \alpha(\text{P})=1.82 \times 10^{-6} \ 3}{\alpha(\text{N})=0.000258 \ 4; \ \alpha(\text{O})=3.46 \times 10^{-5} \ 5; \ \alpha(\text{P})=1.732 \times 10^{-6} \ 25}{\alpha(\text{N})=0.000245 \ 4; \ \alpha(\text{O})=3.46 \times 10^{-5} \ 5; \ \alpha(\text{P})=1.732 \times 10^{-6} \ 25}{\alpha(\text{N})=0.000245 \ 4; \ \alpha(\text{O})=3.66 \times 10^{-5} \ 5; \ \alpha(\text{P})=1.732 \times 10^{-6} \ 25}{\alpha(\text{N})=0.0001137 \ 17; \ \alpha(\text{O})=0.0001147 \ 21; \ \alpha(\text{P})=3.74 \times 10^{-6} \ 6}{\alpha(\text{N})=0.0001137 \ 17; \ \alpha(\text{O})=0.0001474 \ 21; \ \alpha(\text{P})=3.74 \times 10^{-6} \ 6}{\alpha(\text{N})=0.0001259 \ 18; \ \alpha(\text{O})=1.00216 \ 3; \ \alpha(\text{M})=0.000502 \ 8}{\alpha(\text{N})=0.0001259 \ 18; \ \alpha(\text{O})=0.0001474 \ 21; \ \alpha(\text{P})=3.74 \times 10^{-6} \ 6}{\alpha(\text{N})=0.0001259 \ 18; \ \alpha(\text{O})=0.0001474 \ 21; \ \alpha(\text{P})=3.74 \times 10^{-6} \ 6}{\alpha(\text{N})=0.0001259 \ 18; \ \alpha(\text{O})=0.0001474 \ 21; \ \alpha(\text{P})=0.77 \ 13}{\alpha(\text{N})=0.00011259 \ 18; \ \alpha(\text{O})=1.000216 \ 3; \ \alpha(\text{M})=0.0000417 \ 7}{\alpha(\text{N})=0.0001177 \ 125}{\alpha(\text{N})=0.000216 \ 3; \ \alpha(\text{M})=0.0000417 \ 7}{\alpha(\text{N})=0.00001177 \ 125}{\alpha(\text{N})=0.00001177 \ 125}{\alpha(\text{N})=0.00001$ |                                                                                                                                                                                                                               | 1971Gu18 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.0 min)                 | r decay (3         | <sup>164</sup> <b>Tb</b> β <sup>-</sup> |         |                    |                        |                    |                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|-----------------------------------------|---------|--------------------|------------------------|--------------------|-----------------------------------|
| $\frac{E_{\gamma}}{206.80 5} = \frac{I_{\gamma}d}{7.9 \ lo} = \frac{E_{i}(\text{level})}{1122.79} = \frac{I_{i}}{4^{-}} = \frac{E_{f}}{916.00} = \frac{J_{f}^{\pi}}{4^{+}} = \frac{\text{Mult}^{\dagger}}{\text{E1}} = \frac{\alpha^{c}}{0.0446} = \frac{\alpha(\text{K})=0.0376 \ 6; \ \alpha(\text{L})=0.00544 \ 8; \ \alpha(\text{M})=0.001189 \ 17}{\alpha(\text{N})=0.000272 \ 4; \ \alpha(\text{O})=3.84 \times 10^{-5} \ 6; \ \alpha(\text{P})=1.91 \times 10^{-6} \ 3}{\alpha(\text{N})=0.001125 \ 16} = \frac{100000}{3} = 1000000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                               | ntinued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ( <sup>164</sup> Dy) (co | <u> </u>           |                                         |         |                    |                        |                    |                                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comments                                                                                                                                                                                                                      | Comme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\alpha^{c}$             | Mult. <sup>†</sup> | $\mathbf{J}_f^{\pi}$                    | $E_f$   | $\mathbf{J}_i^\pi$ | E <sub>i</sub> (level) | $I_{\gamma}^{d}$   | $E_{\gamma}$                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44 8; α(M)=0.001189 17                                                                                                                                                                                                        | $\alpha(K) = 0.0376 \ 6; \ \alpha(L) = 0.00544 \ 8; \ \alpha(M) = 0.00544 \ 8; \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0446                   | E1                 | 4+                                      | 916.00  | 4-                 | 1122.79                | 7.9 10             | 206.80 5                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $4 \times 10^{-5}$ 6; $\alpha$ (P)=1.91×10 <sup>-6</sup> 3<br>15 8; $\alpha$ (M)=0.001125 16<br>$2 \times 10^{-5}$ 5; $\alpha$ (P)=1.92×10 <sup>-6</sup> 3                                                                    | $\alpha(N)=0.0002724; \alpha(O)=3.84\times10^{-5}6; \alpha(C)=0.005155; \alpha(C)=0.005155; \alpha(C)=0.005155; \alpha(C)=0.005155; \alpha(C)=0.0002584; \alpha(C)=3.63\times10^{-5}5; \alpha(C)=0.0002584; \alpha(C)=3.63\times10^{-5}5; \alpha(C)=0.0002584; \alpha(C)=3.63\times10^{-5}5; $ | 0.0422                   | E1                 | 3+                                      | 828.11  | 3-                 | 1039.21                | 29 <i>3</i>        | 211.09 5                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{l} 5 \times 10^{-5} & 5, \ \alpha(\mathrm{F}) = 1.32 \times 10^{-5} & 5 \\ 90 & 7; \ \alpha(\mathrm{M}) = 0.001017 & 15 \\ 6 \times 10^{-5} & 5; \ \alpha(\mathrm{P}) = 1.732 \times 10^{-6} & 25 \end{array}$ | $\alpha(N)=0.0002384; \alpha(O)=3.03\times10^{-5} 3; \alpha(C)=0.004907; \alpha(M)=0.002454; \alpha(O)=3.46\times10^{-5} 5; \alpha(C)=0.002454; \alpha(O)=3.46\times10^{-5} 5; \alpha(O)=0.002454; \alpha(O)=3.46\times10^{-5} 5; \alpha(O)=0.002454; \alpha(O)=0.002554; \alpha(O)=0.002554; \alpha(O)=0.002554; \alpha(O)=0.00255; \alpha(O)=0.002554; \alpha(O)=0.00255; \alpha(O)=0.00$                                                                                                                                                                                                                                                      | 0.0402                   | E1                 | 2+                                      | 761.75  | 2-                 | 976.83                 | 100                | 215.07 5                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    |                                         |         |                    |                        |                    | <sup>x</sup> 242.2 <sup>‡</sup> 5 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    |                                         |         |                    |                        | 2.0 5              | <sup>x</sup> 246.5 5              |
| 277.47 5       40 3       1039.21 3 <sup>-</sup> 761.75 2 <sup>+</sup> E1       0.0209 $\alpha(K)=0.01771 25; \alpha(L)=0.00251 4; \alpha(M)=0.000549 8$ 294.65 5       33.5 20       1122.79 4 <sup>-</sup> 828.11 3 <sup>+</sup> E1       0.0180 $\alpha(K)=0.01524 22; \alpha(L)=0.00216 3; \alpha(M)=0.000471 7$ 309.08 5       8.5       1225.08 (5) <sup>-</sup> 916.00 4 <sup>+</sup> E1       0.01597 $\alpha(K)=0.01524 10^{-5} 22; \alpha(L)=0.00191 3; \alpha(M)=0.000417 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16 3; $\alpha$ (M)=0.00502 8<br>0001474 21; $\alpha$ (P)=3.74×10 <sup>-6</sup> 6                                                                                                                                              | $\alpha$ (K)=0.0739 <i>11</i> ; $\alpha$ (L)=0.0216 <i>3</i> ; $\alpha$ (M)=0<br>$\alpha$ (N)=0.001137 <i>17</i> ; $\alpha$ (O)=0.0001474 <i>21</i> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1018                   | E2                 | 4+                                      | 242.22  | 6+                 | 501.36                 | 20 5               | 259.09 20                         |
| 294.65 5       33.5 20       1122.79       4 <sup>-</sup> 828.11       3 <sup>+</sup> E1       0.0180 $\alpha(K)=0.01524$ 22; $\alpha(L)=0.00216$ 3; $\alpha(M)=0.000471$ 7         309.08 5       8.5       1225.08       (5) <sup>-</sup> 916.00       4 <sup>+</sup> E1       0.01597 $\alpha(K)=0.01524$ 22; $\alpha(L)=0.00216$ 3; $\alpha(M)=0.000471$ 7 $\alpha(K)=0.01594$ $\alpha(K)=0.001080$ 16; $\alpha(O)=1.54 \times 10^{-5}$ 22; $\alpha(P)=8.02 \times 10^{-7}$ 12 $\alpha(K)=0.01597$ $\alpha(K)=0.01594$ $\alpha(K)=0.00191$ 3; $\alpha(M)=0.000471$ 6 $\alpha(K)=0.01597$ $\alpha(K)=0.01354$ $19$ ; $\alpha(L)=0.00191$ 3; $\alpha(M)=0.000471$ 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{l} 2251 \ 4; \ \alpha(M) = 0.000549 \ 8 \\ 1.79 \times 10^{-5} \ 3; \ \alpha(P) = 9.27 \times 10^{-7} \ 13 \end{array}$                                                                                        | $\alpha$ (K)=0.01771 25; $\alpha$ (L)=0.00251 4; $\alpha$ (M)<br>$\alpha$ (N)=0.0001259 18; $\alpha$ (O)=1.79×10 <sup>-5</sup> 3;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0209                   | E1                 | 2+                                      | 761.75  | 3-                 | 1039.21                | 40 3               | 277.47 5                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2216 3; \alpha(M) = 0.000471 7$<br>$54\times10^{-5} 22; \alpha(M) = 0.02\times10^{-7} 12$                                                                                                                                    | $\alpha(K) = 0.01524 22; \ \alpha(L) = 0.00216 3; \ \alpha(M)$<br>$\alpha(K) = 0.001080 \ I6; \ \alpha(O) = 1.54 \times 10^{-5} 22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0180                   | E1                 | 3+                                      | 828.11  | 4-                 | 1122.79                | 33.5 20            | 294.65 5                          |
| $\alpha(N) = 9.5 (\times 10^{-5} - 1.5 \times 10^{-5} - 1.5 $                                                                                                                                                                                           | $1.54 \times 10^{-7} 22; \alpha(P) = 8.02 \times 10^{-7} 12$<br>$0.191 3; \alpha(M) = 0.000417 6$<br>$1.366 \times 10^{-5} 20; \alpha(P) = 7.15 \times 10^{-7} 10$                                                            | $\alpha(N)=0.0001080 \ 10; \ \alpha(O)=1.34\times10^{-5} \ 22$<br>$\alpha(K)=0.01354 \ 19; \ \alpha(L)=0.00191 \ 3; \ \alpha(M)$<br>$\alpha(N)=9.57\times10^{-5} \ 15; \ \alpha(O)=1.366\times10^{-5} \ 22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01597                  | E1                 | 4+                                      | 916.00  | (5)-               | 1225.08                | 8.5                | 309.08 5                          |
| x311 5 <sup>‡</sup> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.500×10 20, a(1)=7.15×10 10                                                                                                                                                                                                  | <i>u</i> (11)= <i>9.51</i> ×10 15, <i>u</i> (0)=1.500×10 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                    |                                         |         |                    |                        |                    | x311 5 <sup>‡</sup> 5             |
| x227 6 <sup>±</sup> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    |                                         |         |                    |                        |                    | x227 6 <sup>±</sup> 5             |
| $344.85$ 25.5 1032.5 $(4.5^+)$ 1587.88 $(4)^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    | $(A)^{-}$                               | 1587 88 | $(4.5^{+})$        | 1032.5                 | 25.5               | 344.8.5                           |
| $363 \frac{@g}{1587.88}$ 1587.88 (4) <sup>-</sup> 1225.08 (5) <sup>-</sup> E : from 1071Ka02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                               | $E : from 1071 K_{2}02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    | (+)<br>$(5)^{-}$                        | 1225.08 | (4,5)              | 1597.99                | 25 5               | 363 <mark>@</mark> 8              |
| $38635$ $4010$ $215772$ $(4^+)$ $17702$ $(453^+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               | $L_{\gamma}$ . IIOIII 1971Ka02.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    | (3)<br>(4 5 3 <sup>+</sup> )            | 1770 2  | (4)<br>$(4^+)$     | 2157.00                | 4010               | 386 3 5                           |
| $410.34\ 20$ 29.2 1998.63 (4 <sup>+</sup> ) 1587.88 (4) <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    | (4,5,5)<br>$(4)^{-}$                    | 1587.88 | $(4^+)$            | 1998.63                | 29.2               | 410.34 20                         |
| 415 $I$ 1.0 5 916.00 4 <sup>+</sup> 501.36 6 <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    | 6+                                      | 501.36  | 4+                 | 916.00                 | 1.0 5              | 415 1                             |
| 425 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    | $(4,5,3^+)$                             | 1770.2  | $(4^{+})$          | 2194.70                | 4.4 10             | 425 1                             |
| <sup>x</sup> 434.9 10 2.2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    |                                         |         | . ,                |                        | 2.2 5              | <sup>x</sup> 434.9 10             |
| <sup>x</sup> 447.4 <sup>‡</sup> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    |                                         |         |                    |                        |                    | <sup>x</sup> 447.4 <sup>‡</sup> 5 |
| $461.5^{\#@}8.5 - 2.5^{\#} - 1686.4 - (5)^{-} - 1225.08 - (5)^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    | $(5)^{-}$                               | 1225.08 | $(5)^{-}$          | 1686.4                 | 2 5 <b>#</b>       | 461 5 <sup>#@</sup> 8 5           |
| 465, 05, 20 4.4.8 1587.88 (4) <sup>-</sup> 1122.79 4 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    | 4-                                      | 1122.79 | $(3)^{-}$          | 1587.88                | 4.4.8              | 465.05.20                         |
| 478.0 1.5 1393.8 $(2^+)$ 916.00 $4^+$ E <sub>v</sub> .L <sub>v</sub> : from figure 13 of 1971Gu18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1Gu18.                                                                                                                                                                                                                        | $E_{\alpha}$ , $I_{\alpha}$ : from figure 13 of 1971Gu18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                    | 4+                                      | 916.00  | $(2^+)$            | 1393.8                 | 1.5                | 478.0                             |
| $x_{480.85}$ 1.55 E <sub>v</sub> : may be the same as 480.0 in figure 13 of 1971Gu18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0 in figure 13 of 1971Gu18.                                                                                                                                                                                                  | $E_{\gamma}$ : may be the same as 480.0 in figure 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                    |                                         |         | (- )               |                        | 1.5 5              | <sup>x</sup> 480.8 5              |
| 484.7 5 2.0 5 1607.7 (4 <sup>+</sup> ) 1122.79 4 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                                                                                                                                                                             | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                    | 4-                                      | 1122.79 | $(4^{+})$          | 1607.7                 | 2.0 5              | 484.7 5                           |
| $508^{\#@g} l = 6.5^{\#} - 2194.70  (4^+) = 1686.4  (5)^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    | $(5)^{-}$                               | 1686.4  | $(4^{+})$          | 2194.70                | 6.5 <sup>#</sup>   | 508 <sup>#@</sup> 8_1             |
| 519.6 <sup>e</sup> 5 2.0 <sup>e</sup> 5 761.75 2 <sup>+</sup> 242.22 4 <sup>+</sup> [E2] 0.01372 $\alpha$ (K)=0.01109 <i>16</i> ; $\alpha$ (L)=0.00205 <i>3</i> ; $\alpha$ (M)=0.000461 7 $\alpha$ (N)=0.0001056 <i>15</i> : $\alpha$ (O)=1.461×10 <sup>-5</sup> 2 <i>1</i> : $\alpha$ (P)=6.22×10 <sup>-7</sup> 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0205 3; $\alpha$ (M)=0.000461 7<br>1.461×10 <sup>-5</sup> 21; $\alpha$ (P)=6.22×10 <sup>-7</sup> 9                                                                                                                            | $\alpha$ (K)=0.01109 <i>16</i> ; $\alpha$ (L)=0.00205 <i>3</i> ; $\alpha$ (M)<br>$\alpha$ (N)=0.0001056 <i>15</i> ; $\alpha$ (O)=1.461×10 <sup>-5</sup> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01372                  | [E2]               | 4+                                      | 242.22  | 2+                 | 761.75                 | 2.0 <sup>e</sup> 5 | 519.6 <sup>e</sup> 5              |
| $519.6^{e} 5$ $2.0^{e} 5 2205.69 (4^{+}) 1686.4 (5)^{-}$ Placement from 1971Ka02.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               | Placement from 1971Ka02.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                    | $(5)^{-}$                               | 1686.4  | $(4^{+})$          | 2205.69                | $2.0^{e}$ 5        | 519.6 <sup>e</sup> .5             |
| $523.31\ 20$ $3.0\ 5$ $1024.72\ 5^+$ $501.36\ 6^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    | 6+                                      | 501.36  | 5+                 | 1024.72                | 3.0 5              | 523.31 20                         |
| 548.54 20 40 3 1587.88 (4) <sup>-</sup> 1039.21 3 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    | 3-                                      | 1039.21 | $(4)^{-}$          | 1587.88                | 40 3               | 548.54 20                         |
| $559.42\ 20$ $4.2\ 5$ $1953.0\ (4^+)$ $1393.8\ (2^+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    | $(2^+)$                                 | 1393.8  | (4+)               | 1953.0                 | 4.2 5              | 559.42 20                         |
| $563.8^{\#@g}512^{\#}1686.4(5)^{-}1122.794^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    | 4-                                      | 1122.79 | $(5)^{-}$          | 1686.4                 | 12 <sup>#</sup>    | 563.8 <sup>#@g</sup> 5            |
| 567 1 2.0 5 1393.8 (2 <sup>+</sup> ) 828.11 3 <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    | 3+                                      | 828.11  | $(2^+)$            | 1393.8                 | 2.0 5              | 567 1                             |
| <sup>x</sup> 579 <sup><i>a</i></sup> 1 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                    |                                         |         |                    |                        | 1.2                | <sup>x</sup> 579 <sup>a</sup> 1   |

|                                                                    |                                               |                              |                                        | 1                           | <sup>164</sup> <b>Tb</b> /                         | $\beta^-$ decay (  | (3.0 min) <b>1971</b>          | Gu18 (continue    | ed)                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------|-----------------------------------------------|------------------------------|----------------------------------------|-----------------------------|----------------------------------------------------|--------------------|--------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    |                                               |                              |                                        |                             |                                                    | <u> </u>           | ( <sup>164</sup> Dy) (continue | d)                |                                                                                                                                                                                                                                                                                                          |
| $E_{\gamma}$                                                       | $I_{\gamma}^{d}$                              | E <sub>i</sub> (level)       | $\mathbf{J}_i^{\pi}$                   | $E_f$                       | $\mathbf{J}_{f}^{\pi}$                             | Mult. <sup>†</sup> | $\delta^{\dagger}$             | α <sup>C</sup>    | Comments                                                                                                                                                                                                                                                                                                 |
| 583.5 5<br>585.90 20                                               | 3 <i>I</i><br>19.7 20                         | 1607.7<br>828.11             | (4 <sup>+</sup> )<br>3 <sup>+</sup>    | 1024.72<br>242.22           | 5+<br>4+                                           | M1+E2              | +5.4 +32-15                    | 0.0105 4          | $ \begin{array}{l} \alpha(\mathrm{K}) = 0.0086 \ \ 3; \ \alpha(\mathrm{L}) = 0.00148 \ \ 4; \ \alpha(\mathrm{M}) = 0.000331 \ \ 8 \\ \alpha(\mathrm{N}) = 7.60 \times 10^{-5} \ \ 17; \ \alpha(\mathrm{O}) = 1.06 \times 10^{-5} \ \ 3; \ \alpha(\mathrm{P}) = 4.88 \times 10^{-7} \\ \ 18 \end{array} $ |
| 607 <sup>#@</sup> <i>8 1</i><br>610.89 <i>20</i>                   | 4.1 <sup>#</sup><br>95 6                      | 2194.70<br>1587.88           | (4 <sup>+</sup> )<br>(4) <sup>-</sup>  | 1587.88<br>976.83           | $(4)^{-}$<br>2 <sup>-</sup>                        | E2                 |                                | 0.00916 <i>13</i> | $\alpha$ =0.00916 <i>13</i> ; $\alpha$ (K)=0.00750 <i>11</i> ; $\alpha$ (L)=0.001294 <i>19</i> ;<br>$\alpha$ (M)=0.000289 <i>4</i><br>$\alpha$ (N)=6.63×10 <sup>-5</sup> <i>10</i> ; $\alpha$ (O)=9.29×10 <sup>-6</sup> <i>13</i> ;<br>$\alpha$ (P)=4.26×10 <sup>-7</sup> 6                              |
| 617.82 <i>20</i><br>626.0 <sup>#@</sup> <i>5</i><br>633.0 <i>5</i> | 57 <i>4</i><br>2.7 <sup>#</sup><br>2 <i>1</i> | 2205.69<br>2312.5?<br>1393.8 | (4 <sup>+</sup> )<br>(2 <sup>+</sup> ) | 1587.88<br>1686.4<br>761.75 | $(4)^{-}$<br>$(5)^{-}$<br>$2^{+}$                  |                    |                                |                   |                                                                                                                                                                                                                                                                                                          |
| 647.3 <sup><i>f</i></sup> 5                                        | 14.5 <sup>f</sup> 30                          | 1686.4                       | (5)-                                   | 1039.21                     | 3-                                                 |                    |                                |                   | Additional information 1.<br>I <sub>y</sub> : total I $\gamma$ =29 3.                                                                                                                                                                                                                                    |
| 647.3 <sup>f</sup> 5<br>654.5 5<br>671.2 5                         | 14.5 <sup>f</sup> 30<br>1.5 2<br>4.5 10       | 1770.2<br>1155.8<br>1587.88  | $(4,5,3^+)$<br>$(6)^+$<br>$(4)^-$      | 1122.79<br>501.36<br>916.00 | 4 <sup>-</sup><br>6 <sup>+</sup><br>4 <sup>+</sup> |                    |                                |                   |                                                                                                                                                                                                                                                                                                          |
| 673.67 20                                                          | 44 4                                          | 916.00                       | 4+                                     | 242.22                      | 4+                                                 | M1+E2              | +0.87 +13-11                   | 0.0111 5          | $\alpha$ (K)=0.0093 5; $\alpha$ (L)=0.00138 5; $\alpha$ (M)=0.000302 11<br>$\alpha$ (N)=7.0×10 <sup>-5</sup> 3; $\alpha$ (O)=1.01×10 <sup>-5</sup> 4; $\alpha$ (P)=5.6×10 <sup>-7</sup> 3                                                                                                                |
| $x^{x}681.4^{a} 5$<br>$x^{x}683^{\ddagger} 1$                      | 2.4                                           |                              |                                        |                             |                                                    |                    |                                |                   |                                                                                                                                                                                                                                                                                                          |
| 688.46 20                                                          | 100 6                                         | 761.75                       | 2+                                     | 73.37                       | 2+                                                 | E2                 |                                | 0.00690 <i>10</i> | $\alpha = 0.00690 \ 10; \ \alpha(K) = 0.00569 \ 8; \ \alpha(L) = 0.000940 \ 14; \alpha(M) = 0.000209 \ 3 \alpha(N) = 4.80 \times 10^{-5} \ 7; \ \alpha(O) = 6.78 \times 10^{-6} \ 10; \ \alpha(P) = 3.26 \times 10^{-7} 5 $                                                                              |
| 691 <sup>8</sup><br><sup>x</sup> 695.5 2                           | 2.5 5                                         | 1607.7                       | (4 <sup>+</sup> )                      | 916.00                      | 4+                                                 |                    |                                |                   |                                                                                                                                                                                                                                                                                                          |
| 701.0 5<br>707.7 <i>10</i><br><sup>x</sup> 715.5 <i>10</i>         | 2.2 5<br>1.5 5<br>2.0 5                       | 1725.3<br>1932.5             | (4,5 <sup>+</sup> )                    | 1024.72<br>1225.08          | 5 <sup>+</sup><br>(5) <sup>-</sup>                 |                    |                                |                   |                                                                                                                                                                                                                                                                                                          |
| 724.5 <sup>e</sup> 10<br>724.5 <sup>e</sup> 10                     | 2.0 <sup>e</sup> 10<br>2.0 <sup>e</sup> 10    | 1225.08<br>2312.5?           | (5)-                                   | 501.36<br>1587.88           | 6+<br>(4) <sup>-</sup>                             |                    |                                |                   | Placement from 1971Ka02.<br>Ev.L.: 724.5, 4.7 (1971Ka02).                                                                                                                                                                                                                                                |
| 744.4 5<br>754.77 20<br>761 71 20                                  | 1.5 5<br>110 7<br>81 5                        | 1770.2<br>828.11<br>761.75   | $(4,5,3^+)$<br>$3^+$<br>$2^+$          | 1024.72<br>73.37            | $5^+$<br>$2^+$<br>$0^+$                            | E2                 |                                | 0.00547.8         | $\alpha = 0.00547$ 8: $\alpha(K) = 0.00455$ 7: $\alpha(L) = 0.000726$ 11:                                                                                                                                                                                                                                |
| /01./1 20                                                          | 01 J                                          | /01./3                       | 2                                      | 0.0                         | 0                                                  | Ľ4                 |                                | 0.00347 0         | $\alpha(M) = 0.0001608 \ 23$<br>$\alpha(N) = 3.70 \times 10^{-5} \ 6; \ \alpha(O) = 5.25 \times 10^{-6} \ 8; \ \alpha(P) = 2.61 \times 10^{-7} \ 4$                                                                                                                                                      |
| 770.2 <i>10</i><br>779.0 <sup>g</sup> <i>10</i>                    | 2.5 5<br>6.5 5                                | 1686.4<br>1607.7             | $(5)^{-}$<br>$(4^{+})$                 | 916.00<br>828.11            | 4+<br>3+                                           |                    |                                |                   |                                                                                                                                                                                                                                                                                                          |
| 782.62 20                                                          | 27.0 25                                       | 1024.72                      | 5+                                     | 242.22                      | 4+                                                 | M1+E2              | -5.5 +21-61                    | 0.00530 23        | $\alpha$ =0.00530 23; $\alpha$ (K)=0.00441 20; $\alpha$ (L)=0.000693 25;                                                                                                                                                                                                                                 |

 $^{164}_{66}\mathrm{Dy}_{98}$ -6

From ENSDF

|                                           |                                 |                        |                        |         | <sup>164</sup> <b>T</b> | b $\beta^-$ decay  | y (3.0 min)                      | 1971Gu18 (continued)                                                                                                                                                                                                                                                                     |
|-------------------------------------------|---------------------------------|------------------------|------------------------|---------|-------------------------|--------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           |                                 |                        |                        |         |                         |                    | $\gamma$ <sup>(164</sup> Dy) (co | ontinued)                                                                                                                                                                                                                                                                                |
| Eγ                                        | $I_{\gamma}^{d}$                | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$   | $E_f$   | $\mathbf{J}_{f}^{\pi}$  | Mult. <sup>†</sup> | α <sup>C</sup>                   | Comments                                                                                                                                                                                                                                                                                 |
|                                           |                                 |                        |                        |         |                         |                    |                                  | α(M)=0.000153 6                                                                                                                                                                                                                                                                          |
| r700 2 10                                 | 0 4 15                          |                        |                        |         |                         |                    |                                  | $\alpha(N)=3.53\times10^{-5}$ 13; $\alpha(O)=5.03\times10^{-6}$ 19; $\alpha(P)=2.54\times10^{-7}$ 13                                                                                                                                                                                     |
| ~ 790.3 10                                | 8.4 15                          | 1020 21                | 2-                     | 242.22  | 4+                      |                    |                                  |                                                                                                                                                                                                                                                                                          |
| /90./ J                                   | 4.0 13                          | 1039.21                | $(4^+)$                | 1202.8  | $(2^+)$                 |                    |                                  |                                                                                                                                                                                                                                                                                          |
| 802.08 3                                  | 5.0 <i>10</i><br>10.3           | 2194.70                | $(4^+)$<br>$(4^+ 5^+)$ | 1393.8  | $(2^+)$                 |                    |                                  |                                                                                                                                                                                                                                                                                          |
| 807.015<br>810 <sup>e</sup> 1             | 10 5<br>5 7 <mark>6</mark> 15   | 1725.3                 | (4,5)                  | 016.00  | (4)<br>4 <sup>+</sup>   |                    |                                  | 1 + 15 in fours 13 of 1071Gu18                                                                                                                                                                                                                                                           |
| 810 <i>I</i><br>810 <sup>e</sup> <i>I</i> | 5.7 15<br>$5.7^{e} 15$          | 1032 5                 | $(4.5^{+})$            | 1122 70 | +<br>1 <sup>-</sup>     |                    |                                  | $1_{\gamma}$ . 1.5 III ligure 15 of 19/10/18.                                                                                                                                                                                                                                            |
| 810 <sup><i>eg</i></sup> <i>1</i>         | 5.7 15<br>5.7 <mark>6</mark> 15 | 2205.60                | (4,3)                  | 1303.8  | $(2^+)$                 |                    |                                  | I : 4.2 in figure 13 of 1071Gu18                                                                                                                                                                                                                                                         |
| x821 1                                    | 105                             | 2205.09                | (+)                    | 1393.0  | (2)                     |                    |                                  | $F_{\gamma}$ : may arise from 211 09 $\gamma$ +610 89 $\gamma$                                                                                                                                                                                                                           |
| 827 08 5                                  | 3910                            | 1953.0                 | $(4^{+})$              | 1122.79 | 4-                      |                    |                                  | $E_{\nu}$ : may arise from 215.07 $\nu$ +610.89 $\nu$                                                                                                                                                                                                                                    |
| x835.2.10                                 | 2.9.10                          | 1755.0                 | (1)                    | 1122.79 |                         |                    |                                  | Ly. may arise from 213.077 (010.077.                                                                                                                                                                                                                                                     |
| 843.0 10                                  | 15.2                            | 916.00                 | 4+                     | 73.37   | $2^{+}$                 | E2                 | 0.00437 7                        | $\alpha = 0.00437$ 7: $\alpha(K) = 0.00365$ 6: $\alpha(L) = 0.000566$ 8: $\alpha(M) = 0.0001250$ 18                                                                                                                                                                                      |
| 015.010                                   | 15 2                            |                        |                        |         | 2                       | 112                | 0.001377                         | $\alpha(N)=2.88\times10^{-5} 5; \ \alpha(O)=4.11\times10^{-6} 6; \ \alpha(P)=2.10\times10^{-7} 3$<br>I <sub>γ</sub> : from $\gamma\gamma$ . Other: I <sub>γ</sub> =28 3, based on Branching for 843 $\gamma$ in Adopted<br>Gammas and I <sub>γ</sub> (673.76 $\gamma$ )=44 4 (1971Gu18). |
| 845 1                                     | 174                             | 1607.7                 | (4+)                   | 761.75  | 2*                      |                    |                                  | $I_{\gamma}$ : from figure 13 of 1971Gu18. $I_{\gamma}=27/4$ quoted in authors' table seems high since it creates an intensity imbalance at 762 level.                                                                                                                                   |
| <sup>x</sup> 848 1                        | 4.7 15                          |                        |                        |         |                         |                    |                                  |                                                                                                                                                                                                                                                                                          |
| 856 <sup>8</sup> 1                        | 2.0 5                           | 1770.2                 | $(4,5,3^{+})$          | 916.00  | 4+                      |                    |                                  |                                                                                                                                                                                                                                                                                          |
| 856 <sup>g</sup> 1                        | 2.0 5                           | 3014.3                 | $(4^+, 5^+)$           | 2157.72 | $(4^{+})$               |                    |                                  |                                                                                                                                                                                                                                                                                          |
| 874.7 10                                  | 2.0 5                           | 1998.63                | $(4^{+})$              | 1122.79 | 4-                      |                    |                                  |                                                                                                                                                                                                                                                                                          |
| <sup>x</sup> 882 2                        | 1.0 5                           |                        |                        |         |                         |                    |                                  |                                                                                                                                                                                                                                                                                          |
| *889 2                                    | 1.5 5                           |                        |                        |         |                         |                    |                                  |                                                                                                                                                                                                                                                                                          |
| 903.0 5                                   | 1.5 5                           | 976.83                 | 2-                     | 73.37   | 2+                      |                    |                                  | $I_{\gamma}$ : may include contribution from 215.0 $\gamma$ +688.46 $\gamma$ .                                                                                                                                                                                                           |
| 910 <sup>8</sup>                          | 1.5 5                           | 1155.8                 | $(6)^{+}$              | 242.22  | 4+                      |                    |                                  | Placement based on $(n,\gamma)$ results (evaluators).                                                                                                                                                                                                                                    |
| *934.0 5                                  | 2.2.5                           | 0157.70                | (4+)                   | 1005 00 | (5)-                    |                    |                                  |                                                                                                                                                                                                                                                                                          |
| 934.0 5<br>x045.2 5                       | 2.2.5                           | 2157.72                | (4')                   | 1225.08 | (5)                     |                    |                                  |                                                                                                                                                                                                                                                                                          |
| ×945.2 5                                  | 2.2.3                           |                        |                        |         |                         |                    |                                  |                                                                                                                                                                                                                                                                                          |
| 932.5 10                                  | 4.0 15<br>h                     | 1705.0                 |                        |         | 2+                      |                    |                                  |                                                                                                                                                                                                                                                                                          |
| 9658                                      | 7.0                             | 1725.3                 | 2-                     | /61./5  | 2+                      |                    |                                  |                                                                                                                                                                                                                                                                                          |
| 966.0 5                                   | 72                              | 1039.21                | 3<br>(4+)              | 1225.09 | 2 ·<br>(5)-             |                    |                                  | $I_{\gamma}$ : may include contribution from 277.47 $\gamma$ +688.4 $\gamma$ .                                                                                                                                                                                                           |
| 9698 I<br>X076 5 10                       | 2                               | 2194.70                | (41)                   | 1225.08 | (5)                     |                    |                                  | $E_{1}$ , $m_{1}$ , $f_{2}$ , $m_{2}$ , $215, 07, 1, 7(1, 71)$                                                                                                                                                                                                                           |
|                                           | 21                              | 1225 08                | $(5)^{-}$              | 242.22  | 4+                      |                    |                                  | $E_{\gamma}$ : may arise from 215.0/ $\gamma$ +/01./1 $\gamma$ .                                                                                                                                                                                                                         |
| 965 I<br>X1002 I                          | 4.0 5                           | 1223.08                | (3)                    | 242.22  | 4                       |                    |                                  |                                                                                                                                                                                                                                                                                          |
| 1002 I<br>$1015 5^{e} I0$                 | 3 5° 10                         | 1032 5                 | $(4.5^{+})$            | 016.00  | <b>∕</b> +              |                    |                                  |                                                                                                                                                                                                                                                                                          |
| 1015.5 I0<br>$1015.5^{\ell} I0$           | 3.5 10<br>$3.5^{e} 10$          | 301/ 3                 | (4,5)                  | 1008 62 | $(4^+)$                 |                    |                                  |                                                                                                                                                                                                                                                                                          |
| 1013.3 I0<br>$1022 0^{e} 10$              | 3.3 10<br>$2.2^{\circ} 5$       | 1008 63                | (4, 5)                 | 076.83  | (+ )<br>2-              |                    |                                  |                                                                                                                                                                                                                                                                                          |
| 1022.0 I0<br>1022.0 I0                    | 2.2 3<br>2.2 <sup>6</sup> 5     | 1990.03<br>77/7 7      | $(4^+)$                | 1225 00 | $(5)^{-}$               |                    |                                  |                                                                                                                                                                                                                                                                                          |
| x1022.0 10                                | 2.2 5                           | 22 <b>71.1</b>         | (+)                    | 1223.00 | $(\mathbf{J})$          |                    |                                  |                                                                                                                                                                                                                                                                                          |
| 1034.6 <sup>e</sup> 10                    | $2.5^{e}5$                      | 1953.0                 | (4 <sup>+</sup> )      | 916.00  | 4+                      |                    |                                  |                                                                                                                                                                                                                                                                                          |

L L

 $^{164}_{66}\mathrm{Dy}_{98}$ -7

# $\gamma(^{164}\text{Dy})$ (continued)

| Eγ                                 | $I_{\gamma}^{d}$        | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f  J_f^{\pi}$ | Comments                                                                                               |
|------------------------------------|-------------------------|------------------------|----------------------|------------------|--------------------------------------------------------------------------------------------------------|
| 1034.6 <sup>e</sup> 10             | 2.5 <sup>e</sup> 5      | 2157.72                | $(4^{+})$            | 1122.79 4-       |                                                                                                        |
| 1050 /                             | 1.0.5                   | 2173.13                | $(4)^+$              | $1122.79 4^{-}$  |                                                                                                        |
| 1083 <mark>8</mark>                | 110 0                   | 1998.63                | $(4^+)$              | 916.00 4+        |                                                                                                        |
| 1104.3 10                          | 5.5 10                  | 1932.5                 | $(4.5^+)$            | 828.11 3+        |                                                                                                        |
| <sup>x</sup> 1106 1                | 2.0 5                   |                        |                      |                  |                                                                                                        |
| <sup>x</sup> 1113 1                | 1.0 5                   |                        |                      |                  |                                                                                                        |
| 1123.4 10                          | 7.0 20                  | 1953.0                 | $(4^{+})$            | 828.11 3+        |                                                                                                        |
| 1125.0 10                          | 2.0 5                   | 2247.7                 | $(4^{+})$            | 1122.79 4-       |                                                                                                        |
| <sup>x</sup> 1128.8 <sup>‡</sup> 5 |                         |                        |                      |                  |                                                                                                        |
| 1135 1                             | 1.5 5                   | 2173.13                | $(4)^+$              | 1039.21 3-       |                                                                                                        |
| 1148.5 5                           | 8.6 15                  | 2173.13                | $(4)^+$              | 1024.72 5+       |                                                                                                        |
| 1152.0 10                          | 4.3 10                  | 1393.8                 | $(2^{+})$            | 242.22 4+        |                                                                                                        |
| 1154.8 10                          | 5.2 10                  | 2194.70                | (4+)                 | 1039.21 3-       |                                                                                                        |
| 1166.2 10                          | 9.5 20                  | 2205.69                | (4+)                 | 1039.21 3-       |                                                                                                        |
| 1169.4 <sup><i>f</i></sup> 10      | 6.0 <sup>f</sup> 20     | 1998.63                | (4 <sup>+</sup> )    | 828.11 3+        | $I_{\gamma}$ : total $I_{\gamma}=11.5\ 20.$                                                            |
| 1169.4 <sup>f</sup> 10             | 5.5 <sup>f</sup> 20     | 2194.70                | $(4^{+})$            | 1024.72 5+       |                                                                                                        |
| 1180.6 <sup><i>f</i></sup> 5       | 4.0 <sup>f</sup> 20     | 2157.72                | (4 <sup>+</sup> )    | 976.83 2-        |                                                                                                        |
| 1180.6 <sup>f</sup> 5              | 4.0 <sup>f</sup> 20     | 2205.69                | $(4^{+})$            | 1024.72 5+       | $I_{\gamma}$ : total $I_{\gamma}$ =8.0 20 (1971Gu18).                                                  |
| 1189.7 5                           | 1.5 5                   | 1953.0                 | (4+)                 | 761.75 2+        |                                                                                                        |
| 1196.2 5                           | 1.5 5                   | 2173.13                | $(4)^+$              | 976.83 2-        |                                                                                                        |
| 1217.2 5                           | 4.5 5                   | 2194.70                | (4+)                 | 976.83 2-        |                                                                                                        |
| 1224 <i>I</i>                      | 1.0 5                   | 2247.7                 | $(4^{+})$            | 1024.72 5+       |                                                                                                        |
| x1228.5 10                         | 1.0 5                   |                        |                      |                  | $E_{\gamma}$ : may arise from 610.89 $\gamma$ +617.82 $\gamma$ .                                       |
| <sup>x</sup> 1233.1 10             | 1.0 5                   |                        |                      |                  |                                                                                                        |
| 1257.5 10                          | 1.0 5                   | 2173.13                | $(4)^+$              | 916.00 4+        |                                                                                                        |
| 1270.6 10                          | 31                      | 2247.7                 | $(4^{+})$            | 976.83 2         | Additional information 2.                                                                              |
| 1278.2 5                           | 11.2 20                 | 2194.70                | $(4^{+})$            | 916.00 4+        |                                                                                                        |
| 1288 <sup>#</sup> 1                | 1.0#                    | 2312.5?                |                      | 1024.72 5+       | $E_{\gamma}$ , $I_{\gamma}$ : not reported by 1971Gu18, but it may be part of strong 1289.8 $\gamma$ . |
| 1289.8 <sup>J</sup> 5              | $20^{J}_{3}$            | 2205.69                | $(4^{+})$            | 916.00 4+        | $I_{\gamma}$ : total $I_{\gamma}$ =28 3.                                                               |
| 1289.8 <sup>f</sup> 5              | 8 <sup><i>f</i></sup> 3 | 3014.3                 | $(4^+, 5^+)$         | 1725.3           |                                                                                                        |
| x1301.2 10                         | 1.0 5                   |                        |                      |                  | $E_{\gamma}$ : may arise from $610.89\gamma + 688.46\gamma$ .                                          |
| <sup>x</sup> 1307.6 10             | 1.5 5                   |                        |                      |                  | $E_{\gamma}$ : may arise from 617.82 $\gamma$ +688.46 $\gamma$ .                                       |
| 1320.1 15                          | 52                      | 1393.8                 | $(2^{+})$            | 73.37 2+         |                                                                                                        |
| 1330 <sup>e</sup> 2                | 2.5 <sup>e</sup>        | 2157.72                | $(4^{+})$            | 828.11 3+        |                                                                                                        |
| 1330 <sup>e</sup> 2                | 2.5 <sup>e</sup>        | 2247.7                 | $(4^{+})$            | 916.00 4+        | Additional information 3.                                                                              |
| <sup>x</sup> 1334.3 20             | 4 2                     |                        |                      |                  |                                                                                                        |
| 1366.0 5                           | 9.3 25                  | 2194.70                | (4+)                 | 828.11 3+        |                                                                                                        |
| <sup>x</sup> 1372 1                | 1.0 5                   |                        |                      |                  | $E_{\gamma}$ : may arise from 610.89 $\gamma$ +761.71 $\gamma$ .                                       |
| 1377.5 5                           | 25 4                    | 2205.69                | (4+)                 | 828.11 3+        |                                                                                                        |
| 1393.0 15                          | 2.0 5                   | 1393.8                 | $(2^{+})$            | $0.0  0^+$       |                                                                                                        |
| 1395.0 <sup>e</sup> 15             | 1.5 <sup>e</sup> 5      | 2157.72                | (4+)                 | 761.75 2+        |                                                                                                        |

 $\infty$ 

From ENSDF

# $\gamma(^{164}Dy)$ (continued)

| Eγ                                  | $I_{\gamma}^{d}$             | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$   | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$ | Comments                                                                                                                                    |
|-------------------------------------|------------------------------|------------------------|------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1395.0 <sup>e</sup> 15              | 1.5 <sup>e</sup> 5           | 2312.5?                |                        | 916.00 4+                           | Placement from 1971Ka02.                                                                                                                    |
| 1411.0 <i>15</i><br>1426.2 <i>5</i> | 1.0 <i>5</i><br>2.5 <i>5</i> | 2173.13<br>3014.3      | $(4)^+$<br>$(4^+,5^+)$ | 761.75 $2^+$<br>1587.88 (4)         | $E_{\gamma},I_{\gamma}$ : 1396.7, 3.1 (1971Ka02).<br>$E_{\gamma}$ : 1511 in table (1971Gu18) is a misprint. Energy taken from level scheme. |
| 1433 <sup>#@</sup> /                | 2.2#                         | 2194.70                | $(4^{+})$              | 761.75 2+                           |                                                                                                                                             |
| 1443.9 5                            | 40 4                         | 2205.69                | $(4^+)$                | 761.75 2+                           |                                                                                                                                             |
| 1484 5 <sup>#@</sup> 5              | 2.2#                         | 2312 52                |                        | 828 11 3+                           |                                                                                                                                             |
| $1485 2^{eg} 15$                    | 1.5 <sup>e</sup> 5           | 1725.3                 |                        | $242.22.4^+$                        |                                                                                                                                             |
| $1485.2^{eg}$ 15                    | 1.5° 5                       | 2247.7                 | $(4^{+})$              | $761.75 2^+$                        |                                                                                                                                             |
| <sup>x</sup> 1576.0 15              | 1.0.5                        | 2217.7                 | (1)                    | /01.//5 2                           |                                                                                                                                             |
| 1652.5 15                           | 2.0 5                        | 1725.3                 |                        | 73.37 2+                            |                                                                                                                                             |
| 1656.7 15                           | 4.5 15                       | 2157.72                | $(4^{+})$              | 501.36 6+                           |                                                                                                                                             |
| x1665.0 15                          | 3.0 10                       |                        |                        |                                     |                                                                                                                                             |
| <sup>x</sup> 1740 2                 | 1.5 5                        |                        |                        |                                     |                                                                                                                                             |
| $x_{1860.2}^{\ddagger} 5$           |                              |                        |                        |                                     |                                                                                                                                             |
| 1878 <i>3</i>                       | 1.5 5                        | 1953.0                 | $(4^{+})$              | 73.37 2+                            |                                                                                                                                             |
| 1889 <i>3</i>                       | 1.0 5                        | 3014.3                 | $(4^+, 5^+)$           | 1122.79 4-                          |                                                                                                                                             |
| <sup>x</sup> 1898 2                 | 1.0                          |                        |                        |                                     |                                                                                                                                             |
| <sup>x</sup> 1905 2                 | 1.0 5                        |                        |                        |                                     |                                                                                                                                             |
| 1916 2                              | 1.0 5                        | 2157.72                | $(4^{+})$              | 242.22 4+                           |                                                                                                                                             |
| 1926 2                              | 1.0 5                        | 1998.63                | $(4^{+})$              | 73.37 2+                            |                                                                                                                                             |
| 1932 <i>3</i>                       | 1.5 5                        | 2173.13                | $(4)^{+}$              | 242.22 4+                           |                                                                                                                                             |
| 1951 2                              | 2.2 5                        | 2194.70                | (4 <sup>+</sup> )      | 242.22 4+                           |                                                                                                                                             |
| 1963.5 15                           | 3.5 5                        | 2205.69                | $(4^{+})$              | 242.22 4+                           |                                                                                                                                             |
| *1983 2                             | 1.5 5                        | 2014.2                 | (4+ 5+)                | 1004 70 5+                          |                                                                                                                                             |
| 1990 2<br>rao11 a                   | <1                           | 3014.3                 | (4',5')                | 1024.72 51                          |                                                                                                                                             |
| *2011 2<br>*2048 2                  | 1.5 5                        |                        |                        |                                     | $E_{\gamma}$ : from spectrum figure 3 of 19/1Gu18. $E_{\gamma}=2/011$ in table 2 of 19/1Gu18 is a misprint.                                 |
| 2046 2                              | 1.5                          | 0010.50                |                        | a (a aa (†                          |                                                                                                                                             |
| 2070.4" 5                           | 0.6"                         | 2312.5?                | (4+)                   | 242.22 4                            |                                                                                                                                             |
| $2084.0^{\circ}$ 15                 | 1.5° 5                       | 2157.72                | (4')                   | $13.31 2^{+}$                       |                                                                                                                                             |
| 2084.0* 15                          | 1.5 5                        | 5001.0                 | $(4^{+}, 5^{+})$       | 910.00 4                            | Figure 1 and 197 $(Ra02)$                                                                                                                   |
| 21000                               | 1 5 <b>e</b>                 | 2173 13                | $(A)^{+}$              | 73 37 2+                            | $E_{\gamma,1\gamma}$ , 2003.4, 2.1 (1971Ra02).                                                                                              |
| 2100<br>2100 <sup>e</sup>           | 1.5<br>1.5 <sup>e</sup>      | 2175.15                | (4)                    | 916.00 4+                           | $E_{\gamma}$ . How level scheme figure of 19710u16, y not instea in autions table 2.                                                        |
| 2100                                | 1.5                          | 2104.70                | (+,5)                  | 72.27 0+                            |                                                                                                                                             |
| $2121.4^{-10}$                      | 1./"                         | 2194.70                | $(4^+)$                | $73.37 2^{+}$                       |                                                                                                                                             |
| $2152.0\ 10$                        | 4.013                        | 2205.09                | $(4^+)$                | $73.37 2^{+}$                       |                                                                                                                                             |
| $2174.5^{\circ}15$                  | $2.0^{\circ}$ 5              | 2247.7                 | (4)                    | /3.3/ 2<br>929 11 2 <sup>+</sup>    | Pleasant from 1071Vo02                                                                                                                      |
| 21/4.3 13                           | 2.0 5                        | 5001.0                 | (4,3)                  | 020.11 3                            | F I $\cdot$ 2173 () 1 7 (1971Ka()2)                                                                                                         |
| x2219 2                             | 105                          |                        |                        |                                     | $L_{\gamma,1\gamma}, L_{1,2,0}, 1.7 (1771 \text{Kd0}2).$                                                                                    |
| x2240.5.20                          | 3.8 10                       |                        |                        |                                     |                                                                                                                                             |
|                                     | 2.0 10                       |                        |                        |                                     |                                                                                                                                             |

9

# From ENSDF

## $\gamma(^{164}\text{Dy})$ (continued)

| Eγ                                 | $I_{\gamma}^{d}$    | $E_i$ (level) | $\mathrm{J}_i^\pi$ | $\mathbf{E}_f  \mathbf{J}_f^{\pi}$ | Comments                                                                    |
|------------------------------------|---------------------|---------------|--------------------|------------------------------------|-----------------------------------------------------------------------------|
| x2311.5 20                         | 1.0 5               |               |                    |                                    |                                                                             |
| <sup>x</sup> 2391.7 <sup>‡</sup> 5 |                     |               |                    |                                    |                                                                             |
| <sup>x</sup> 2414.1 <sup>‡</sup> 5 |                     |               |                    |                                    |                                                                             |
| 2500 <sup>#</sup> 1                | 0.6 <sup>#</sup>    | 3001.6        | $(4^+, 5^+)$       | 501.36 6+                          |                                                                             |
| 2504 <sup>#</sup> 1                | 0.8 <sup>#</sup>    | 3005.5        | $(4^+, 5, 6^+)$    | 501.36 6+                          | $E_{\gamma}, I_{\gamma}$ : 2502 2, 2.5 5 (1971Gu18) probably for a doublet. |
| 2511.0 <sup>e</sup> 15             | 6.5 <sup>e</sup> 15 | 2752.7?       | (4)                | 242.22 4+                          | Placement from 1971Ka02.                                                    |
|                                    |                     |               |                    |                                    | $E_{\gamma}, I_{\gamma}$ : 2510.2, 5.0 (1971Ka02).                          |
| 2511.0 <sup>e</sup> 15             | 6.5 <sup>e</sup> 15 | 3014.3        | $(4^+, 5^+)$       | 501.36 6+                          |                                                                             |
| *2627 2                            | 1.5 5               |               |                    |                                    |                                                                             |
| <sup>x</sup> 2632.8 <sup>‡</sup> 5 |                     |               |                    |                                    |                                                                             |
| 2679.2 <sup>#@</sup> 5             | 0.2 <sup>#</sup>    | 2752.7?       | (4)                | 73.37 2+                           |                                                                             |
| 2759.2 <sup>#</sup> 5              | 1.8 <sup>#</sup>    | 3001.6        | $(4^+, 5^+)$       | 242.22 4+                          | $E_{\gamma}, I_{\gamma}$ : 2763 3, 2.0 5 (1971Gu18) probably for a doublet. |
| 2763.3 <sup>#</sup> 5              | 1.2 <sup>#</sup>    | 3005.5        | $(4^+, 5, 6^+)$    | 242.22 4+                          | $E_{\gamma}, I_{\gamma}$ : see also comment for 2759.2 $\gamma$ .           |
| <sup>x</sup> 2786 3                | 1.5 5               |               |                    |                                    |                                                                             |

<sup>†</sup> From Adopted Gammas.

10

<sup>‡</sup> From 1970HeZH and/or 1968DeZZ (as listed in Nuclear Data Sheets for  $\alpha$ =164 by 1974Bu30) only. The assignment to <sup>164</sup>Tb decay is uncertain, since it is not confirmed by 1971Gu18.

<sup>#</sup>  $E\gamma$ ,  $I\gamma$  and placement from 1971Ka02.

<sup>(a)</sup>  $\gamma$  not reported by 1971Gu18.

<sup>&</sup> Questionable  $\gamma$  from spectrum figure #2 of 1971Gu18.

<sup>*a*</sup>  $\gamma$  from 1971Ka02 only. Placement from an 1804 level is omitted here since this  $\gamma$  may be from a long-lived impurity as indicated by 1971Gu18.

<sup>b</sup> Weak  $\gamma$  ray, intensity is not available from 1971Gu18.

<sup>c</sup> Additional information 4.

<sup>d</sup> For absolute intensity per 100 decays, multiply by 0.21 2.

<sup>e</sup> Multiply placed with undivided intensity.

<sup>f</sup> Multiply placed with intensity suitably divided.

<sup>g</sup> Placement of transition in the level scheme is uncertain.

<sup>*x*</sup>  $\gamma$  ray not placed in level scheme.

## $^{164}$ Tb $\beta^-$ decay (3.0 min) 1971Gu18

## Decay Scheme



## <sup>164</sup>Tb $\beta^-$ decay (3.0 min) 1971Gu18

#### Decay Scheme (continued)



## <sup>164</sup>Tb $\beta^-$ decay (3.0 min) 1971Gu18

#### Decay Scheme (continued)



## $^{164}$ Tb $\beta^-$ decay (3.0 min) 1971Gu18

## Decay Scheme (continued)



<sup>164</sup><sub>66</sub>Dy<sub>98</sub>

## <sup>164</sup>Tb $\beta^-$ decay (3.0 min) 1971Gu18

#### Decay Scheme (continued)

