326.22^h 3

331.08^d 14

 $3/2^{-}$

Adopted Levels, Gammas

				History
		Туре		Author Citation Literature Cutoff Date
		Full Evaluation	C. W. I	Reich, Balraj Singh NDS 111,1211 (2010) 12-Apr-2010
$Q(\beta^{-}) = -3428$ Note: Current Additional info An activity with	<i>17</i> ; $S(n) = 17$	9.32×10 ³ 3; S(p) has used the fol min 3 assigned)=3683 6 lowing Q to ¹⁶³ Tm	; $Q(\alpha)=2176\ 7\ 2012Wa38$ 2 record -3431 17 9323 27 3681 6 2176 6 2009AuZZ,2003Au03. n (1968GrZX) was later retracted (1976Ab09).
				¹⁶³ Tm Levels
				Cross Reference (XREF) Flags
				A 163 Yb ε decay (11.05 min) B 130 Te(37 Cl,4n γ) C 148 Nd(19 F,4n γ), 130 Te(37 Cl,4n γ) D 165 Ho(3 He,5n γ),(α ,6n γ)
E(level) [†]	J ^{π#}	T _{1/2} ‡	XREF	Comments
0.0 ^c	1/2+	1.810 h 5	ABCD	$%ε+%β^+=100$ μ=-0.082 <i>I</i> (1988Al04,1989Ra17,2005St24) J ^π : spin from atomic beam (1967Sc33). Parity: log <i>ft</i> =5.3 <i>I</i> to 947.29 level from 3/2 ⁻ parent, the 947.29 level decays by M1,E2>E1>E2>M1+E2 cascade to the g.s.; measured μ consistent with μ≈-0.2 for π1/2[411] orbital.
				T _{1/2} : from 1982Vy07; measured relative to time decay of γ's from ¹³³ Ba, T _{1/2} =10.5 y. Others: 1.75 h 5 (1982By03; total absorption γ spect), 1.8 h 2 (1969Ve05), 1.82 h 8 (1963Gr14), 1.8 h <i>l</i> (1963Ra15,1961Bj02), 1960Bo29, 1960Bu27, 1959Ha09. μ : from 1988Al04 (also 1987Mi31), atomic-beam LASER method. Other: 0.081 2 (1967Sc33). From an evaluation of nuclear rms charge radii, 2004An14 report $^{1/2}=5.185$ fm 4.
13.52 ^b 2	3/2+	<0.9 ns	ABCD	J^{π} : M1+E2 γ to 1/2 ⁺ .
23.29 ^d 5	$(7/2)^+$		ABCD	J^{π} : E2 γ to $3/2^+$. See also J^{π} comment for 86.92 level.
86.92 ^{<i>f</i>} 5	(7/2) ⁻	0.38 μs 3	ABCD	J^{π} : E1 γ to positive-parity state. Energy separation and B(E1)(W.u.)(63.6 γ) are consistent with systematics of Nilsson states in other odd-A Tm, suggesting J=7/2 for both the 23.3 and 86.9 levels.
136.71 ⁱ 2	5/2+	60 ps 10	A D	J ^{π} : E2 γ to 1/2 ⁺ ,1/2[411] and M1+E2 γ to 3/2 ⁺ ,1/2[411]. Alaga rules.
144.39 [°] 2	$(5/2)^+$	110 ps 25	A CD	J^{π} : E2 γ to $1/2^+$, band member.
164.69° <i>11</i>	$(9/2^{+})$	≈ 43 ns		J^{π} : (M1,E2) γ to $(7/2)^{\pm}$. Band member.
174.39° 0	$(\frac{3}{2})^+$	@		J. $MI(\pm 22) \neq to (1/2)$. Band memoer. $I^{\pi} \cdot \Lambda I = (2) E2 \approx to 2/2^+$
$217 1_{A}h_{A}$	$(1/2)^{-}$	@		J : $\Delta J = (2) E2$ y to $3/2^{-1}$.
$247.97\frac{h}{6}$	(1/2) $(5/2^{-})$			J^{π} : E1 γ to $3/2^+$ probable band member
247.97 0	(3/2)		NDCD	In $({}^{3}\text{He},5n\gamma)$, 253 level was assigned the $5/2^{-}$ member of $1/2[541]$ band.
253.5? 3	(≤7/2)		D	J^{π} : γ to $3/2^+$. In (³ He,5n γ), this level was assigned as the 5/2 ⁻ member of the π 1/2[541] band
258.35 ⁱ 3	$(7/2)^+$		A	J^{π} : M1(+E2) γ to 5/2 ⁺ . Band member.
290.30 ^{<i>f</i>} 13	$(11/2^{-})$	≈43 ns	BCD	J^{π} : $\Delta J=1 \gamma$ to $(9/2)^-$. Band member.

 J^{π} : $\Delta J=1 \gamma$ to $(9/2)^{-}$. Band member. $(11/2^{-}) \approx 43$ ns BCD

 J^{π} : E1 γ 's to $1/2^+$ and $5/2^+$. A $(11/2^+)$

J^π: ΔJ=(2) γ to $(7/2)^+$, γ to $(9/2^+)$. D

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁶³Tm Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	XREF	Comments
366.36 ^j 6	3/2+		A	J^{π} : M1+E2 γ to 1/2 ⁺ .
369.08 ^h 25	(9/2 ⁻)		ABCD	J^{π} : $\Delta J=1 \gamma$ to $(7/2)^+$, band member.
383.1 [°] 4	$(9/2^+)$ $(13/2^-)$	~ 85 ns	C	I^{π} : A I = 1 or to $(11/2^{-})$
430.898 IJ 449.201 5	$(13/2)^+$	~0.5 118		J^{*} : $\Delta J = 1^{\circ} \gamma$ to $(11/2^{\circ})$. I^{π} : M1+F2 γ to $5/2^{+}$ Syst of $\pi 3/2[411]$ bands
$451 \ 19^{b} \ 24$	(3/2) $(11/2^+)$	@	CD	J^{π} : $\Lambda I=(2) \times to (7/2)^+$
498.02^{h} 13	$(7/2)^{-}$		A	J^{π} : E1(+M2) γ to 5/2 ⁺ . Probable band member.
521.09 ^e 14	$(13/2^+)$		D	
559.56 ^j 9	$(7/2)^+$		A	J ^{π} : M1+E2 γ to (7/2) ⁺ , syst of π 3/2[411] bands.
586.48 ^h 25	$(13/2^{-})$	@	BCD	J^{π} : ΔJ=1 γ to (11/2 ⁺), ΔJ=(2) γ to (9/2 ⁻).
603.60 ^f 18	$(15/2^{-})$		BCD	J^{π} : γ to $(11/2^{-})$.
629.10 22	$(\leq 7/2)$		Α	J^{π} : γ to $5/2^+$ and possible ε feeding from $3/2^-$ suggest $1/2^+, 3/2, 5/2, 7/2^+$.
683./3 14 728 0 [°] 1	$(\leq 1/2)$ (13/2 ⁺)		A	J [*] : γ to 5/2' and possible ε feeding from 3/2 suggest 1/2', 3/2,5/2, 1/2'.
720.0 + 732.59d - 21	$(15/2^+)$		D D	$J : \gamma \ S \ O(\gamma/2^{-}) \ and \ (11/2^{+}).$ $I^{\pi} : \Lambda I = (2) \ \gamma \ to \ (11/2^{+}) \ \gamma \ to \ (13/2^{+})$
774.09 7	$(13/2)^+$ $(5/2,7/2)^+$		A	J^{π} : E2 γ to 3/2 ⁺ , γ 's to (7/2) ⁻ and (7/2) ⁺ .
804.80 <mark>8</mark> 19	$(17/2^{-})$	≈8.5 ns	BCD	J ^π : ΔJ=2, (E2) γ to (13/2 ⁻), γ to (15/2 ⁻).
806.13 7	$(3/2, 5/2^+)$		Α	J^{π} : γ' s to $(5/2)^+$, possible γ to $1/2^+$, γ from $(5/2)^-$.
823.94 9	(5/2)		A	J^{*} : γ to (9/2), possible (E1) γ to $5/2^{+}$ and possible ε feeding (log $ft \approx 6.6$) from $3/2^{-}$.
829.7 ^b 3	$(15/2^+)$	@	CD	J^{π} : ΔJ=2 γ to (11/2 ⁺), γ to (13/2 ⁻).
900.5 ^h 3	$(17/2^{-})$		BCD	J^{π} : γ to (13/2 ⁻).
947.29 ^{<i>a</i>} 5	(5/2)-		Α	J^{π} : M1,E2 γ to $(7/2)^-$, γ to $(7/2)^+$, evidence of strong ε feeding (log $ft \approx 5.3$) from $3/2^-$.
962.85 ^e 23	$(17/2^+)$		D	J^{π} : ΔJ=2 γ to (13/2 ⁺), γ to (15/2 ⁺).
1011.50 ^J 21	$(19/2^{-})$		BCD	J^{π} : γ 's to (15/2 ⁻) and (17/2 ⁻).
1121.07 6 1130.64 <i>15</i>	(3/2+,5/2-)		A	J^{π} : γ to $(7/2)^+$, possible ε feeding (log $ft \approx 6.5$) from $3/2^-$ and possible γ to
1159.5 [°] 6	$(17/2^+)$		C	(1/2) .
1211.2^{d} 4	$(19/2^+)$	@	D	I^{π} : $\Lambda I=(2) \gamma$ to $(15/2^{+}), \gamma$ to $(17/2^{+}),$
1261.10^{g} 22	$(21/2^{-})$	@	BCD	J^{π} : $\Delta J = 2 \gamma$ to $(17/2^{-})$, γ to $(19/2^{-})$.
1294.5 ^b 3	$(19/2^+)$		CD	$J^{\pi}: \Delta J = (2) \gamma \text{ to } (15/2^+), \gamma \text{ to } (17/2^-).$
1308.4 ^h 3	$(21/2^{-})$		BCD	J^{π} : γ to $(17/2^{-})$.
1345.32 6	1/2,3/2,5/2(+)		Α	J ^{π} : γ to 1/2 ⁺ , possible ε feeding (log $ft \approx 6.1$) from 3/2 ⁻ .
1362.92 18	$(\leq 7/2)$		Α	J^{π} : γ 's to $3/2^+$ and $5/2^+$ suggest $1/2^+, 3/2, 5/2, 7/2^+$.
1473.6° 4	$(21/2^+)$	(0)	D	$J'': \gamma'$ s to $(1//2^+)$ and $(19/2^+)$.
1498.40 ⁹ 23 1552 22 6	(23/2)	C	BCD	$J^{*}: \Delta J = 1 \gamma$ to (21/2), γ to (19/2).
1661.5 [°] 7	$(21/2^+)$		c	
1749.8 <mark>d</mark> 4	$(23/2^+)$		D	J^{π} : $\Delta J=(2) \gamma$ to $(19/2^+)$, γ to $(21/2^+)$.
1780.08 9	$(1/2^+, 3/2, 5/2)$		A	J^{π} : γ 's to $3/2^+$, $3/2^-$ and $(5/2, 7/2)^+$.
1785.70 ⁸ 24	(25/2 ⁻)		BCD	$J^{n}: \Delta J = 2 \gamma$ to $(21/2^{-}), \gamma$ to $(23/2^{-}).$
1803.9" 3	$(25/2^{-})$		BCD	J^{n} : $\Delta J=2 \gamma$ to $(21/2^{-})$. J^{π} : $\alpha' \alpha$ to $(5/2)^{+}$ and $(5/2)^{-}$. Possible α to $(1/2)^{-}$
1820.80 11	(3/2,3/2) $(1/2^+,3/2.5/2)$		A	J^{π} : γ to $5/2^+$ and possible γ to $(1/2)^-$.
1826.6 ^b 4	$(23/2^+)$		CD	J^{π} : $\Delta J=(2) \gamma$ to $(19/2^+)$.
1833.48 ^{&} 5	(5/2 ⁻)		A	J^{π} : evidence of strong ε feeding (log $ft \approx 5.2$) from $3/2^-$, γ 's to $(7/2)^+$ and $(7/2)^-$
1994.77 <i>11</i>	(5/2 ⁻)		A	J^{π} : γ to (9/2 ⁻), possible ε feeding (log $ft \approx 5.6$) from 3/2 ⁻ .

Continued on next page (footnotes at end of table)

¹⁶³Tm Levels (continued)

E(level) [†]	$J^{\pi #}$	$T_{1/2}^{\ddagger}$	XREF	Comments
2034.3 ^e 6	$(25/2^+)$		D	
2046.3 ^{<i>f</i>} 3	$(27/2^{-})$		BCD	J^{π} : $\Delta J=(2) \gamma$ to $(23/2^{-}), \gamma$ to $(25/2^{-}).$
2206.1 [°] 8	$(25/2^+)$		С	
2323.0 ^d 6	$(27/2^+)$	@	D	J^{π} : γ to (23/2 ⁺).
2356.4 <mark>8</mark> 3	$(29/2^{-})$		BCD	J^{π} : γ' s to (27/2 ⁻) and from (31/2 ⁻).
2376.8 ^h 4	$(29/2^{-})$		BCD	J^{π} : γ to (25/2 ⁻).
2397.3 ^b 4	$(27/2^+)$		CD	
2607.7 ^e 7	$(29/2^+)$		D	
2626.2 ^{<i>f</i>} 3	$(31/2^{-})$		BCD	J^{π} : ΔJ=(2) γ to (27/2 ⁻), γ to (29/2 ⁻).
2741.6 [°] 10	$(29/2^+)$		С	
2878.6 ^{<i>d</i>} 7	$(31/2^+)$		D	$J^{\pi}: \Delta J=(2) \gamma \text{ to } (27/2^+).$
2920.9 ^g 3	$(33/2^{-})$		BCD	
2932.6 ⁰ 5	$(31/2^+)$		С	
3014.5 ^{<i>h</i>} 4	$(33/2^{-})$		BCD	
3171.3 ^{<i>f</i>} 3	$(35/2^{-})$		BCD	$J^{\pi}: \Delta J = (2) \gamma \text{ to } (31/2^{-}).$
3206.5 [°] 11	$(33/2^+)$		C	
3265.1 8	(35/2)		В	
3420.4° 6	$(35/2^+)$		C	
3427.784	(37/2)		BC	
$3689.6^{-}4$	(39/2)		BC	
$3/13.6^{n}$ 5	(37/2)		BC	
$3/22.2^{\circ} 12$	$(37/2^{+})$		C	
3964.8° /	$(39/2^{-})$ $(41/2^{-})$		PC	
4094.5 8	$(39/2^{-})$		B	
4266.4^{f} 4	$(43/2^{-})$		BC	
4319.8 [°] 13	$(41/2^+)$		C	
4443.2 ^h 7	$(41/2^{-})$		BC	
4501.6? ^l 11	$(41/2^{-})$		В	
4586.6 <mark>8</mark> 4	$(45/2)^{-}$		BC	
4588.4 <mark>6</mark> 7	$(43/2^+)$		С	
4774.9 10	$(43/2^{-})$		В	
4918.5 ^{<i>J</i>} 4	$(47/2^{-})$		BC	
4996.8 14	$(45/2^+)$		C	
5098.8 ¹ 10	$(45/2^{-})$		В	
5172.2 ^{<i>n</i>} 8	$(45/2^{-})$	0.000 14	BC	
5285.9 ⁸ 4	(49/2)	0.388 ps 14	BC	
5417.3 ^k 12	$(4^{\prime}/2^{-})$		В	
5643.5 ^J 8	$(51/2^{-})$		В	
5751 1 12	$(49/2^{+})$		L L	
$5/51.1^{\circ} I2$	(49/2)		В	
5893.2" 13 6057.08 0	(49/2)	0 353 - 21	B	
$6006 \circ l 12$	(33/2)	0.333 ps 21	DC D	
64225f 10	(31/2)		D	
0455.5^{-10}	(33/2)		В	
6569 3 [°] 16	(33/2) $(53/2^+)$		Б	
6462.2^{l} 14 6569.3^{c} 16	$(53/2^{-})$ $(53/2^{-})$ $(53/2^{+})$		B C	

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	E(level) [†]	$J^{\pi \#}$	XREF
6837.9 ^k 15	$(55/2^{-})$		В	10412.4 ^k 24	$(71/2^{-})$	В
6845.9? <i>13</i>	$(57/2^{-})$	0.347 ps 21	С	10788.9 ^g 20	$(73/2^{-})$	В
6893.9 <mark>8</mark> 11	$(57/2^{-})$		В	10975.2 ^{<i>l</i>} 24	$(73/2^{-})$	В
7236.8 ¹ 15	$(57/2^{-})$		В	11159.5 ^f 21	$(75/2^{-})$	В
7279.5 ^f 12	(59/2 ⁻)		В	11451 ^k 3	$(75/2^{-})$	В
7642.3 ^k 16	(59/2 ⁻)		В	11908.9 ^g 23	$(77/2^{-})$	В
7785.9 <mark>8</mark> 13	$(61/2^{-})$		В	12070 ^{<i>l</i>} 3	$(77/2^{-})$	В
8075.6 ¹ 17	$(61/2^{-})$		В	12253.5 ^f 23	$(79/2^{-})$	В
8175.5 f 13	$(63/2^{-})$		В	12547 ^k 3	(79/2-)	В
8507.5 ^k 19	$(63/2^{-})$		В	13089.9 <mark>8</mark> 25	$(81/2^{-})$	В
8729.9 <mark>8</mark> 14	$(65/2^{-})$		В	13219 ¹ 3	$(81/2^{-})$	В
8978.0 ¹ 20	$(65/2^{-})$		В	13400.5 ^{<i>f</i>} 25	$(83/2^{-})$	В
9120.5 ^f 15	$(67/2^{-})$		В	13695 ^k 3	$(83/2^{-})$	В
9431.0 ^k 22	$(67/2^{-})$		В	14321 <mark>8</mark> 3	$(85/2^{-})$	В
9729.9 <mark>8</mark> 17	$(69/2^{-})$		В	14598 <i>f</i> 3	$(87/2^{-})$	В
9944.8 ¹ 22	$(69/2^{-})$		В	14882 ^k 3	$(87/2^{-})$	В
10115.5 ^f 18	$(71/2^{-})$		В			

¹⁶³Tm Levels (continued)

[†] Levels above 6890 keV are from $({}^{37}\text{Cl},4n\gamma)$ (2007Pa22) only.

[‡] From $ce\gamma(t)$ and $\gamma\gamma(t)$ in ε decay for levels between 13 and 150 and from $\gamma(t)$ in $(\alpha, 6n\gamma)$ for levels above 150.

- [#] For high-spin levels populated in $({}^{19}F,4n\gamma),({}^{37}Cl,4n\gamma)$, the assignments are from band structures and deexcitation pattern. Some of these assignments are based on $\gamma\gamma(\theta)$ (DCO) and/or $\gamma(\theta)$ data but the details of such measurements are generally not available. Thus, all assignments are given under parentheses.
- [@] <14 ns from resolving time of $\gamma\gamma$ coin system in (α ,6n γ).
- [&] Configuration= $\pi 7/2[523] \otimes v 3/2[521] \otimes v 5/2[532]$ (?).
- ^{*a*} Configuration= $\pi 5/2[532]$ (?).
- ^b Band(A): $\pi 1/2$ [411] band, $\alpha = -1/2$. Band assignment from 1992JeZW, 1977Fo08 and 1975Ad09. A=15.39, B=-6.65 eV, a=-0.706. First four members of band proposed by 1975Ad09; extended to 27/2 by 1977Fo08 and to 43/2 by 1992JeZW.
- ^c Band(a): $\pi 1/2[411]$ band, $\alpha = +1/2$. Band assignment from 1992JeZW.
- ^{*d*} Band(B): $\pi 7/2[404]$ band, $\alpha = -1/2$. A=16.07, B=-25.4 eV, A₇=1.25×10⁻⁶. Bandhead identification (1977Fo08) from systematics of odd-A Tm nuclides. Identification of other members based on strong crossover transitions.
- ^{*e*} Band(C): $\pi 7/2[404]$ band, $\alpha = +1/2$. See comments on other signature partner for band assignment and band parameters.
- ^{*f*} Band(D): $\pi 7/2[523]$ band, $\alpha = -1/2$. Band assignment from 1977Fo08 and 1991Je04. A=9.16, B=36.6 eV, A₇=-8.63×10⁻⁷. 1985Ad12 do not observe the strong Coriolis effects mentioned by 1977Fo08.
- ^g Band(d): $\pi 7/2[523]$ band, $\alpha = +1/2$. See comments on other signature partner for band assignment and band parameters.
- ^{*h*} Band(E): $\pi 1/2[541]$ band $\alpha = +1/2$. Band assignment from 1991Je04 and 1977Fo08. The signature partner ($\alpha = -1/2$) of this band was reported by 1992JeZW but later retracted (1994JeZZ). A=11.46, B=-7.07 eV, a=2.20.
- ^{*i*} Band(F): π5/2[402] band. A=17.4, if B=0.
- ^{*j*} Band(G): $\pi 3/2[411]$ band. A=17.10, B=-66.9 eV.
- ^{*k*} Band(H): Triaxial SD-1 band, $\alpha = -1/2$. Percent population intensity=2.9 *11* (2007Pa22). Q_t=7.42 +44-37 (DSAM,2007Wa21). The side-feeding Q_{sf}=10.2 +18-13. From comparison with structure calculations and interband transitions, this band is proposed as a particle-hole excitation rather than a wobbling-mode excitation (2007Pa22).
- ^{*l*} Band(h): Triaxial SD-2 band, $\alpha = +1/2$. Percent population intensity=2.1 9 (2007Pa22). $Q_t = 7.7 + 10-6$ (DSAM,2007Wa21). The side-feeding $Q_{sf} = 9.7 + 29-23$. See comment for the $\alpha = -1/2$ signature partner for the nature of this band.

$\gamma(^{163}{\rm Tm})$

See ε decay and (³He,5n γ),(α ,6n γ) for a large number of gamma rays assigned to ¹⁶³Tm but not yet placed in the level scheme.

S

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	$\alpha^{\boldsymbol{b}}$	Comments
13.52	3/2+	13.53 3	100	0.0	1/2+	M1+E2	≈0.04	240 60	B(M1)(W.u.)>0.030; B(E2)(W.u.)>130 α (L)=186 45; α (M)=43 11; α (N+)=11 3 α (N)≈10; α (O)≈1.337; α (P)≈0.0575 α : for δ =0.04 2.
23.29	$(7/2)^+$	9.74 5	100	13.52	3/2+	E2		1.32×10^5	$\alpha(L)=8.55\times10^4$; $\alpha(M)=3.47\times10^4$; $\alpha(N+)=1.16\times10^4$
86.92	(7/2)-	63.62 <i>3</i>	100	23.29	(7/2)+	E1		1.077	B(E1)(W.u.)=9.5×10 ⁻⁷ 8 α (K)=0.875 13; α (L)=0.1576 23; α (M)=0.0352 5; α (N+)=0.00908 13
									α(N)=0.00802 I2; α(O)=0.001025 I5; α(P)=3.70×10-3 6 δ: <0.03 from RUL(M2)=1, <0.035 from α(K)exp in ε decay.
136.71	5/2+	123.21 2	100 4	13.52	3/2+	M1+E2	0.28 4	1.686 25	B(M1)(W.u.)=0.062 <i>11</i> ; B(E2)(W.u.)=160 <i>50</i> α (K)=1.37 <i>3</i> ; α (L)=0.244 <i>9</i> ; α (M)=0.0552 <i>22</i> ; α (N+)=0.0147 <i>6</i>
		136.70 <i>3</i>	11.4 5	0.0	1/2+	E2		0.968	$\alpha(N)=0.0129 5; \alpha(O)=0.00178 6; \alpha(P)=8.33\times10^{-5} 17$ B(E2)(W.u.)=140 30 $\alpha(K)=0.478 7; \alpha(L)=0.376 6; \alpha(M)=0.0914 13;$ $\alpha(N+)=0.0233 4$
144.39	(5/2)+	(7.68 3)	0.48 16	136.71	5/2+	(M1)		219 4	α (N)=0.0208 3; α (O)=0.00246 4; α (P)=2.06×10 ⁻⁵ 3 B(M1)(W.u.)=0.50 21 α (M)=173 4; α (N+)=46.5 9 α (N)=40.4 8; α (O)=5.78 11; α (P)=0.311 6
		130.86 2	100 3	13.52	3/2+	M1(+E2)	0.5 5	1.38 10	Mult.: not E2, M2 or higher from RUL. M1 from $\Delta \pi$. B(M1)(W.u.)=0.017 8; B(E2)(W.u.)<182 $\alpha(K)=1.07 21; \alpha(L)=0.24 9; \alpha(M)=0.055 22; \alpha(N+)=0.014 6$
		144.39 <i>3</i>	37.4 16	0.0	1/2+	E2		0.797	α (N)=0.013 5; α (O)=0.0017 5; α (P)=6.4×10 ⁻⁵ 16 B(E2)(W.u.)=140 40 α (K)=0.411 6; α (L)=0.295 5; α (M)=0.0717 10; α (N+)=0.0183 3
164.69	(9/2+)	141.4 <i>I</i>	100	23.29	(7/2)+	(M1,E2)		1.01 15	$\begin{array}{l} \alpha(\mathrm{N}) = 0.01635 \ 23; \ \alpha(\mathrm{O}) = 0.00194 \ 3; \ \alpha(\mathrm{P}) = 1.79 \times 10^{-5} \ 3\\ \alpha(\mathrm{K}) = 0.7 \ 3; \ \alpha(\mathrm{L}) = 0.23 \ 9; \ \alpha(\mathrm{M}) = 0.056 \ 23; \ \alpha(\mathrm{N}+) = 0.014 \\ 6\\ \alpha(\mathrm{N}) = 0.013 \ 6; \ \alpha(\mathrm{O}) = 0.0016 \ 6; \ \alpha(\mathrm{P}) = 3.9 \times 10^{-5} \ 21\\ \mathrm{E}_{\gamma}: \ \mathrm{from} \ (^{3}\mathrm{He}, 5\mathrm{n}\gamma). \\ \mathrm{Mult.:} \ \mathrm{D}, \mathrm{E2} \ \mathrm{from} \ \mathrm{RUL.} \ \alpha(\mathrm{exp}) \ \mathrm{in} \ (^{3}\mathrm{He}, 5\mathrm{n}\gamma) \ \mathrm{suggests} \ \mathrm{not} \end{array}$

γ ⁽¹⁶³Tm) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	$\alpha^{\boldsymbol{b}}$	Comments
174.59	(9/2)-	87.67 3	100	86.92	(7/2)-	M1(+E2)	0.4 +5-4	4.61 <i>19</i>	$\alpha(K)=3.5 \ 8; \ \alpha(L)=0.9 \ 7; \ \alpha(M)=0.21 \ 18; \ \alpha(N+)=0.05 \ 5 \ \alpha(N)=0.05 \ 4; \ \alpha(O)=0.006 \ 5; \ \alpha(P)=0.00021 \ 6$
175.00	$(7/2)^+$	151.3 ^{<i>a</i>} 10 161.49 3	100	23.29 13.52	$(7/2)^+$ $3/2^+$	E2		0.538	$\alpha(K)=0.301 5; \alpha(L)=0.182 3; \alpha(M)=0.0440 7; \alpha(N+)=0.01125 16$
217.14	(1/2)-	203.60 4	100 6	13.52	3/2+	E1+M2	0.14 4	0.09 3	$ \begin{aligned} &\alpha(N) = 0.01003 \ 14; \ \alpha(O) = 0.001201 \ 17; \ \alpha(P) = 1.342 \times 10^{-5} \ 19 \\ &\alpha(K) = 0.075 \ 21; \ \alpha(L) = 0.014 \ 5; \ \alpha(M) = 0.0031 \ 11; \\ &\alpha(N+) = 0.0008 \ 3 \end{aligned} $
		217.17 5	80 8	0.0	1/2+	E1		0.0434	$\begin{aligned} \alpha(N) = 0.00072 \ 25; \ \alpha(O) = 0.00010 \ 4; \ \alpha(P) = 4.8 \times 10^{-6} \ 17 \\ \alpha(K) = 0.0364 \ 6; \ \alpha(L) = 0.00543 \ 8; \ \alpha(M) = 0.001206 \ 17; \\ \alpha(N+) = 0.000319 \ 5 \end{aligned}$
247.97	(5/2-)	234.45 5	100	13.52	3/2+	E1		0.0357	$\alpha(N)=0.000279 \ 4; \ \alpha(O)=3.85\times10^{-5} \ 6; \ \alpha(P)=1.80\times10^{-6} \ 3$ $\delta: \ 0.05 \ +7-5 \ \text{from } \varepsilon \ \text{decay}, \ \Delta J^{\pi} \ \text{forbids } M2.$ $\alpha(K)=0.0300 \ 5; \ \alpha(L)=0.00444 \ 7; \ \alpha(M)=0.000986 \ 14; \ \alpha(N+)=0.000261 \ 4$ $\alpha(N)=0.000228 \ 4; \ \alpha(O)=3.16\times10^{-5} \ 5; \ \alpha(P)=1.496\times10^{-6} \ 21$
253.5?	(≤7/2)	108.9 ^{<i>f</i>} 5	63	144.39	$(5/2)^+$				
258 35	$(7/2)^+$	240.0^{f} 3	100 32	13.52	$3/2^+$	$M1(\pm E2)$	$0.2 \pm 28 \pm 2$	2 13 23	$\alpha(\mathbf{K}) = 1.7.9; \ \alpha(\mathbf{I}) = 0.3.5; \ \alpha(\mathbf{M}) = 0.07.13; \ \alpha(\mathbf{N} + \cdot) = 0.02.4$
236.35	(1/2)	121.73 5	74 8	136.71	5/2+	M1(+E2)	0.1 +15-1	1.76 <i>21</i>	$\alpha(N)=1.7$ 9, $\alpha(L)=0.5$ 9, $\alpha(M)=0.07$ 15, $\alpha(N+)=0.02$ 4 $\alpha(N)=0.02$ 3; $\alpha(O)=0.002$ 3; $\alpha(P)=0.00011$ 7 $\alpha(K)=1.5$ 6; $\alpha(L)=0.2$ 3; $\alpha(M)=0.05$ 8; $\alpha(N+)=0.014$ 19 $\alpha(N)=0.012$ 17; $\alpha(O)=0.0017$ 18; $\alpha(P)=9.E-5$ 5
290.30	(11/2 ⁻)	115.7 2	100 10	174.59	(9/2)-	D ^{&}			
326.22	3/2-	203.4 2 181.84 5	20 <i>10</i> 15.5 <i>10</i>	86.92 144.39	$(7/2)^-$ $(5/2)^+$	E1		0.0688	I _{γ} : 68 7 in ¹³⁰ Te(³⁷ Cl,4n γ) (2007Pa22). α (K)=0.0576 8; α (L)=0.00871 13; α (M)=0.00194 3; α (N+)=0.000511 8
		189.40 <i>10</i>	17 3	136.71	5/2+	E1		0.0619	$\alpha(N)=0.000447 \ 7; \ \alpha(O)=6.12\times10^{-5} \ 9; \ \alpha(P)=2.79\times10^{-6} \ 4 \ \delta: <0.13 \ from \ \alpha(K)exp.$ $\alpha(K)=0.0518 \ 8; \ \alpha(L)=0.00781 \ 11; \ \alpha(M)=0.001735 \ 25; \ \alpha(N+)=0.000459 \ 7$
		312.71 4	12 3	13.52	3/2+	[E1]		0.01736	$\begin{aligned} \alpha(N) &= 0.000401 \ 6; \ \alpha(O) = 5.50 \times 10^{-3} \ 8; \ \alpha(P) = 2.52 \times 10^{-6} \ 4 \\ \delta: \ < 0.15 \ \text{from} \ \alpha(K) \text{exp.} \\ \alpha(K) &= 0.01463 \ 21; \ \alpha(L) = 0.00213 \ 3; \ \alpha(M) = 0.000471 \ 7; \\ \alpha(N+) &= 0.0001254 \ 18 \end{aligned}$
		326.20 7	100 4	0.0	1/2+	E1		0.01566	$\begin{aligned} \alpha(N) &= 0.0001094 \ 16; \ \alpha(O) &= 1.528 \times 10^{-5} \ 22; \ \alpha(P) &= 7.51 \times 10^{-7} \ 11 \\ \alpha(K) &= 0.01321 \ 19; \ \alpha(L) &= 0.00192 \ 3; \ \alpha(M) &= 0.000424 \ 6; \\ \alpha(N+) &= 0.0001130 \ 16 \\ \alpha(N) &= 9.85 \times 10^{-5} \ 14; \ \alpha(O) &= 1.378 \times 10^{-5} \ 20; \ \alpha(P) &= 6.81 \times 10^{-7} \ 10 \end{aligned}$

						Adopted L	evels, Gamn	nas (continue	ed)
						<u>γ(</u>	¹⁶³ Tm) (con	tinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	δ#	$\alpha^{\boldsymbol{b}}$	Comments
331.08	$(11/2^+)$	166.4 <i>1</i>	≤282	164.69	(9/2+)				
366 36	3/2+	307.8 <i>3</i> 221 74 20	100 <i>30</i> 12 9 <i>21</i>	23.29 144 39	$(7/2)^+$ $(5/2)^+$	(F2)		0 185	$\alpha(\mathbf{K}) = 0.1216.18$; $\alpha(\mathbf{L}) = 0.0487.7$; $\alpha(\mathbf{M}) = 0.01164.17$;
500.50	5/2	221.71 20	12.9 21	111.59	(3/2)	(12)		0.105	$\alpha(N+)=0.003005$
		352.95 10	100 6	13.52	3/2+	E2(+M1)	>0.93	0.058 14	$ \begin{aligned} &\alpha(N) = 0.00266 \ 4; \ \alpha(O) = 0.000328 \ 5; \ \alpha(P) = 5.84 \times 10^{-6} \ 9 \\ &\alpha(K) = 0.045 \ 13; \ \alpha(L) = 0.0094 \ 9; \ \alpha(M) = 0.00216 \ 17; \\ &\alpha(N+) = 0.00057 \ 5 \end{aligned} $
		366.30 10	99 4	0.0	1/2+	M1+E2	0.86 45	0.066 13	$ \begin{aligned} &\alpha(N) = 0.00050 \ 4; \ \alpha(O) = 6.7 \times 10^{-5} \ 8; \ \alpha(P) = 2.6 \times 10^{-6} \ 9 \\ &\alpha(K) = 0.054 \ 12; \ \alpha(L) = 0.0093 \ 9; \ \alpha(M) = 0.00210 \ 17; \\ &\alpha(N+) = 0.00056 \ 5 \end{aligned} $
260.08	$(0/2^{-})$	121.1.5	12.7	247.07	$(5/2^{-})$				α (N)=0.00049 5; α (O)=6.8×10 ⁻⁵ 8; α (P)=3.2×10 ⁻⁶ 8
309.08	(9/2)	121.1 5	12 /	175.00	$(3/2)^+$	&			
383.1	$(9/2^+)$	208.1 5	100 10	175.00	$(7/2)^+$				
		238.7 5		144.39	$(5/2)^+$	- 81			
436.89	(13/2 ⁻)	146.6 2	100 10	290.30	(11/2 ⁻)	Dæ			I_{γ} : the γ-ray branching ratios are from ¹⁶⁵ Ho(³ He,5nγ),(α,6nγ); Iγ(146.6)/Iγ(262.3)=0.3/78 in ¹³⁰ Te(³⁷ Cl,4nγ).
		262.3 2	≤41	174.59	(9/2)-	[E2]		0.1081	B(E2)(W.u.) \approx 0.14 α (K)=0.0753 <i>11</i> ; α (L)=0.0252 <i>4</i> ; α (M)=0.00598 <i>9</i> ; α (N+)=0.001548 <i>23</i>
449.20	(5/2)+	274.30 15	37 5	175.00	$(7/2)^+$	[M1,E2]		0.14 5	$\begin{aligned} \alpha(N) = 0.001373 \ 20; \ \alpha(O) = 0.0001719 \ 25; \ \alpha(P) = 3.76 \times 10^{-6} \ 6 \\ \alpha(K) = 0.11 \ 5; \ \alpha(L) = 0.0222 \ 10; \ \alpha(M) = 0.00508 \ 9; \\ \alpha(N+) = 0.00134 \ 5 \end{aligned}$
		304.67 20	22 4	144.39	$(5/2)^+$	M1+E2	0.62 45	0.119 <i>19</i>	α (N)=0.00118 3; α (O)=0.000159 14; α (P)=6.E-6 3 α (K)=0.098 18; α (L)=0.0165 8; α (M)=0.00373 13; α (N+)=0.00100 5
		312.52 6	53 9	136.71	5/2+	M1+E2	≈2	0.077 11	$\begin{array}{l} \alpha(\mathrm{N}) = 0.00087 \ 4; \ \alpha(\mathrm{O}) = 0.000121 \ 8; \ \alpha(\mathrm{P}) = 5.8 \times 10^{-6} \ 12 \\ \alpha(\mathrm{K}) = 0.059 \ 11; \ \alpha(\mathrm{L}) = 0.0138 \ 5; \ \alpha(\mathrm{M}) = 0.00319 \ 9; \\ \alpha(\mathrm{N}+) = 0.00084 \ 3 \end{array}$
									$\alpha(N)=0.000734 \ 3; \ \alpha(O)\approx 9.68\times 10^{-5}; \ \alpha(P)\approx 3.23\times 10^{-6}$
		435.62 7	100 7	13.52	3/2+	E2(+M1)	>2.2	0.027 3	α (K)=0.0214 23; α (L)=0.00445 22; α (M)=0.00102 5; α (N+)=0.000270 13
						Ø			α (N)=0.000237 11; α (O)=3.17×10 ⁻⁵ 18; α (P)=1.18×10 ⁻⁶ 15
451.19	$(11/2^+)$	276.2 3	100	175.00	$(7/2)^+$	۳ ۱۳		0.01200	$\alpha(V) = 0.01089.16$, $\alpha(I) = 0.001560.22$, $\alpha(M) = 0.000247.5$.
498.02	(7/2)	333.8 <i>3</i>	83 21	144.39	(5/2)'	[E1]		0.01288	$\alpha(\mathbf{N})=0.01088\ 10;\ \alpha(\mathbf{L})=0.001509\ 23;\ \alpha(\mathbf{M})=0.000547\ 3;$ $\alpha(\mathbf{N}+)=9.26\times10^{-5}\ 13$
		361.55 20	100 9	136.71	5/2+	E1(+M2)	≈0.13	≈0.01744	$\begin{aligned} \alpha(N) &= 8.07 \times 10^{-5} \ 12; \ \alpha(O) = 1.131 \times 10^{-5} \ 16; \ \alpha(P) = 5.64 \times 10^{-7} \ 8 \\ \alpha(K) &\approx 0.01453; \ \alpha(L) \approx 0.00227; \ \alpha(M) \approx 0.000509; \\ \alpha(N+) &\approx 0.0001362 \\ \alpha(N) &\approx 0.0001186; \ \alpha(O) &\approx 1.672 \times 10^{-5}; \ \alpha(P) &\approx 8.44 \times 10^{-7} \\ \alpha: \ for \ \delta = 0.13 \ 7. \end{aligned}$

 \neg

γ ⁽¹⁶³Tm) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	α b	Comments
521.09	$(13/2^+)$	190.1 3	<48	331.08 (11/2+)				
		356.4 1	100 10	164.69 (9/2+)				
559.56	$(7/2)^+$	384.62 10	100 7	$175.00 (7/2)^+$	M1+E2	1.4 8	0.048 16	$\alpha(K)=0.039\ 15;\ \alpha(L)=0.0074\ 12;\ \alpha(M)=0.00168\ 23;$
								α (N+)=0.00044 /
		415.0.2	22.2	$144.20(5/2)^+$	[M1 E2]		0.045.17	$\alpha(N)=0.00039$ 6; $\alpha(O)=5.5\times10^{-5}$ 10; $\alpha(P)=2.2\times10^{-5}$ 10 $\alpha(K)=0.027$ 15; $\alpha(L)=0.0063$ 14; $\alpha(M)=0.0014$ 2;
		415.0 5	22 3	144.39 (3/2)	[111,62]		0.045 17	$\alpha(\mathbf{N}) = 0.057 \ 15, \ \alpha(\mathbf{L}) = 0.0005 \ 14, \ \alpha(\mathbf{M}) = 0.0014 \ 5, \ \alpha(\mathbf{N} + \) = 0.00038 \ 8$
								$\alpha(N)=0.00033 \ 7 \cdot \alpha(O)=4.6 \times 10^{-5} \ 11 \cdot \alpha(P)=2.1 \times 10^{-6} \ 10$
		422.80 20	13 5	136.71 5/2+	[M1.E2]		0.043 16	$\alpha(K) = 0.035 \ 15; \ \alpha(L) = 0.0059 \ 13; \ \alpha(M) = 0.0013 \ 3;$
					L / J			α(N+)=0.00036 8
								$\alpha(N)=0.00031$ 7; $\alpha(O)=4.4\times10^{-5}$ 11; $\alpha(P)=2.0\times10^{-6}$ 10
586.48	$(13/2^{-})$	135.3 5	43 14	451.19 (11/2+)	D+Q <mark>&</mark>			
		217.4 2	100 21	369.08 (9/2-)	@			
603.60	$(15/2^{-})$	166.7 2	82 11	436.89 (13/2-)				
		313.3 2	100 19	290.30 (11/2 ⁻)				
629.10	$(\leq 7/2)$	484.6 3	100 22	$144.39 (5/2)^+$				
683 73	(<7/2)	492.5 5 530 33 <i>14</i>	0/22 100.0	$130./1 \ 5/2^{-1}$ $144.30 \ (5/2)^{+1}$				
005.75	$(\leq 1/2)$	547.32.70	36.9	$136.71 \ 5/2^+$				
728.0	$(13/2^+)$	276.8 5	00 5	$451.19 (11/2^+)$				
		344.9 5		383.1 (9/2+)				
732.59	$(15/2^+)$	211.3 5	179	521.09 (13/2 ⁺)	0			
		401.5 2	100 20	331.08 (11/2 ⁺)	<i>a</i>			
774.09	$(5/2,7/2)^+$	407.72 10	20.3 14	366.36 3/2+	E2		0.0294	$\alpha(K)=0.0226 4; \alpha(L)=0.00526 8; \alpha(M)=0.001220 18;$
								α (N+)=0.000320 5
		500 2 3	37 /	$175.00 (7/2)^+$				$\alpha(N)=0.0002814; \alpha(O)=3.70\times10^{-5}0; \alpha(P)=1.219\times10^{-5}17$
		687.22° 10	100 ^e 86	$86.92 (7/2)^{-1}$	(F1)		0.00297	$\alpha(\mathbf{K}) = 0.00252.4$; $\alpha(\mathbf{L}) = 0.000349.5$; $\alpha(\mathbf{M}) = 7.70 \times 10^{-5}.11$;
		007.22 10	100 00	00.92 (1/2)	(L1)		0.00277	$\alpha(N)=0.00252$ 4, $\alpha(D)=0.000549$ 5, $\alpha(N)=7.70\times10^{-11}$ 11, $\alpha(N+)=2.06\times10^{-5}$ 3
								$\alpha(N)=1.79\times10^{-5}$ 3; $\alpha(O)=2.56\times10^{-6}$ 4; $\alpha(P)=1.355\times10^{-7}$ 19
804.80	$(17/2^{-})$	201.2 2	100 11	603.60 (15/2 ⁻)	0			
		367.9 2	97 13	436.89 (13/2 ⁻)	(E2)		0.0392	B(E2)(W.u.)≈0.09 α (K)=0.0296 5; α (L)=0.00741 11; α (M)=0.001728 25;
								α (N+)=0.000452 7
00(12	(212 512+)	((1.00.17	100 10	144.20 (5/0)+				α (N)=0.000398 6; α (O)=5.17×10 ⁻⁵ 8; α (P)=1.574×10 ⁻⁶ 23
806.13	(3/2,5/2)	001.98 15	100 10	144.39 (5/2)				

 ∞

	Adopted Levels, Gammas (continued)													
						γ ⁽¹⁶³ Tm) (c	continued)							
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	$\alpha^{\boldsymbol{b}}$	Comments						
806.13	$(3/2, 5/2^+)$	805.6 ^{df} 16	≤19 d	0.0	$1/2^{+}$									
823.94	(5/2-)	649.33 15	24.4 22	174.59	(9/2)-	[E2]	0.0091	α (K)=0.0074; α (L)=0.0013; α (M)=0.00029; α (N+)=0.00007 α (N)=0.00007; α (O)=1.0×10 ⁻⁵ ; α (P)=4.E-7						
		687.22 ^{<i>ef</i>} 10	100 ^e 67	136.71	5/2+	(E1)	0.00297	$\alpha(\mathbf{K})=0.00252 \ 4; \ \alpha(\mathbf{L})=0.000349 \ 5; \ \alpha(\mathbf{M})=7.70\times10^{-5} \ 11; \\ \alpha(\mathbf{N}+)=2.06\times10^{-5} \ 3 \\ \alpha(\mathbf{N})=1 \ 79\times10^{-5} \ 3; \ \alpha(\mathbf{O})=2 \ 56\times10^{-6} \ 4; \ \alpha(\mathbf{P})=1 \ 355\times10^{-7} \ 19$						
		737.05 10	82 4	86.92	(7/2)-	[M1,E2]	0.010 4	$\alpha(\mathbf{X}) = 0.009 4; \ \alpha(\mathbf{L}) = 0.0013 4; \ \alpha(\mathbf{M}) = 0.00030 9; \ \alpha(\mathbf{N}+) = 8.0 \times 10^{-5} 23 \ \alpha(\mathbf{N}) = 6.0 \times 10^{-5} 20; \ \alpha(\mathbf{Q}) = 1.0 \times 10^{-5} 3; \ \alpha(\mathbf{R}) = 5.1 \times 10^{-7} 20$						
829.7	$(15/2^+)$	243.2 <i>3</i>	21 11	586.48	$(13/2^{-})$			$u(1)=0.9\times10^{-20}, u(0)=1.0\times10^{-5}, u(1)=5.1\times10^{-20}$						
		378.5 3	100 30	451.19	$(11/2^+)$	Q [@]								
900.5	$(17/2^{-})$	296.9 ^a 10	2.6 3	603.60	$(15/2^{-})$									
047.20	$(5/2)^{-}$	314.0 2	100 10	586.48	$(13/2^{-})$									
947.29	(5/2)	141.21 0 688 94 8	2.0.5	258 35	$(3/2, 3/2^{+})$ $(7/2)^{+}$									
		$772.67 \int 10$	2.0 5	174 59	$(9/2)^{-}$									
		802.96 15	3.5 3	144.39	$(5/2)^+$									
		810.60 10	6.1 <i>3</i>	136.71	$5/2^{+}$									
		860.28 6	100 4	86.92	(7/2)-	M1,E2	0.0072 24	$\alpha(K)=0.0061 \ 21; \ \alpha(L)=0.0009 \ 3; \ \alpha(M)=0.00020 \ 6; \\ \alpha(N+)=5.4\times10^{-5} \ 16 \\ \alpha(N)=4.7\times10^{-5} \ 14; \ \alpha(O)=6.7\times10^{-6} \ 20; \ \alpha(D)=2.5\times10^{-7} \ 13 \\ \alpha(D)=4.7\times10^{-5} \ 14; \ \alpha(D)=6.7\times10^{-6} \ 20; \ \alpha(D)=2.5\times10^{-7} \ 13 \\ \alpha(D)=4.7\times10^{-5} \ 14; \ \alpha(D)=6.7\times10^{-6} \ 20; \ \alpha(D)=2.5\times10^{-7} \ 13 \\ \alpha(D)=4.7\times10^{-5} \ 14; \ \alpha(D)=6.7\times10^{-6} \ 20; \ \alpha(D)=2.5\times10^{-7} \ 13 \\ \alpha(D)=4.7\times10^{-5} \ 14; \ \alpha(D)=6.7\times10^{-6} \ 20; \ \alpha(D)=2.5\times10^{-7} \ 13 \\ \alpha(D)=4.7\times10^{-5} \ 14; \ \alpha(D)=6.7\times10^{-6} \ 20; \ \alpha(D)=2.5\times10^{-7} \ 13 \\ \alpha(D)=4.7\times10^{-5} \ 14; \ \alpha(D)=6.7\times10^{-6} \ 20; \ \alpha(D)=2.5\times10^{-7} \ 13 \\ \alpha(D)=4.7\times10^{-5} \ 14; \ \alpha(D)=6.7\times10^{-6} \ 20; \ \alpha(D)=2.5\times10^{-7} \ 13 \\ \alpha(D)=4.7\times10^{-5} \ 14; \ \alpha(D)=6.7\times10^{-6} \ 14; \ \alpha(D)=6.7\times10^{-6} \ 14; \ \alpha(D)=6.7\times10^{-6} \ 14; \ \alpha(D)=6.7\times10^{-7} \ 14; \ \alpha(D)=6.7\times10^{-7}$						
962.85	$(17/2^+)$	230.2 5	22 12	732.59	$(15/2^+)$			$u(\mathbf{N}) = 4.7 \times 10$ 14, $u(\mathbf{O}) = 0.7 \times 10$ 20, $u(\mathbf{r}) = 3.5 \times 10$ 15						
		441.8 2	100 20	521.09	$(13/2^+)$	0 [@]								
1011.50	$(19/2^{-})$	206.7 2	71 8	804.80	$(17/2^{-})$									
		407.9 [°] 2	100 10	603.60	$(15/2^{-})$									
1121.0?	(2)(2+ 5)(2-)	534.5 ¹ 5	100	586.48	$(13/2^{-})$									
1130.64	(3/2',5/2)	5/1.95	28 5	559.56	$(1/2)^{-1}$									
		805.6^{a} 10	$\leq 14^{\circ}$	326.22	3/2									
		913.7 0	$\leq 48^{-1}$	144 39	(1/2) $(5/2)^+$									
		994.17 25	76 12	136.71	$5/2^+$									
1159.5	$(17/2^+)$	330 1		829.7	$(15/2^+)$									
1211.2	$(10/2^{+})$	431.4 5		728.0	$(13/2^+)$ $(17/2^+)$									
1211.2	$(19/2^{\circ})$	248 178 5 2		732 50	$(17/2^{+})$ $(15/2^{+})$	@								
1261.10	$(21/2^{-})$	470.5 5	72 14	1011.50	$(15/2^{-1})$ $(19/2^{-1})$	-								
	(=-(=)	456.3 2	100 22	804.80	$(17/2^{-})$	0 [@]								
1294.5	$(19/2^+)$	394.0 <i>3</i>	56 29	900.5	$(17/2^{-})$	ε.								

9

From ENSDF

 $^{163}_{69}\mathrm{Tm}_{94}$ -9

н

γ ⁽¹⁶³Tm) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	${ m J}_f^\pi$	Mult. [#]
1294.5	$(19/2^+)$	464.8 3	100 31	829.7	$(15/2^+)$	@
1308.4	$(21/2^{-})$	407.9 ^c 2	100	900.5	$(17/2^{-})$	
1345.32	$1/2, 3/2, 5/2^{(+)}$	1331.84 8	100 5	13.52	$3/2^{+}$	
		1345.27 8	88 <i>3</i>	0.0	$1/2^{+}$	
1362.92	(≤7/2)	588.8 ^f 10	28 8	774.09	$(5/2,7/2)^+$	
		913.7 <mark>d</mark> 6	≤52 ^d	449.20	$(5/2)^+$	
		996.50 20	100 13	366.36	$3/2^{+}$	
		1218.6 5	26 5	144.39	$(5/2)^+$	
		1226.5 5	65 9	136.71	$5/2^{+}$	
1473.6	$(21/2^+)$	262.3 3		1211.2	$(19/2^+)$	
		511.1 5		962.85	$(17/2^+)$	
1498.40	$(23/2^{-})$	190.0 ^{<i>a</i>} 10	0.5 5	1308.4	$(21/2^{-})$	0
		237.3 2	46 <i>3</i>	1261.10	$(21/2^{-})$	&
		486.9 2	100 10	1011.50	$(19/2^{-})$	
1552.2?		651.7 ^f 5	100	900.5	$(17/2^{-})$	
1661.5	$(21/2^+)$	367 1		1294.5	$(19/2^+)$	
		502.0 5		1159.5	$(17/2^+)$	
1749.8	$(23/2^+)$	276.2 1	≤786	1473.6	$(21/2^+)$	
		538.8 5	100 50	1211.2	$(19/2^+)$	@
1780.08	$(1/2^+, 3/2, 5/2)$	973.6 <i>3</i>	33 5	806.13	$(3/2, 5/2^+)$	
		1006.11 10	67 <i>3</i>	774.09	$(5/2,7/2)^+$	
		1453.62 20	100 8	326.22	3/2-	
		1766.52 15	66 5	13.52	$3/2^{+}$	
1785.70	$(25/2^{-})$	287.3 2	48 11	1498.40	$(23/2^{-})$	
		477.3 5		1308.4	$(21/2^{-})$	0
		524.6 2	100 22	1261.10	$(21/2^{-})$	Q <mark>@</mark>
1803.9	$(25/2^{-})$	305.5 ^{<i>a</i>} 10	13.0 13	1498.40	$(23/2^{-})$	~
		495.5 2	100 10	1308.4	$(21/2^{-})$	Q [@]
		542.8 [†] 5		1261.10	$(21/2^{-})$	
1819.55	(3/2,5/2)	871.9 10	51 20	947.29	$(5/2)^{-}$	
		1370.0 5	46 <i>6</i>	449.20	$(5/2)^+$	
		1493.35 12	100 6	326.22	3/2-	
		$1603.05^{df} 20$	$\leq 39^{d}$	217.14	$(1/2)^{-}$	
1820.80	$(1/2^+, 3/2, 5/2)$	1603.05 ^{df} 20	$\leq 39^d$	217.14	$(1/2)^{-}$	
		1676.54 <i>13</i>	100 6	144.39	$(5/2)^+$	
		1683.87 16	65 4	136.71	$5/2^{+}$	
1826.6	$(23/2^+)$	518.2 ^{<i>f</i>} 3	100 50	1308.4	$(21/2^{-})$	
		532.1 <i>3</i>	97 48	1294.5	$(19/2^+)$	@

10

γ (¹⁶³Tm) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.#
1833.48	$(5/2^{-})$	886.08 20	8.8 12	947.29	$(5/2)^{-}$	
		1009.59 15	16.4 10	823.94	$(5/2^{-})$	
		1058.9 <i>3</i>	11.2 12	774.09	$(5/2,7/2)^+$	
		1335.77 20	10.9 8	498.02	$(7/2)^{-}$	
		1384.0 6	7.1 12	449.20	$(5/2)^+$	
		1574.92 10	20.8 9	258.35	$(7/2)^+$	
		1658.40 <i>16</i>	22.9 18	175.00	$(7/2)^+$	
		1689.11 8	44.1 24	144.39	$(5/2)^+$	
		1696.80 20	29.4 24	136.71	5/2+	
		1746.68 15	100 6	86.92	$(7/2)^{-}$	
		1820.17 15	11.9 9	13.52	3/2+	
1994.77	$(5/2^{-})$	1625.7 8	4.6 13	369.08	$(9/2^{-})$	
2024.2	(05 (0±)	1907.84 10	100 4	86.92	$(7/2)^{-}$	
2034.3	$(25/2^{+})$	284		1749.8	$(23/2^{+})$	Ø
		560.6 5		1473.6	$(21/2^+)$	w
2046.3	$(27/2^{-})$	242.4 ^{<i>a</i>} 10	13.3 17	1803.9	$(25/2^{-})$	
		260.6 2	42 8	1785.70	$(25/2^{-})$	~
		547.9 2	100 10	1498.40	$(23/2^{-})$	@
2206.1	$(25/2^+)$	544.6 5		1661.5	$(21/2^+)$	
2323.0	$(27/2^+)$	573.3 ^d 5	100 ^d	1749.8	$(23/2^+)$	
2356.4	$(29/2^{-})$	310.1 2	42 10	2046.3	$(27/2^{-})$	
		552.5f 5		1803.9	$(25/2^{-})$	
		570.7 2	100 22	1785.70	$(25/2^{-})$	
2376.8	$(29/2^{-})$	330.4 ^{<i>a</i>} 10	7.8 12	2046.3	$(27/2^{-})$	
		572.9 2	100 9	1803.9	$(25/2^{-})$	
		591 1 f 5		1785 70	$(25/2^{-})$	
2397 3	$(27/2^{+})$	570.7.3		1826.6	$(23/2^+)$	
20071.0	(27/2)	593.4 3		1803.9	$(25/2^{-})$	
2607.7	$(20/2^{+})$	573 3 <mark>d</mark> 5	$100^{\mathbf{d}}$	2034 3	$(25/2^+)$	
2626.2	$(29/2^{-})$ $(31/2^{-})$	$249.5^{a}.10$	68 7	2034.3	$(29/2^{-})$	
2020.2	(31/2)	249.5 10	34 3	2376.0	$(29/2^{-})$	
		570.0.2	100 10	2016.1	$(27/2^{-})$	<u>@</u>
2741.6	$(20/2^{+})$	525 5 5	100 10	2040.5	(27/2)	
2741.0	(29/2) $(31/2^+)$	27075	<144	2200.1	(23/2) $(20/2^+)$	
2070.0	(31/2)	210.1 5	<u>100</u> 50	2007.7	$(27/2^{+})$	<u>(</u> <i>a</i>)
2020.0	(22)(2-)	555.7 5 204 7 2	100 50	2323.0	$(21/2^{+})$	C
2920.9	(33/2)	294.1 Z	// 12	2020.2	(31/2)	
		544.5 ^J 5	100	2376.8	$(29/2^{-})$	
.	(a. (a. 1))	564.5 2	100 21	2356.4	$(29/2^{-})$	
2932.6	$(31/2^+)$	535.3 <i>3</i>		2397.3	$(27/2^+)$	

1

$^{163}_{69}\mathrm{Tm}_{94}$ -11

γ ⁽¹⁶³Tm) (continued)</sup>

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^π	Mult. [#]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]
3014.5	$(33/2^{-})$	637.7 2	100	2376.8	$(29/2^{-})$		5643.5	$(51/2^{-})$	725.0 ^a 10	100 10	4918.5	$(47/2^{-})$	
		658.1^{f} 5		2356.4	$(29/2^{-})$		5740.3	$(49/2^+)$	743.5 5		4996.8	$(45/2^+)$	
3171.3	$(35/2^{-})$	250.4 2	38 4	2920.9	$(33/2^{-})$		5751.1	$(49/2^{-})$	333.8 10	46.9 13	5417.3	$(47/2^{-})$	D
		545.1 2	100 10	2626.2	$(31/2^{-})$	@			652.3 ^a 10	100 6	5098.8	$(45/2^{-})$	
3206.5	$(33/2^+)$	464.9 5		2741.6	$(29/2^+)$		5893.2	$(49/2^{-})$	721.0 ^{<i>a</i>} 10	100	5172.2	$(45/2^{-})$	
3265.1	$(35/2^{-})$	639.0 ^a 10	100	2626.2	$(31/2^{-})$		6057.9	$(53/2^{-})$	414.4 ^a 10	33 4	5643.5	$(51/2^{-})$	
3420.4	$(35/2^+)$	487.8 <i>3</i>		2932.6	$(31/2^+)$				772.0 10	100 13	5285.9	$(49/2)^{-}$	
3427.7	$(37/2^{-})$	256.4 2	71 <i>16</i>	3171.3	$(35/2^{-})$		6096.8	$(51/2^{-})$	345.7 ^a 10	31.1 15	5751.1	$(49/2^{-})$	D
		506.8 2	100 16	2920.9	$(33/2^{-})$				679.5 ^a 10	100.0 15	5417.3	$(47/2^{-})$	
3689.6	$(39/2^{-})$	261.9 2	38 4	3427.7	$(37/2^{-})$		6433.5	$(55/2^{-})$	375.6 ^a 10	26 <i>3</i>	6057.9	$(53/2^{-})$	
		518.3 2	100 11	3171.3	$(35/2^{-})$				790.0 ^{<i>a</i>} 10	100 10	5643.5	$(51/2^{-})$	
3713.6	$(37/2^{-})$	699.1 2	100	3014.5	$(33/2^{-})$		6462.2	$(53/2^{-})$	365.4 ^{<i>a</i>} 10	20.5 14	6096.8	$(51/2^{-})$	D
3722.2	$(37/2^+)$	515.7 5		3206.5	$(33/2^+)$		(5(0.0	(52 (2+)	711.1 ^{<i>a</i>} 10	100 14	5751.1	$(49/2^{-})$	
3964.8	$(39/2^{+})$	544.4 3	71.11	3420.4	$(35/2^{+})$		6569.3	$(53/2^{+})$	829.0 5	07.0.17	5740.3	$(49/2^{+})$	
3967.6	(41/2)	278.0 2	/1 //	3689.6	(39/2)		6837.9	(55/2)	$3/5.7^{\alpha}$ 10	27.0 17	6462.2	(53/2)	
	(20)	539.9 2	100 16	3427.7	(31/2)		<pre></pre>		741.1° 10	100.0 17	6096.8	(51/2)	
4094.5	$(39/2^{-})$	829.4 ^{<i>a</i>} 5	100 33	3265.1	$(35/2^{-})$		6845.9?	$(57/2^{-})$	788J	20.5	6057.9	$(53/2^{-})$	
1066.1	(12)(2-)	923.1 ^{cr} 10	89 33	3171.3	(35/2)		6893.9	(57/2)	460.4 10	38.5	6433.5	(55/2)	
4266.4	(43/2)	298.8 Z	$\frac{5}{100}$	3907.0	(41/2)		7026 0	(57/2-)	836.0 10	100 13	6057.9	(53/2)	D
/310.8	$(41/2^{+})$	50765	100 11	3089.0	(39/2) $(37/2^+)$		1230.8	(31/2)	598.9 10 774 6 10	100 11	6462.2	(33/2)	D
4443 2	$(41/2^{-})$	729.6.5	100	3713.6	$(37/2^{-})$		7279 5	$(59/2^{-})$	385.6.10	19618	6893.9	$(55/2^{-})$	
4501.62	$(11/2^{-})$	729.09	100	2712.6	$(37/2^{-})$		1217.5	(3)/2)	905.0 10 946.0 10	100.11	6422.5	$(57/2^{-})$	
4501.02	$(41/2)^{-}$	320.2.2	100	A266 A	(37/2) $(13/2^{-})$		7612 3	$(50/2^{-})$	405 5 10	16.16	7236.8	(55/2)	
4500.0	(43/2)	619.0.2	100 14	3967.6	$(41/2^{-})$		70-2.5	(3)/2)	804 4 10	100.16	6837.9	$(57/2^{-})$	
4588.4	$(43/2^+)$	623.6 3	100 17	3964.8	$(39/2^+)$		7785.9	$(61/2^{-})$	506.4 10	40 5	7279.5	$(59/2^{-})$	
4774.9	$(43/2^{-})$	680.4 ^a 10	100	4094.5	$(39/2^{-})$				892.0 10	100 11	6893.9	$(57/2^{-})$	
4918.5	$(47/2^{-})$	331.9 2	40 4	4586.6	$(45/2)^{-}$		8075.6	$(61/2^{-})$	433.3 10	6.3 16	7642.3	$(59/2^{-})$	
		652.1 2	100 10	4266.4	$(43/2^{-})$				838.8 10	100 16	7236.8	$(57/2^{-})$	
4996.8	$(45/2^+)$	677.0 5		4319.8	$(41/2^+)$		8175.5	$(63/2^{-})$	389.6 10	19 5	7785.9	$(61/2^{-})$	
5098.8	$(45/2^{-})$	323.9 ^{<i>a</i>} 10	58.0 22	4774.9	$(43/2^{-})$				896.0 10	100 12	7279.5	$(59/2^{-})$	
		598 ^{af}		4501.6?	$(41/2^{-})$		8507.5	$(63/2^{-})$	431.9 ⁵ 10	1.4 14	8075.6	$(61/2^{-})$	
		655.7 ^a 10	100.0 22	4443.2	$(41/2^{-})$				865.2 10	100 14	7642.3	$(59/2^{-})$	
5172.2	$(45/2^{-})$	729.0 5	100	4443.2	$(41/2^{-})$		8729.9	$(65/2^{-})$	554.4 10	1.2 12	8175.5	$(63/2^{-})$	
5285.9	$(49/2)^{-}$	367.4 2	37 4	4918.5	$(47/2^{-})$		0070.0	((5))	944.0 10	100 12	7785.9	$(61/2^{-})$	
		699.3 2	100 12	4586.6	(45/2) ⁻		8978.0	$(65/2^{-})$	902.4 10	100	80/5.6	$(61/2^{-})$	
5417.3	$(47/2^{-})$	318.5 ^{<i>a</i>} 10	1.6 16	5098.8	$(45/2^{-})$		9120.5	$(67/2^{-})$	390.6 10	10 5	8729.9	$(65/2^{-})$	
		642.4 ^{<i>u</i>} 10	100.0 16	4774.9	$(43/2^{-})$				945.0 10	100 13	8175.5	$(63/2^{-})$	
5643.5	$(51/2^{-})$	357.6 ^a 10	34 4	5285.9	$(49/2)^{-}$		9431.0	$(67/2^{-})$	452.9 ⁵ 10	1.3 13	8978.0	$(65/2^{-})$	

12

$^{163}_{69}\mathrm{Tm}_{94}$ -12

γ (¹⁶³Tm) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	E_f	${ m J}_f^\pi$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^π
9431.0	$(67/2^{-})$	923.4 10	100 17	8507.5	$(63/2^{-})$	12070	$(77/2^{-})$	1095.0 10	100	10975.2	$(73/2^{-})$
9729.9	$(69/2^{-})$	1000.0 10	100	8729.9	$(65/2^{-})$	12253.5	$(79/2^{-})$	1094.0 10	100	11159.5	$(75/2^{-})$
9944.8	$(69/2^{-})$	966.7 10	100	8978.0	$(65/2^{-})$	12547	$(79/2^{-})$	1096.0 10	100	11451	$(75/2^{-})$
10115.5	$(71/2^{-})$	995.0 <i>10</i>	100	9120.5	$(67/2^{-})$	13089.9	$(81/2^{-})$	1181.0 <i>10</i>	100	11908.9	$(77/2^{-})$
10412.4	$(71/2^{-})$	981.4 <i>10</i>	100	9431.0	$(67/2^{-})$	13219	$(81/2^{-})$	1148.8 10	100	12070	$(77/2^{-})$
10788.9	$(73/2^{-})$	1059.0 10	100	9729.9	$(69/2^{-})$	13400.5	$(83/2^{-})$	1147.0 10	100	12253.5	$(79/2^{-})$
10975.2	$(73/2^{-})$	1030.4 10	100	9944.8	$(69/2^{-})$	13695	$(83/2^{-})$	1148.0 10	100	12547	$(79/2^{-})$
11159.5	$(75/2^{-})$	1044.0 10	100	10115.5	$(71/2^{-})$	14321	$(85/2^{-})$	1231.0 10	100	13089.9	$(81/2^{-})$
11451	$(75/2^{-})$	1039.0 10	100	10412.4	$(71/2^{-})$	14598	$(87/2^{-})$	1197.0 <i>10</i>	100	13400.5	$(83/2^{-})$
11908.9	$(77/2^{-})$	1120.0 10	100	10788.9	$(73/2^{-})$	14882	$(87/2^{-})$	1187.0 10	100	13695	$(83/2^{-})$

[†] From ε decay for low-spin (J \leq 9/2) levels and from (¹⁹F,4n γ),(³⁷Cl,4n γ) and/or ¹⁶⁵Ho(³He,5n γ) for high-spin levels. Gammas from levels above 6890 keV excitation are from (³⁷Cl,4n γ) (2007Pa22) only.

[‡] From ε decay for low-spin (J≤9/2) levels and from (³⁷Cl,4n γ) and/or ¹⁶⁵Ho(³He,5n γ) for high-spin levels. Gammas from levels above 6890 keV excitation are from (³⁷Cl,4n γ) (2007Pa22) only.

[#] From $\alpha(\exp)$'s and subshell ratios in ε decay for gammas from low-spin levels and from $\gamma(\theta)$ or $\gamma\gamma(\theta)$ for gammas from high-spin levels.

[@] Positive A₂ from $\gamma(\theta)$ in (³He,5n γ) is consistent with $\Delta J=2$, quadrupole.

[&] Negative A₂ from $\gamma(\theta)$ in (³He,5n γ) suggests $\Delta J=1$, dipole or D+Q.

^{*a*} From 130 Te(37 Cl,4n γ) (2007Pa22) only.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Multiply placed.

13

^d Multiply placed with undivided intensity.

^e Multiply placed with intensity suitably divided.

^f Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁶³₆₉Tm₉₄

Legend

γ Decay (Uncertain)

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

1/1, 35,10 200,40 35,610 35,636 (53/2-) 6462.2 $(55/2^{-})$ 6433.5 $= \begin{bmatrix} \frac{\sigma_{29}}{335}, 0_{00} \\ \frac{335}{220}, 0_{20}, 0_{10} \\ \frac{1}{320}, \frac{1}{30}, \frac{1}{33}, 1 \end{bmatrix}$ $(51/2^{-})$ 6096.8 $(53/2^{-})$ 6057.9 0.353 ps 21 .8 10.12 00 8 00 00 40 1 6:00 (49/2-) 5893.2 . چَنچَ چَنچَ (49/2-) 000 5751.1 $(49/2^+)$ 35.0 5740.3 $(51/2^{-})$ 5643.5 ¥ 0:07 1.60 318.5 1 (47/2⁻) 80 5417.3 ______ ______ ______ 8 0:00 001 (49/2)-5285.9 0.388 ps 14 1.62 38-0 $(45/2^{-})$ -S. S. S. 5172.2 $(45/2^{-})$ 5098.8 ¥ -0;Q $(45/2^+)$ 4996.8 -8'. '.'.' $(47/2^{-})$ 8 4918.5 I. | ^{≯;}080 1^{9}_{120} $(43/2^{-})$ 4774.9 , 6336 | (43/2+) S, 4588.4 286. 10:98 (45/2) 4586.6 19:62 $\frac{(41/2^{-})}{(41/2^{-})}$ _4<u>501.6</u> 4443.2 _★_ $= \frac{3}{2000} \frac{3}{20$ 5976 $(41/2^+)$ 4319.8 (43/2-) -2: C 4266.4 27. 00 × 00 ×1 (39/2-) -65 6.65 4094.5 544 (41/2-) 3967.6 (39/2+) 3964.8 | 00/ 1.00 | $\frac{1}{2} \frac{5_{8}}{5_{6}, 3} \frac{1}{2_{90}}$ + 515,> $(37/2^+)$ 3722.2 (37/2-) ¥ ¥ 3713.6 ¥ $\left(-\frac{3 \sigma_{\delta,\delta}}{3 \delta_{\delta,\delta}} \frac{1}{2 \sigma_{\delta,\delta}} \right) = \frac{1}{2 \sigma_{\delta,\delta}} \left(-\frac{1}{2 \sigma_{\delta,\delta}} \right) = \frac{1}{2 \sigma_{\delta,\delta}} \left(-\frac{1}{2$ $(39/2^{-})$ 3689.6 8. 82 $(37/2^{-})$ 3427.7 (35/2+) 3420.4 $(35/2^{-})$ 3265.1 $(33/2^+)$ ¥ 3206.5 ¥ (35/2-) 3171.3 (33/2-) 3014.5 $(31/2^+)$ 2932.6 (33/2-) 2920.9 $1/2^{+}$ 0.0 1.810 h 5

¹⁶³₆₉Tm₉₄

Legend

Level Scheme (continued) Intensities: Relative photon branching from each level

& Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁶³₆₉Tm₉₄

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

Legend

¹⁶³₆₉Tm₉₄

¹⁶³₆₉Tm₉₄

¹⁶³₆₉Tm₉₄

19

¹⁶³₆₉Tm₉₄

			829	
		(49/2+)	•	5740.3
Band(A): $\pi 1/2[4]$		744		
α=-1/2	,	$(45/2^+)$	+	4996.8
(43/2+)	4588.4		677	
614		$(41/2^+)$	+	4319.8
(39/2 ⁺) 024	3964.8		598	
544		$(3//2^{+})$		3722.2
(35/2+) 54	3420.4	(33/2+)	516	3206.5
$(31/2^+)$ 488	2932.6	<u> </u>	1	
		(29/2+)	465	2741.6
(27/2 ⁺) 535	2397.3	(25/2+)	536	2206.1
571		()	1	2200.1
(23/2+)	1826.6	(21/2 ⁺)	545	1661.5
(19/2 ⁺) 532	1294.5	(17/2+)	502	1159.5
(15/2 ⁺) 465	829.7	(13/2+)	431	728.0
(11/2 ⁺) 378	451.19	(9/2+)	345	383.1
(7/2)+ 276	175.00	(5/2)	220	144.39

13.52

1/2+

161

3/2+

Band(a): $\pi 1/2[411]$ band,

 $\alpha = +1/2$

239

144

0.0

6569.3

(53/2+)

$Band(B): \pi H$	2[404] band,		
α=-	-1/2	Band(C): π7/2	[404] band
		<i>α</i> =+1	/2
(31/2+)	2878.6		
		(29/2+)	2607.7
(27/2+)	2323.0		
		$(25/2^+)$ $\overset{573}{\downarrow}$	2034.3
(23/2+)	1749.8		
520	~	$(21/2^+)$ $(21/2^+)$	1473.6
(19/2 ⁺)	1211.2		
479	<	$(17/2^+)$	962.85
$(15/2^+)$	732.59	(1010) 442	
(11/2+) 402	221.00		521.09
	331.08	(9/2+) 356	164.69
(7/2) [⊤] 308	23.29		

¹⁶³₆₉Tm₉₄

¹⁶³₆₉Tm₉₄