552?<mark>8</mark> 640?^k 662⁸ 678?^k 771<mark>8</mark>.

164 **Dy**(t, α) 1992Ga15

	Н	istory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich, Balraj Singh	NDS 111, 1211 (2010)	12-Apr-2010

1992Ga15: E=17 MeV. Enriched (98.4%) target, Enge-split pole magnetic spectrograph. Measured $\sigma(\theta)$ from 10° to 50° in 5° steps. FWHM=16− 19 keV. Cross section uncertainties ≈20%. Deduced L-transfers and spectroscopic factors from comparison of $\sigma(\theta)$ data with DWBA predictions using Nilsson-orbital description in terms of spherical shell-model states. Experimental spectroscopic factors ("finger-print" pattern) compared with calculations using Nilsson model with pairing and Coriolis mixing. The following orbitals were included in the calculations: 3/2[411], 5/2[413], 5/2[532], 7/2[523], 7/2[404], 1/2[420], 1/2[411], 1/2[541], 3/2[541], 1/2[550].

						¹⁶³ Tb Levels
	Cros	s sect	tions in	 μb/sr a	nt θ =40°	
	Energy	. ($d\sigma/d\Omega$, ,	Energy	$d\sigma/d\Omega$
	0		28		1065	30
	54		276		1112	9.2
	128		13		1186	14
	223		20		1219	75
	344		14		1281	127
	373		16		1351	13
	422		9		1428	28
	452		163		1498	7.2
	522		178		1549	11
	552		31 51 -		1815	37
	00Z		51 a		1902	8.6
	200		17		1982	01
	090		121		2204	20 42
	900		4		2334	42
	a:	5.1 :	in 1992Ga	a15 is a	a misprint	10
		 ш				
E(level)	J^{π}	L#	Spectros	scopic stre	ength [@]	
0^d	3/2+	(2)	0.09			
54 ^d 2	$5/2^{+}$	2	0.60			
128 ^d 5	$7/2^{+}$	(4)	0.11			
223^{d} 2	$9/2^{+}$	$(4)^{a}$	0.10			
344 ^e 5	$7/2^{-}$	(3)	0.03			
$373f_{5}$	5/2+	$(2)^{a}$	0.04			
422^{e} 5	$\frac{3}{2}^{-}$	(2)	0.04			
$452f_{2}$	$7/2^+$	4	11			
522° 2	$11/2^{-}$	5	1.3			
552 <mark>&f</mark> 5	0/2+	4	0.12			
552 ° 5	$(5/2^{-})$	-	0.12			
6102k 10	$(3/2^+)$					
662 ⁸ 5	(3/2)	3	0.15			
$\frac{10028}{5}$	(5/0+)	5	0.15			
0/8? 10	$(5/2^{+})$	h				
7718 5	9/2-	0	0.0-			
8908 2	$11/2^{-}$	5	0.87			
960 ⁿ 5	$(1/2^+)$					
987 <mark>h</mark> 2	$(3/2)^+$	2	0.11			

164 **Dy**(t, α) **1992Ga15** (continued)

¹⁶³Tb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	L#	Spectroscopic strength	1 <mark>@</mark>
1065 ^h 2	$(5/2)^+$	2	0.06	
1112 ^h 5	$(7/2)^+$	(4)	0.06	
1186 5		b		
1219 ⁱ 2	$(1/2^+)$	(0)	0.11	
1281 ^{&i} 2	3/2+&5/2+	2	≤0.26	
1351 5		b		
1428 <mark>&i</mark> 2	7/2+&9/2+	(4)	0.20	
1498 5		b		
1549 5		b		
1815 <mark>j</mark> 2	$(7/2)^{-}$	(3)	0.10	
1902 5				
1982 <i>j</i> 2	$(11/2)^{-}$	5	0.13 ^c	
2204 5				
2334 5				
2432 5				

[†] Uncertainties are assigned (evaluators) as 2 keV for strong and resolved peaks (as stated by the authors) and 5 keV for others.

[‡] From 1992Ga15, based primarily on relative cross sections of band members ("finger-print" method) and consistency of L-transfer. Parentheses are by the evaluators.

[#] Implied by $\sigma(\theta)$ distributions and DWBA fits (figure 7 of 1992Ga15).

 ${}^{@}C_{j,l}^{2}V^{2}a^{2}$, where V is the fullness parameter, the $C_{j,l}$ are the expansion coefficients of the spherical-shell-model states in the

deformed-orbital wave function, and a is the Coriolis-mixing amplitude. Uncertainties are 30-50%.

& Doublet.

^{*a*} Poor agreement of $\sigma(\theta)$ with DWBA calculations.

^b $\sigma(\theta)$ does not uniquely determine L-value.

^c The predicted value of 1.1 is much larger than observed; possibly due to more strength transferred to low-lying levels than accounted for by the Coriolis-mixing calculations, or due to the fragmentation of higher-lying orbitals.

^{*d*} Band(A): $\pi 3/2$ [411] band. A=11.2. The 5/2 member is the strongest populated in this band as expected, since the 3/2[411] orbital arises from the d_{5/2} spherical shell-model state.

^{*e*} Band(B): $\pi 7/2[523]$ band.

^{*f*} Band(C): $\pi 5/2[413]$ band. This band was identified (1992Ga15) by comparing the "finger-print" pattern of experimental strengths of different band members to that for ¹⁶¹Tb. The 7/2 member is the strongest populated in this band, as expected, since the 5/2[413] orbital arises from the $g_{7/2}$ spherical shell-model state.

^{*g*} Band(D): $\pi 5/2[532]$ band.

- ^{*h*} Band(E): $K^{\pi} = 1/2^+$ band. Configuration= $\pi 1/2[411] + [3/2[411]-Q_{22}, 5/2[413]-Q_{22}]$ (upper fragment). A=11.5, a=-0.39. This band is identified, based on similar structures in ¹⁵⁹Tb and ¹⁶¹Tb (1992Ga15).
- ^{*i*} Band(F): $\pi 1/2[420]$ band.
- j Band(G): $\pi 3/2[541]$ band.

^k Band(H): $K^{\pi} = 1/2^+$ band. Configuration= $\pi 1/2[411] + [3/2[411]-Q_{22}, 5/2[413]-Q_{22}]$ (lower fragment).

¹⁶⁴**Dy**(**t**,α) **1992Ga15**

				Band(F): <i>π</i> 1/2	[420] band
				7/2+&9/2+	1428
				3/2+&5/2+	1281
				(1/2+)	1219
		Band (E): K^{π}	=1/2 ⁺ band		
		(7/2)+	1112		
		(5/2)+	1065		
		$\frac{(3/2)^+}{(1/2^+)}$	<u>987</u> 960		
	Band(D): $\pi 5/2[532]$ band				
	11/2- 890				
	<u>9/2</u> 771				
	7/2- 662				
	112 002				
Band(C): $\pi 5/2[413]$ band					
<u>9/2+</u> 552	$(5/2^{-})$ 552				
<u>7/2⁺ 452</u>					
5/2+ 373					

Band(A): <i>π</i> 3/2[411] band

Band(B): *π*7/2[523] band

522

422

344

11/2-

9/2-

7/2-

9/2+ 223

7/2+ 128

<u>5/2+</u>54

3/2+ 0

¹⁶³₆₅Tb₉₈

¹⁶⁴Dy(t,α) **1992Ga15** (continued)

Band(G): $\pi 3/2[541]$ band

(11/2)⁻ 1982

(7/2)⁻ 1815

Band(H): $K^{\pi} = 1/2^{+}$ band

<u>(5/2⁺)</u> ____678

<u>(3/2⁺)</u> <u>640</u>

¹⁶³₆₅Tb₉₈