¹⁴⁸Nd(¹⁹F,4n γ),¹³⁰Te(³⁷Cl,4n γ) **1991Je04,1992JeZW**

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	C. W. Reich, Balraj Singh	NDS 111, 1211 (2010)	12-Apr-2010			

Additional information 1.

1991Je04 (also 1992JeZW and 1994JeZZ): ¹⁴⁸Nd(¹⁹F,4n γ), E=85 MeV, ¹³⁰Te(³⁷Cl,4n γ) E=166 MeV. Enriched targets. Nordball Ge detector array with BaF₂ total energy/multiplicity array. Measured γ , $\gamma\gamma$.

1997Mi24, 1995Le20 (also 1995He19): ¹³⁰Te(37 Cl,4n γ) E=166 MeV. Measured $\gamma\gamma$, $\gamma\gamma\gamma$ with Nordball array (19 Compton-suppressed Ge detectors and 39 BaF₂ inner ball detectors.) Study of γ -multiplicity, rotational transition strengths, and damping of rotational motion through the analysis of 2D and 3D $\gamma\gamma$ coincidence data. Lifetime data from DSAM reported by 1997Mi24.

The 1/2[541] α =-1/2 (unfavored) signature band with a reported (1992JeZW) E2 cascade (43/2⁻ down to 15/2⁻) 739-692-647-594-535-470-410 and dipole interband transitions of 781 (27/2⁻ to 25/2⁻), 742 (23/2⁻ to 19/2⁻), 680 (19/2⁻ to 17/2⁻), 584 (15/2⁻ to 13/2⁻) have been retracted (1994JeZZ). Also, 1991Je04 find no evidence for the 534.5 and 851.7 transitions which were suggested (1977Fo08) to depopulate the 15/2 and 19/2 states in this band.

¹⁶³Tm Levels

1997Mi24 give the following $T_{1/2}$ from Doppler-shift attenuation method for the ridge structures in the continuum region of the γ -ray spectrum: 0.25 ps 5 for 820 keV, 0.24 ps 7 for 880 keV and 0.20 ps 4 for the 940-keV ridges. These values correspond to B(E2)(W.u.) \approx 400.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡
0.0 ^C	$1/2^{+}$	1661.5 [°] 7	$(21/2^+)$
13.54 ^b 3	3/2+	1785.7 ^e 3	$(25/2^{-})$
23.28 6	$(7/2)^+$	1803.9 ^{<i>f</i>} 3	$(25/2^{-})$
86.90 ^d 7	$(7/2)^{-}$	1826.6 ^b 4	$(23/2^+)$
144.4 ^C 4	$(5/2)^+$	2046.3 ^d 3	$(27/2^{-})$
174.60 ^e 17	$(9/2)^{-}$	2206.1 [°] 8	$(25/2^+)$
175.0 ⁶ 3	$(7/2)^+$	2356.4 ^e 3	$(29/2^{-})$
217.15 ^{& f} 4	$(1/2)^{-2}$	2376.7 ^f 3	$(29/2^{-})$
248.0? ^{af} 5	$(5/2^{-})$	2397.2 ^b 3	$(27/2^+)$
290.30 ^d 17	$(11/2^{-})$	2626.2 ^d 3	$(31/2^{-})$
369.1 ^{<i>f</i>} 4	$(9/2^{-})$	2741.6 ^c 10	$(29/2^+)$
383.1 [°] 4	$(9/2^+)$	2921.0 ^e 3	$(33/2^{-})$
436.9 ^e 2	$(13/2^{-})$	2932.6 ^b 5	$(31/2^+)$
451.2 ^b 3	$(11/2^+)$	3014.5 ^{<i>f</i>} 4	$(33/2^{-})$
586.5 ^{<i>f</i>} 3	$(13/2^{-})$	3171.5 ^d 4	$(35/2^{-})$
603.6 ^d 2	$(15/2^{-})$	3206.5 [°] 11	$(33/2^+)$
728.0 ^C 5	$(13/2^+)$	3420.4 ^b 6	$(35/2^+)$
804.8 ^e 2	$(17/2^{-})$	3427.7 ^e 4	$(37/2^{-})$
829.7 ^b 3	$(15/2^+)$	3689.6 ^d 4	$(39/2^{-})$
900.5 ^{<i>f</i>} 3	$(17/2^{-})$	3713.6 [†] 5	$(37/2^{-})$
1011.52 ^d 24	$(19/2^{-})$	3722.2 [°] 12	$(37/2^+)$
1159.5 [°] 6	$(17/2^+)$	3964.8 <mark>6</mark> 7	$(39/2^+)$
1261.12 ^e 24	$(21/2^{-})$	3967.6 ^e 4	$(41/2^{-})$
1294.5 ⁶ 4	$(19/2^+)$	4266.4 ^{<i>d</i>} 4	$(43/2^{-})$
1308.4 ^{<i>f</i>} 3	$(21/2^{-})$	4319.8 ^c 13	$(41/2^+)$
1498.4 ^d 3	$(23/2^{-})$	4443.2? ^f 7	$(41/2^{-})$

Continued on next page (footnotes at end of table)

148 Nd(19 F,4n γ), 130 Te(37 Cl,4n γ) 1991Je04,1992JeZW (continued)

¹⁶³Tm Levels (continued)

E(level) [†]	J ^{π‡}	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}
4586.6 ^e 4	$(45/2^{-})$	5285.9 ^e 4	(49/2 ⁻)	0.388 [#] ps 14
4588.4 ^b 7	$(43/2^+)$	5740.3 ^c 15	$(49/2^+)$	
4918.5 ^d 4	$(47/2^{-})$	6056.9? [@] e	$(53/2^{-})$	0.353 [#] ps 21
4996.8 [°] 14	$(45/2^+)$	6569.3 [°] 16	$(53/2^+)$	
5172.2? ^f 9	$(45/2^{-})$	6844.9? [@] e	$(57/2^{-})$	0.347 [#] ps 21

[†] From least-squares fit to $E\gamma's$.

[‡] From band assignment and deexcitation pattern, except as noted. Most of the assignments are given in parentheses (evaluators) since the details of $\gamma(\theta)$ and/or $\gamma\gamma(\theta)$ data are not available in the literature. See also Adopted Levels for assignments.

[#] From 1997Mi24. Doppler-shift attenuation method for 699γ , 771γ and 788γ assigned (1997Mi24) as transitions in an yrast band. It is assumed (evaluators) that the 699γ in 1997Mi24 is the same as the $49/2^-$ to $45/2^-$ transition in 1991Je04 and that the 771γ and 788γ form a cascade above the $49/2^-$ level.

[@] Added by the evaluators assuming that the 771 γ and 788 γ from 1997Mi24 form the yrast members above the 49/2⁻ level.

& From Adopted Levels.

^{*a*} This member of the $\pi 1/2[541]$ band was suggested to be a state at 253.4 in 1977Fo08.

^b Band(A): $\pi 1/2[411]$ band, $\alpha = -1/2$.

^{*c*} Band(B): $\pi 1/2[411]$ band, $\alpha = +1/2$.

^{*d*} Band(C): $\pi 7/2[523]$ band, $\alpha = -1/2$.

^{*e*} Band(D): $\pi 7/2[523]$ band, $\alpha = +1/2$.

^{*f*} Band(E): $\pi 1/2[541]$ band, $\alpha = +1/2$.

$\gamma(^{163}{\rm Tm})$

Uncertainties are assigned from a comment by 1994JeZZ stating the following: for the $\pi 1/2[411]$ band, 0.3 to 0.5 keV for positive signature and 0.2-0.3 keV for negative signature. For the $\pi 7/2[523]$ and $\pi 1/2[541]$ bands, 0.2 keV. For interband transitions, 0.3-0.5 keV.

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
9.74 [‡] 5	23.28	$(7/2)^+$	13.54	3/2+	234.5 ^{#b} 5	248.0?	(5/2 ⁻)	13.54	3/2+
13.53 [‡] 3	13.54	$3/2^{+}$	0.0	$1/2^{+}$	237.3 2	1498.4	$(23/2^{-})$	1261.12	$(21/2^{-})$
63.62 [‡] 3 87.7 2 115.7 2	86.90 174.60 290.30	(7/2) ⁻ (9/2) ⁻ (11/2 ⁻)	23.28 86.90 174.60	$(7/2)^+$ $(7/2)^-$ $(9/2)^-$	238.7 5 243.2 3 249.6 2	383.1 829.7 1261.12	(9/2 ⁺) (15/2 ⁺) (21/2 ⁻)	144.4 586.5 1011.52	(5/2) ⁺ (13/2 ⁻) (19/2 ⁻)
121.1 ^{#b} 2 130.9 5	369.1 144.4	$(9/2^{-})$ $(5/2)^{+}$	248.0? 13.54	$(5/2^{-})$ $3/2^{+}$	250.4 2 256.4 2	3171.5 3427.7	$(35/2^{-})$ $(37/2^{-})$	2921.0 3171.5	$(33/2^{-})$ $(35/2^{-})$
135.3 5	586.5	$(13/2^{-})$	451.2	$(11/2^+)$	260.6 2	2046.3	$(27/2^{-})$	1785.7	$(25/2^{-})$
144.4 5	144.4	$(5/2)^+$	0.0	$1/2^{+}$	261.9 2	3689.6	$(39/2^{-})$	3427.7	$(37/2^{-})$
146.6 2	436.9	$(13/2^{-})$	290.30	$(11/2^{-})$	262.3 2	436.9	$(13/2^{-})$	174.60	$(9/2)^{-}$
161.5 <i>3</i>	175.0	$(7/2)^+$	13.54	$3/2^{+}$	269.8 2	2626.2	$(31/2^{-})$	2356.4	$(29/2^{-})$
166.7 2	603.6	$(15/2^{-})$	436.9	$(13/2^{-})$	276.2 3	451.2	$(11/2^+)$	175.0	$(7/2)^+$
194.1 5	369.1	$(9/2^{-})$	175.0	$(7/2)^+$	276.8 5	728.0	$(13/2^+)$	451.2	$(11/2^+)$
201.2 2	804.8	$(17/2^{-})$	603.6	$(15/2^{-})$	278.0 2	3967.6	$(41/2^{-})$	3689.6	$(39/2^{-})$
203.4 2	290.30	$(11/2^{-})$	86.90	$(7/2)^{-}$	287.3 2	1785.7	$(25/2^{-})$	1498.4	$(23/2^{-})$
206.7 2	1011.52	$(19/2^{-})$	804.8	$(17/2^{-})$	294.7 2	2921.0	$(33/2^{-})$	2626.2	$(31/2^{-})$
208.1 5	383.1	$(9/2^+)$	175.0	$(7/2)^+$	298.8 2	4266.4	$(43/2^{-})$	3967.6	$(41/2^{-})$
217.4 2	586.5	$(13/2^{-})$	369.1	(9/2-)	310.1 2	2356.4	$(29/2^{-})$	2046.3	$(27/2^{-})$

Continued on next page (footnotes at end of table)

			148 Nd(19 F,4n γ), 130 Te(37 Cl,4n γ) 1991Je04,1992JeZW (continued)						nued)
					γ ⁽¹⁶³ Tm) (continued	l)		
E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$
313.3 2 314.0 2 320.2 2 330 ^{#&} 1 331.9 2 344.9 5	603.6 900.5 4586.6 1159.5 4918.5 728.0	$\begin{array}{c} (15/2^{-}) \\ (17/2^{-}) \\ (45/2^{-}) \\ (17/2^{+}) \\ (47/2^{-}) \\ (13/2^{+}) \end{array}$	290.30 586.5 4266.4 829.7 4586.6 383.1	$\begin{array}{c} (11/2^{-}) \\ (13/2^{-}) \\ (43/2^{-}) \\ (15/2^{+}) \\ (45/2^{-}) \\ (9/2^{+}) \end{array}$	542.8 ^b 5 544.4 3 544.5 5 544.6 5 545.1 2 547.9 2	1803.9 3964.8 2921.0 2206.1 3171.5 2046.3	(25/2 ⁻) (39/2 ⁺) (33/2 ⁻) (25/2 ⁺) (35/2 ⁻) (27/2 ⁻)	1261.12 3420.4 2376.7 1661.5 2626.2 1498.4	$\begin{array}{c} (21/2^{-}) \\ (35/2^{+}) \\ (29/2^{-}) \\ (21/2^{+}) \\ (31/2^{-}) \\ (23/2^{-}) \end{array}$
367 ^{#&} 1 367.4 2 367.9 2 378.5 3 394.0 3 407.9 2 407.9 2	1661.5 5285.9 804.8 829.7 1294.5 1011.52 1308.4	$\begin{array}{c} (21/2^+) \\ (49/2^-) \\ (17/2^-) \\ (15/2^+) \\ (19/2^+) \\ (19/2^-) \\ (21/2^-) \end{array}$	1294.5 4918.5 436.9 451.2 900.5 603.6 900.5	$\begin{array}{c} (19/2^+) \\ (47/2^-) \\ (13/2^-) \\ (11/2^+) \\ (17/2^-) \\ (15/2^-) \\ (17/2^-) \end{array}$	552.5 ^b 5 564.5 2 570.7 2 570.7 3 572.9 2 576.8 2 579.9 2	2356.4 2921.0 2356.4 2397.2 2376.7 4266.4 2626.2	(29/2 ⁻) (33/2 ⁻) (29/2 ⁻) (27/2 ⁺) (29/2 ⁻) (43/2 ⁻) (31/2 ⁻)	1803.9 2356.4 1785.7 1826.6 1803.9 3689.6 2046.3	(25/2 ⁻) (29/2 ⁻) (25/2 ⁻) (23/2 ⁺) (25/2 ⁻) (39/2 ⁻) (27/2 ⁻)
431.4 5 456.3 2 464.8 3 464.9 5 477.3 5 486.9 2 487.8 3 495.5 2 502.0 5 506.8 2 515.7 5	1159.5 1261.12 1294.5 3206.5 1785.7 1498.4 3420.4 1803.9 1661.5 3427.7 3722.2	$\begin{array}{c} (17/2^+) \\ (21/2^-) \\ (19/2^+) \\ (33/2^+) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (21/2^+) \\ (37/2^-) \\ (37/2^+) \end{array}$	728.0 804.8 829.7 2741.6 1308.4 1011.52 2932.6 1308.4 1159.5 2921.0 3206.5	$\begin{array}{c} (13/2^+) \\ (17/2^-) \\ (15/2^+) \\ (29/2^+) \\ (21/2^-) \\ (31/2^+) \\ (21/2^-) \\ (17/2^+) \\ (33/2^-) \\ (33/2^+) \end{array}$	591.1 ^{#b} 5 593.4 3 597.6 5 619.0 2 623.6 3 637.7 2 652.1 2 658.1 5 677.0 5 699.1 2 699.3 2	2376.7 2397.2 4319.8 4586.6 4588.4 3014.5 4918.5 3014.5 4996.8 3713.6 5285.9	$\begin{array}{c} (29/2^{-}) \\ (27/2^{+}) \\ (41/2^{+}) \\ (45/2^{-}) \\ (43/2^{+}) \\ (33/2^{-}) \\ (47/2^{-}) \\ (33/2^{-}) \\ (45/2^{+}) \\ (37/2^{-}) \\ (49/2^{-}) \end{array}$	1785.7 1803.9 3722.2 3967.6 3964.8 2376.7 4266.4 2356.4 4319.8 3014.5 4586.6	$\begin{array}{c} (25/2^-) \\ (25/2^-) \\ (37/2^+) \\ (41/2^-) \\ (39/2^+) \\ (29/2^-) \\ (43/2^-) \\ (29/2^-) \\ (41/2^+) \\ (33/2^-) \\ (45/2^-) \end{array}$
518.2 3 518.3 2 524.6 2 532.1 3 535.3 3 535.5 5 539.9 2	1826.6 3689.6 1785.7 1826.6 2932.6 2741.6 3967.6	(23/2 ⁺) (39/2 ⁻) (25/2 ⁻) (23/2 ⁺) (31/2 ⁺) (29/2 ⁺) (41/2 ⁻)	1308.4 3171.5 1261.12 1294.5 2397.2 2206.1 3427.7	(21/2 ⁻) (35/2 ⁻) (21/2 ⁻) (19/2 ⁺) (27/2 ⁺) (25/2 ⁺) (37/2 ⁻)	729.0 ^{@b} 5 729.6 ^b 5 743.5 5 771 ^{ab} 788 829.0 ^{ab} 5	5172.2? 4443.2? 5740.3 6056.9? 6844.9? 6569.3	(45/2 ⁻) (41/2 ⁻) (49/2 ⁺) (53/2 ⁻) (57/2 ⁻) (53/2 ⁺)	4443.2? 3713.6 4996.8 5285.9 6056.9? 5740.3	(41/2 ⁻) (37/2 ⁻) (45/2 ⁺) (49/2 ⁻) (53/2 ⁻) (49/2 ⁺)

[†] From 1991Je04 for the π 7/2[523] and π 1/2[541] bands; from 1992JeZW for the π 1/2[411] band. [‡] From the Adopted Gammas.

[#] Weak γ .

^(a) Revised transition from 1994JeZZ. Earlier the 45/2⁻ to 41/2⁻ transition was given (1991Je04) as 656.6. [&] From level energy difference.

^a From 1997Mi24.
 ^b Placement of transition in the level scheme is uncertain.

¹⁶³₆₉Tm₉₄

4

¹⁶³₆₉Tm₉₄

¹⁶³₆₉Tm₉₄

148 Nd(19 F,4n γ), 130 Te(37 Cl,4n γ) 1991Je04,1992JeZW

 $^{163}_{69} Tm_{94}$