Adopted Levels, Gammas

	History Author Citation Literature Cutoff Date
C. W. Re	eich, Balraj Singh NDS 111,1211 (2010) 12-Apr-2010
S(p)=2.42× bllowing Q 1	$(10^3 8; Q(\alpha)=5.52\times10^3 5 2012Wa38)$ record \$ -8900 60 8980 60 2420 70 5520 50 2009AuZZ,2003Au03.
	¹⁶³ W Levels
itals.	
	Cross Reference (XREF) Flags
	A 167 Os α decay (839 ms) B 106 Cd(60 Ni,2pn γ)
XREF	Comments
0 AB	 %α=14 2; %ε+%β⁺=86 2 %α: from average of 15 2 (2010Sc02) and 13 2 (1996Pa01). Method: detection of time correlated events of recoil nuclei and α particles lin double-sided silicon strip detectors. Other: 41 5 (1979Ho10, from parent-daughter intensity correlations). T_{1/2}: weighted av of 2.6 s <i>1</i> (2010Sc02), 3.0 s <i>13</i> (1996Pa01), 3.0 s 2 (1979Ho10) and 2.5 s <i>3</i> (1973Ea01). J^π: Proposed in 2010Sc02, based on L=0 α decays in ¹⁷¹Pt -> ¹⁶⁷Os -> ¹⁶³W α decay chain, and consistent observation of 13/2⁺ -> 9/2⁻ -> 7/2⁻ cascades in these nuclei and systematics of lowest-lying 7/2⁻ and 9/2⁻ state in even-Z, odd-N nuclei in the vicinity.
R	π . M1 or to $7/2^{-1}$ see also common for a s
Б	J . WI γ to $7/2$, see also comment for g.s.
B B B	 J^π: E2 γ to 7/2⁻; E1 γ from 13/2⁺. J^π: M2 γ to 9/2⁻; see also comment for g.s. T_{1/2}: from 2010Sc02, measured from time differences between recoil implantations and delayed γ rays detected in the GREAT focal plane spectrometer. Delayed γ rays were observed at 38, 102, 378 and 442 keV.
B B B B	 J^π: E2 γ to 7/2⁻; E1 γ from 13/2⁺. J^π: M2 γ to 9/2⁻; see also comment for g.s. T_{1/2}: from 2010Sc02, measured from time differences between recoil implantations and delayed γ rays detected in the GREAT focal plane spectrometer. Delayed γ rays were observed at 38, 102, 378 and 442 keV.
B B B B B	 J^π: E2 γ to 7/2⁻; E1 γ from 13/2⁺. J^π: M2 γ to 9/2⁻; see also comment for g.s. T_{1/2}: from 2010Sc02, measured from time differences between recoil implantations and delayed γ rays detected in the GREAT focal plane spectrometer. Delayed γ rays were observed at 38, 102, 378 and 442 keV.
B B B B B B B B	 J^π: E2 γ to 7/2⁻; E1 γ from 13/2⁺. J^π: M2 γ to 9/2⁻; see also comment for g.s. T_{1/2}: from 2010Sc02, measured from time differences between recoil implantations and delayed γ rays detected in the GREAT focal plane spectrometer. Delayed γ rays were observed at 38, 102, 378 and 442 keV.
B B B B B B B B B B B	 J^π: E2 γ to 7/2⁻; E1 γ from 13/2⁺. J^π: M2 γ to 9/2⁻; see also comment for g.s. T_{1/2}: from 2010Sc02, measured from time differences between recoil implantations and delayed γ rays detected in the GREAT focal plane spectrometer. Delayed γ rays were observed at 38, 102, 378 and 442 keV.
	C. W. Ro S(p)=2.42> collowing Q =

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

E(level) [†]	$J^{\pi \#}$	XREF	E(level) [†]	$J^{\pi \#}$	XREF	E(level) [†]	$J^{\pi \#}$	XREF
1925.1 ^{<i>a</i>} 11	$(25/2^+)$	В	3173.8 ^{&} 16	(29/2 ⁻)	В	4786.7 <mark>b</mark> 16	$(41/2^{-})$	В
2236.4? 19		В	3327.1? ^d 16		В	5186.7 ^c 18	$(43/2^{-})$	В
2250.0? ^{‡d} 14		В	3775.6? ^b 16		В	5295.8 ^a 16	$(45/2^+)$	В
2411? [@] 3		В	3825.3 ^a 14	$(37/2^+)$	В	5447.9 <mark>b</mark> 19	$(45/2^{-})$	В
2441.8 ^{&} 12	$(25/2^{-})$	В	3900 ^{&} 3	$(33/2^{-})$	В	5939.2? ^C 20	$(47/2^{-})$	В
2527.9 ^a 12	$(29/2^+)$	В	3955.0 [°] 14	$(35/2^{-})$	В	6058.6 ^a 19	$(49/2^+)$	В
2863.5? 21		В	4230.0 ^b 16	$(37/2^{-})$	В	6187.2 ^b 22	$(49/2^{-})$	В
2880.5? ^{‡d} 16		В	4549.1 [°] 15	$(39/2^{-})$	В	6864.7 ^a 21	$(53/2^+)$	В
3159.0 ^a 13	$(33/2^+)$	В	4549.5 ^a 15	$(41/2^+)$	В	7737 ^a 3	$(57/2^+)$	В

¹⁶³W Levels (continued)

 † From least-squares fit to listed Ey's.

 \pm Ordering of the transitions in the 630-626-760 cascade is uncertain.

[#] As proposed by 2010Th01 in (60 Ni,2pn γ), based on observation of band structures, DCO ratios for selected transitions, systematics and comparison with cranked shell-model calculations.

[@] Band(A): Band E.

& Band(a): Band F ->Fef or FAB.

^{*a*} Band(B): Yrast band A \rightarrow AEF \rightarrow AEFef. Two band crossings at $\hbar\omega\approx 0.30$ and 0.37 MeV, respectively. This band was first reported in 1992DrZU but with no details of γ -ray energies in the band.

^b Band(C): Band FAB.

^c Band(c): Band EAB.

^d Band(D): γ cascade. Ordering of the transitions in the 630-626-760 cascade is uncertain.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	${ m J}_f^\pi$	Mult. [†]	α [@]	Comments
102.0	9/2-	102.1 7	100	0.0	$7/2^{-}$	M1 [#]	4.47 11	
441.8	$11/2^{-}$	441.7 7	100	0.0	7/2-	E2 #	0.0288	
480.3	$13/2^{+}$	38.4 7	100 13	441.8	$11/2^{-}$	E1 [#]	0.97 6	$B(E1)(W.u.)=9.3\times10^{-6}$ 17
		378.3 6	58 8	102.0	9/2-	M2 [#]	0.412	B(M2)(W.u.)=0.18 4
516.2	$(13/2^{-})$	414.2 5	100	102.0	9/2-			
864.4	$(17/2^+)$	384.1 5	100	480.3	$13/2^{+}$	Q		
1013.2	$(15/2^{-})$	571.4 10	100	441.8	$11/2^{-}$			
1079.5	$(17/2^{-})$	563.3 5	100	516.2	$(13/2^{-})$			
1370.5	$(21/2^+)$	506.2 5	100	864.4	$(17/2^{+})$	Q		
1624.3?		759.9 [‡] 5	100	864.4	$(17/2^+)$			
1650.8	$(19/2^{-})$	637.6 <mark>&</mark> 10	100 <mark>&</mark>	1013.2	$(15/2^{-})$			
1733.8	$(21/2^{-})$	654.3 5	100	1079.5	$(17/2^{-})$			
1925.1	$(25/2^+)$	554.6 5	100	1370.5	$(21/2^+)$	Q		
2236.4?		585.6 10	100	1650.8	$(19/2^{-})$			
2250.0?		625.6 [‡] 10	100	1624.3?				
2411?		760.3 20	100	1650.8	$(19/2^{-})$			
2441.8	$(25/2^{-})$	708.0 5	100	1733.8	$(21/2^{-})$			
2527.9	$(29/2^+)$	602.8 5	100	1925.1	$(25/2^+)$	Q		
2863.5?		627.1 10	100	2236.4?				
2880.5?		630.4 [‡] 10	100	2250.0?				
3159.0	$(33/2^+)$	631.1 5	100	2527.9	$(29/2^+)$	Q		
3173.8	$(29/2^{-})$	732.0 10	100	2441.8	$(25/2^{-})$			
3327.1?		446.5 10	100	2880.5?				

 $\gamma(^{163}W)$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{163}W)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	\mathbf{E}_{f}	J_f^π	Comments
3775.6?		448.4 10	100	3327.1?		
3825.3	$(37/2^+)$	666.3 5	100	3159.0	$(33/2^+)$	
3900	$(33/2^{-})$	725.8 20	100	3173.8	$(29/2^{-})$	
3955.0	$(35/2^{-})$	796.0 5	100	3159.0	$(33/2^+)$	
4230.0	$(37/2^{-})$	275.1 10	55 7	3955.0	$(35/2^{-})$	Mult.: possible M1 transition linking the two signature partners.
		454.3 10	100 11	3775.6?		
4549.1	$(39/2^{-})$	594.1 5	100	3955.0	$(35/2^{-})$	
4549.5	$(41/2^+)$	724.2 5	100	3825.3	$(37/2^+)$	
4786.7	$(41/2^{-})$	556.7 5	100	4230.0	$(37/2^{-})$	
5186.7	$(43/2^{-})$	637.6 <mark>&</mark> 10	100 <mark>&</mark>	4549.1	$(39/2^{-})$	
5295.8	$(45/2^+)$	746.3 5	100	4549.5	$(41/2^+)$	
5447.9	$(45/2^{-})$	661.2 10	100	4786.7	$(41/2^{-})$	
5939.2?	$(47/2^{-})$	752.5 ^a 10	100	5186.7	$(43/2^{-})$	
6058.6	$(49/2^+)$	762.8 10	100	5295.8	$(45/2^+)$	
6187.2	$(49/2^{-})$	739.3 10	100	5447.9	$(45/2^{-})$	
6864.7	$(53/2^+)$	806.1 10	100	6058.6	$(49/2^+)$	
7737	$(57/2^+)$	872.5 20	100	6864.7	$(53/2^+)$	

[†] Stretched quadrupole (most likely E2) from DCO value,
[‡] Ordering of the transitions in the 630-626-760 cascade is uncertain.

[#] From 2010Sc02.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with intensity suitably divided.

^{*a*} Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas Legend Level Scheme Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided γ Decay (Uncertain) - - - - - • 1 825 100 $(57/2^+)$ 7737 1 806.1 100 $(53/2^+)$ 6864.7 + ^{239,3}100 1 26.8 100 8 (49/2-) 6187.2 $(49/2^+)$ 6058.6 $(47/2^{-})$ _5939.2 + 601,2 100 1 1 ²⁴6.3 100 000 $(45/2^{-})$ 5447.9 $(45/2^+)$ 5295.8 + 35_{6,2} 100 $(43/2^{-})$ 5186.7 1 224,2 100 | 394 | 100 $(41/2^{-})$ 4786.7 $(41/2^+)$ 4549.5 8 % (39/2-4549.1 + 25.8 100 -454.3 275.4 $(37/2^{-})$ 4230.0 8 (35/2-) 8 3955.0 ¥ ¥ $(33/2^{-})$ 3900 (37/2+) $\frac{1}{2}$ 1 446.5 190 3825.3 + 63/. + 63/. - 0100 -<u>3775.6</u> 3327.1 S. (29/2-3173.8 · 630'4 - 0/0' - 0/0' (33/2 3159.0 1 - 20° 0 - 1 1 - 20° 0 - 1 00' - 1 00' - 1 602¹ 1 2880.5 -8 2863.5 (29/2+) -6<u>.</u> Ş 2527.9 $(25/2^{-})$ 4 354 1 1 2441.8 ŝ 385 | 95 | 2411 2250.0 ×. 1 635 1 135 1 16 100 1 22<u>36.4</u> 1925.1 8 (25/2+) (21/2-) 8 1733.8 (19/2-) C ⁵0.5 1 1650.8 6 <u>1624.3</u> (21/2+) 8 101 O : 1370.5 <u>چي</u> 571.4 $(17/2^{-})$ 1079.5 $(15/2^{-})$ -8-1013.2 3 8 $(17/2^+)$ CPIP 864.4 Ŵ 2 (13/2-) 516.2 480.3 R $13/2^+$ 154 ns 3 11/2 441.8 1:01 <u>9/2</u> 7/2 102.0 0.0 2.67 s 10

 $^{163}_{74}W_{89}$

4

Adopted Levels, Gammas

