¹⁶⁷Os α decay (839 ms) 2010Sc02,1996Pa01,1982En03

	History						
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	C. W. Reich, Balraj Singh	NDS 111, 1211 (2010)	12-Apr-2010				

Parent: ¹⁶⁷Os: E=0.0; $J^{\pi}=7/2^{-}$; $T_{1/2}=839$ ms 5; $Q(\alpha)=5980$ 50; % α decay=50 5

¹⁶⁷Os-J^{π}: Proposed in 2010Sc02, based on L=0 α decays in ¹⁷¹Pt -> ¹⁶⁷Os -> ¹⁶³W α decay chain, and persistent observation of 13/2⁺ -> 9/2⁻ -> 7/2⁻ cascades in these nuclei and systematics of lowest-lying 7/2⁻ and 9/2⁻ states in even-Z, odd-N nuclei in the vicinity. Same J^{π} proposed in 2009Od02 based on systematics and comparisons with theoretical predictions.

¹⁶⁷Os-Q(α): From 2003Au03, 2009AuZZ. $\Delta Q(\alpha)$ =50 (2003Au03,2009AuZZ) presumably accounts for the possibility that the α transition feeds an excited state rather than the ¹⁶³W g.s.. From the adopted E α value, Q(α) is computed to Be 5982 *3*, assuming the transition feeds the ¹⁶³W g.s..

¹⁶⁷Os-T_{1/2}: From α decay (2010Sc02). Others: 0.84 s 7 (1996Pa01), 0.8 s 2 (1982En03); 1.05 s 35 (1981Ho10); 0.65 s 15 (1977Ca23,1978Ca11) Note: weighted average gives the same result with $\chi^2 < 1$.

¹⁶⁷Os-T_{1/2}: Additional information 1.

¹⁶⁷Os-% α decay: From weighted average of % α =51 5 (2010Sc02) and 49 7 (1996Pa01). Others: % α =76 10 (1982En03); 58 12 (1981Ho10). Note: weighted average of all values gives % α =54 5 and unweighted average gives % α =58 6.

Additional information 2.

Other main references: 1981Ho10, 1978Ca11, 1977Ca23.

2010Sc02: ¹⁶⁷Os isotope produced in ⁹²Mo(⁷⁸Kr,2pn) E=365, 367 MeV reaction. It was also obtained from α decay of ¹⁷¹Pt produced in ⁹⁶Ru(⁷⁸Kr,2pn) E=348 MeV. Measured E α , I α , half-life of ¹⁶⁷Os by α timing. Also measured decay of an isomer in ¹⁶⁷Os by α -tagged γ -rays and ce using JUROGAM array of 43 escape suppressed EUROGAM phase-I and GASP type HPGe detectors, RITU separator for recoiling nuclei, and GREAT spectrometer.

1996Pa01: ¹⁶⁷Os produced in heavy-ion fusion reactions followed by separation of fragments by a recoil-mass separator. Decay branching determined by detecting time correlated events of recoil nuclei and α particles in double-sided silicon strip detectors. 1982De11: see ¹⁶³W α decay for details.

1982En03: daughter of ¹⁷¹Pt from ¹⁴⁴Sm(³²S,5n) E=139-201 MeV. Measured α 's and T_{1/2}'s; recoil-mass selector, telescope.

Decay branching measured by intensity comparison of parent-daughter α groups.

1981Ho10: decay branching measured by parent-daughter intensity correlations.

1978Ca11,1977Ca23: 260- to 320-MeV 63 Cu on 106,108 Cd and 107,109 Ag. Measured α 's and α (t); He-jet, surface barrier detector. Assignment by excitation functions.

¹⁶³W Levels

E(level)	J^{π}	Comments		
0.0	7/2-	J^{π} : from Adopted Levels.		

α radiations

Εα	E(level)	$I\alpha^{\ddagger}$	HF [†]	Comments
5839 <i>3</i>	0.0	100	1.4 4	Eα: weighted average of: 5853 5 (1996Pa01); 5843 10 (1982En03); 5835 2 (1982De11); 5836 5 (1981Ho10); 5840 10 (1978Ca11). In computing this average, the evaluators have increased the uncertainty In the Eα value of 1982De11 from 2 to 3 so that the associated weight will not Be more that half the total weight. HF: deduced by the evaluators using ALPHAD code with $r_0(^{163}W)=1.561$ fm 11. Other: 1.1 1 (2010Sc02, using Rasmussen formalism). These values are consistent with L=0 g.s. to g.s. transition.
				$I\alpha$: it is assumed that this transition feeds the ¹⁰⁵ W g.s. and that it is the only α transition. Search for fine structure of α decay from ¹⁶⁷ Os proved negative (2010Sc02).

[†] For $r_0(^{163}W)=1.561$ 11 (deduced by the evaluators from weighted average of 1.563 fm 11 for ^{164}W and 1.556 fm 16 for ^{162}W (1998Ak04)).

 \ddagger For absolute intensity per 100 decays, multiply by 0.50 5.