	Hi	istory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich, Balraj Singh	NDS 111,1211 (2010)	12-Apr-2010

 $Q(\beta^{-}) = -7.63 \times 10^{3} 7$; $S(n) = 1.083 \times 10^{4} 7$; $S(p) = 6.5 \times 10^{2} 4$; $Q(\alpha) = 4749 6$ 2012Wa38

Note: Current evaluation has used the following Q record \$ -7630 70 *10830* 60 660 40 4749 5 2009AuZZ,2003Au03. Q(ϵ p)=3010 80 (2009AuZZ,2003Au03).

Additional information 1.

¹⁶³W decays by $\varepsilon + \beta^+$ mode (86% 2) to ¹⁶³Ta, but nothing is known about the levels populated in this decay.

¹⁶³Ta Levels

A: $v1/2[660], \alpha = +1/2$ from $i_{13/2}$ orbital. B: $v1/2[660], \alpha = -1/2$ from $i_{13/2}$ orbital. C: $v3/2[651], \alpha = +1/2$ from $i_{13/2}$ orbital. D: $v3/2[651], \alpha = -1/2$ from $i_{13/2}$ orbital. E: $v5/2[523], \alpha = +1/2$ from $h_{9/2}, f_{7/2}$ orbitals. F: $v5/2[523], \alpha = -1/2$ from $h_{9/2}, f_{7/2}$ orbitals. A: $\pi 1/2[411], \alpha = +1/2$ from $d_{3/2}$ orbital. b: $\pi 1/2[411], \alpha = -1/2$ from $d_{3/2}$ orbital. c: $\pi 7/2[404], \alpha = +1/2$ from $g_{7/2}$ orbital. d: $\pi 7/2[404], \alpha = -1/2$ from $h_{11/2}$ orbital. e: $\pi 9/2[514], \alpha = +1/2$ from $h_{11/2}$ orbital.

Cross Reference (XREF) Flags

A 167	Re a	decay	(3.4 s)
-------	------	-------	---------

B ¹⁰ /Re α decay (5.9
--

~	$106 \times 160 \times 2$
(100 (100 N1, 30γ)
~	

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0		10.6 s <i>18</i>	В	$%ε+%β^+≈99.8; %α≈0.2$ T _{1/2} : Weighted average of: 10.5 s <i>18</i> (1985Li14); 9.4 s <i>29</i> ; 11.5 s <i>18</i> (1986Ru05); and 10 s <i>2</i> (1987HaZO). Others: 11 s <i>2</i> (1988MeZY, which has common authors with 1986Ru05); 8 s (1989Br19,1987Es08); 11 s <i>3</i> (1983Sc18, from 4625α assigned to ¹⁶⁴ Ta, later (1985Li14) assigned to ¹⁶³ Ta). %α: T _{1/2} (α)≈84 min from extrapolation of log T _{1/2} (α) versus log Eα for ¹⁵⁷ Ta (T _{1/2} =5.3 ms <i>18</i> ,%α=89 <i>11</i> ,Q(α)=6382) and ¹⁵⁹ Ta (T _{1/2} =0.57 s <i>18</i> ,%α=80 <i>5</i> ,Q(α)=5750). J ^π : 1/2 ⁺ proposed from systematics (2003Au02).
0+x [#]	(9/2 ⁻)		A C	E(level): level suggested from the energetics of α transitions from the decay of the two activities of ¹⁶⁷ Re. (See the comments in the two ¹⁶⁷ Re α decay data sets.) Probably the same level as the yrast bandhead in high-spin data.
44.9+x [@] 5	$(11/2^{-})$		С	
333.1+x [#] 4	$(13/2^{-})$		С	
477.7+x [@] 5	$(15/2^{-})$		С	
871.2+x [#] 5	$(17/2^{-})$		С	
$1047.0 + x^{@} 5$	(19/2 ⁻)		С	
1312.7+x ^{&} 5	$(15/2^+)$		С	
1522.4+x [#] 5	(21/2 ⁻)		С	

			105/18	a Levels (continued)		
$E(level)^{\dagger}$ $J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
$1547.5 + x^a 5$ (17/2 ⁺)	С	2952.4+x [#] 6	(29/2-)	С	4628.7+x [@] 7	(43/2-)	С
$1717.5 + x^{\textcircled{0}} 5 (23/2^{-})$	С	3045.5+x ^b 6	$(33/2^+)$	С	4647.5+x ^c 7	$(43/2^+)$	С
$1725.9 + x^{\&} 5$ (19/2 ⁺)	С	3094.3+x [@] 6	$(31/2^{-})$	С	4954.1+x [#] 7	$(45/2^{-})$	С
$1946.7 + x^a 5$ (21/2 ⁺)	С	3295.2+x [#] 6	$(33/2^{-})$	С	5085.8+x ^b 8	$(45/2^+)$	С
$2171.0 + x^{\&} 5$ (23/2 ⁺)	С	3308.4+x ^c 7	$(35/2^+)$	С	5293.6+x [@] 7	$(47/2^{-})$	С
$2248.5 + x^{\#} 5$ (25/2 ⁻)	С	3515.6+x [@] 6	$(35/2^{-})$	С	5436.5+x ^C 8	$(47/2^+)$	С
$2303.6 + x^{b} 5$ (25/2 ⁺)	С	3630.6+x ^b 7	$(37/2^+)$	С	5647.8+x [#] 7	$(49/2^{-})$	С
$2410.9 + x^a 5$ (25/2 ⁺)	С	3759.9+x [#] 6	$(37/2^{-})$	С	5912.7+x ^b 8	$(49/2^+)$	С
$2422.7 + x^{C} 6$ (27/2 ⁺)	С	3931.7+x ^C 7	$(39/2^+)$	С	6017.8+x [@] 8	$(51/2^{-})$	С
$2458.1 + x^{@} 5 (27/2^{-})$	С	$4039.0+x^{@}$ 7	(39/2 ⁻)	С	6397.8+x [#] 8	(53/2 ⁻)	С
$2583.8 + x^{b} 6$ (29/2 ⁺)	С	4319.2+x ^b 7	$(41/2^+)$	С	6799.7+x [@] 8	$(55/2^{-})$	С
2798.9+ x^{c} 6 (31/2 ⁺)	С	4322.5+x [#] 7	$(41/2^{-})$	С	7213.4+x [#] 8	$(57/2^{-})$	С

163m I I ()

Adopted Levels, Gammas (continued)

[†] From least-squares fit to $E\gamma's$.

 ‡ From the $^{106}\text{Cd}(^{60}\text{Ni},3p\gamma)$ dataset, see the comments there.

[#] Band(A): Band f to fAB, α =+1/2. Strongly-coupled band built on $\pi 9/2[514]$ Nilsson orbital. This band starts as a 1-qp band but is crossed by a 3-qp band fAB at $J^{\pi} \approx 31/2^{-}$ and $\hbar \omega \approx 0.28$ MeV. Calculated β_2 =0.177, γ =-15° for low-spin states and β_2 =0.170, γ =0° for high-spin states above the backbend.

^(a) Band (a): Band e to eAB, $\alpha = -1/2$. Strongly-coupled band built on $\pi 9/2[514]$ Nilsson orbital. This band starts as a 1-qp band but is crossed by a 3-qp band fAB at $J^{\pi} \approx 31/2^{-1}$ and $\hbar \omega \approx 0.28$ MeV See also comments for $\alpha = +1/2$ partner.

& Band(B): Possible $\pi 9/2[514] \otimes 3^-, \alpha = -1/2$. Strongly coupled-band, possible 3^- octupole vibrational band built on $\pi 9/2[514]$, as supported by the relatively large alignment of the band and the relatively low excitation energy of the bandhead. Further pure dipole (possible E1) transition to the yrast band also supports the octupole character of the band.

^{*a*} Band(b): Possible $\pi 9/2[514] \otimes 3^-, \alpha = +1/2$. See comments for $\alpha = -1/2$ partner.

^b Band(C): Band fAE, $\alpha = +1/2$.

^{*c*} Band(c): Band eAE, $\alpha = -1/2$.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]
44.9+x	$(11/2^{-})$	(45)		0+x	$(9/2^{-})$	
333.1+x	$(13/2^{-})$	288.1 3	100.0 13	44.9+x	$(11/2^{-})$	Q
		333.1 4	10.0 6	0+x	$(9/2^{-})$	-
477.7+x	$(15/2^{-})$	144.2 <i>3</i>	38.6 8	333.1+x	$(13/2^{-})$	D+Q
		432.9 4	100.0 15	44.9+x	$(11/2^{-})$	Q
871.2+x	$(17/2^{-})$	393.4 2	100.0 19	477.7+x	$(15/2^{-})$	D+Q
		538.2 <i>3</i>	76.9 19	333.1+x	$(13/2^{-})$	
1047.0+x	$(19/2^{-})$	175.9 <i>4</i>	11.6 5	871.2+x	$(17/2^{-})$	D+Q
		569.2 2	100.0 14	477.7+x	$(15/2^{-})$	Q
1312.7+x	$(15/2^+)$	979.9 <i>4</i>	100	333.1+x	$(13/2^{-})$	
1522.4+x	$(21/2^{-})$	475.3 2	70.7 23	1047.0+x	$(19/2^{-})$	D+Q
		651.2 2	100 3	871.2+x	$(17/2^{-})$	Q
1547.5+x	$(17/2^+)$	235.1 5	20 8	1312.7+x	$(15/2^+)$	
		1069.7 <i>3</i>	100 8	477.7+x	$(15/2^{-})$	D
1717.5+x	$(23/2^{-})$	195.1 2	8.2 9	1522.4+x	$(21/2^{-})$	
		670.5 4	100.0 11	1047.0+x	$(19/2^{-})$	Q
1725.9+x	$(19/2^+)$	178.5 <i>4</i>	13.1 21	1547.5+x	$(17/2^+)$	
		413.3 <i>3</i>	9.8 21	1312.7+x	$(15/2^+)$	
		854.8 <i>4</i>	100 3	871.2+x	$(17/2^{-})$	D

 $\gamma(^{163}\text{Ta})$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

γ ⁽¹⁶³Ta) (continued)</sup>

E _i (level)	\mathbf{J}_i^π	Eγ	Iγ	E_f	J_f^π	Mult. [†]
1946.7 + x	$(21/2^+)$	221.1.3	37.5 13	$1725.9 \pm x$	$(19/2^+)$	
	(/-)	399.2 4	11 3	1547.5 + x	$(17/2^+)$	
		899.6 <i>3</i>	100 3	1047.0+x	$(19/2^{-})$	D
2171.0+x	$(23/2^{+})$	224 6 4	100.3	1946 7+x	$(21/2^+)$	$D+O^{\ddagger}$
2171.01X	(23/2)	445.2.3	65.3	1725.9 + x	$(19/2^+)$	0
		648.6.3	87.3	1522.4 + x	$(21/2^{-})$	Ď
2248.5+x	$(25/2^{-})$	531.0 2	71 6	1717.5+x	$(23/2^{-})$	
		726.3 <i>3</i>	100 4	1522.4+x	$(21/2^{-})$	
2303.6+x	$(25/2^+)$	131.9 <i>3</i>	100.0 25	2171.0+x	$(23/2^+)$	D+Q
		357.3 6	8.9 <i>13</i>	1946.7+x	$(21/2^+)$	
2410.9+x	$(25/2^+)$	240.1 3	100 8	2171.0+x	$(23/2^+)$	
		464.1 2	22 5	1946.7+x	$(21/2^+)$	
2422.7+x	$(27/2^+)$	118.6 <i>3</i>	100 3	2303.6+x	$(25/2^+)$	D+Q
		252.1 3	9.1 11	2171.0+x	$(23/2^+)$	
2458.1+x	$(27/2^{-})$	209.8 2	9.9 11	2248.5+x	$(25/2^{-})$	
		740.1 <i>3</i>	100.0 23	1717.5+x	$(23/2^{-})$	Q
2583.8+x	$(29/2^+)$	161.1 4	100 3	2422.7+x	$(27/2^+)$	D+Q [‡]
		280.3 5	16.4 <i>21</i>	2303.6+x	$(25/2^+)$	
2798.9+x	$(31/2^+)$	215.2 4	100 3	2583.8+x	$(29/2^+)$	D+Q
		376.3 4	10.3 13	2422.7+x	$(27/2^+)$	
2952.4+x	$(29/2^{-})$	494.3 2	100 3	2458.1+x	$(27/2^{-})$	
2015 5	(22/2+)	703.9 4	97 4	2248.5+x	$(25/2^{-})$	
3045.5+x	$(33/2^{+})$	246.6 3	100 3	2798.9+x	$(31/2^{+})$	
2004.2	(21/2-)	461.64	35 3	2583.8+x	$(29/2^+)$	
3094.3+X	(31/2)	141.04	33.9 10	2952.4+X	(29/2)	0
2205 2 L V	$(22/2^{-})$	030.34	100 3	2438.1+X 2004 2 + x	(21/2)	Q D O
3293.2+X	(33/2)	201.0 5	3 3 2 3	3094.3+x 2052 4 + x	(31/2) $(20/2^{-})$	D+Q
3308 /±v	$(35/2^+)$	262 Q A	100 0 21	2932.4+x 3045.5+x	$(23/2^+)$	
JJ00.4TA	(35/2)	509 4 3	56 4	2798.9 + x	$(33/2^+)$ $(31/2^+)$	
3515 6+x	$(35/2^{-})$	220.4.2	100 3	3295.2+x	$(33/2^{-})$	D+O
5515.01X	(35/2)	421.3.3	18.9 23	3094.3 + x	$(31/2^{-})$	DIQ
3630.6+x	$(37/2^+)$	322.3 3	100 4	3308.4+x	$(35/2^+)$	
		585.1 4	55 4	3045.5+x	$(33/2^+)$	
3759.9+x	$(37/2^{-})$	244.3 <i>3</i>	100.0 25	3515.6+x	$(35/2^{-})$	D+Q
		464.7 2	24.3 18	3295.2+x	$(33/2^{-})$	
3931.7+x	$(39/2^+)$	301.1 4	95 <i>5</i>	3630.6+x	$(37/2^+)$	
		623.3 <i>3</i>	100 5	3308.4+x	$(35/2^+)$	
4039.0+x	$(39/2^{-})$	279.1 2	100 4	3759.9+x	$(37/2^{-})$	
		523.3 4	40.4 14	3515.6+x	$(35/2^{-})$	
4319.2+x	$(41/2^+)$	387.7 4	100 8	3931.7+x	$(39/2^+)$	
1222 5	(11/2-)	688.5 4	89 7	3630.6+x	$(37/2^+)$	
4322.5+x	$(41/2^{-})$	283.4 2	100 4	4039.0+x	$(39/2^{-})$	
1629 7	(12/2-)	362.8 3 206 2 2	54.6 25	3759.9+X	(31/2)	
4028.7+X	(45/2)	500.5 5	100 5	4322.3+x	(41/2) $(20/2^{-})$	
1617 5 L V	$(12/2^{+})$	209.0 5	455	4039.0+x 4210.2+x	(39/2)	
4047.3±x	(43/2)	526.4 J 715 7 4	100.6	4319.2+x 3031 7+x	(41/2) $(30/2^+)$	
4954 1+x	$(45/2^{-})$	325.0.3	100 7	4628.7 + x	$(35/2^{-})$ $(43/2^{-})$	
175 I.I I A	(15/2)	631.7 4	75.3	4322.5+x	$(41/2^{-})$	
5085.8+x	$(45/2^+)$	438.2 3	100 16	4647.5+x	$(43/2^+)$	
		766.5 4	100 13	4319.2+x	$(41/2^+)$	
5293.6+x	$(47/2^{-})$	339.3 4	80 10	4954.1+x	$(45/2^{-})$	
	/	665.1 <i>3</i>	100 10	4628.7+x	$(43/2^{-})$	
5436.5+x	$(47/2^+)$	350.7 5	25 8	5085.8+x	$(45/2^+)$	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(100)$ ra) (continued)	$\gamma(^{163}\text{Ta})$	(continued)
-------------------------------	---------------------------	-------------

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$E_f \qquad J_f^{\pi}$	
5436.5+x	$(47/2^+)$	789.1 <i>3</i>	100 10	$4647.5 + x (43/2^+)$	
5647.8+x	$(49/2^{-})$	355.2 5	100 12	5293.6+x (47/2 ⁻)	
		693.6 <i>3</i>	60 7	4954.1+x (45/2 ⁻)	
5912.7+x	$(49/2^+)$	476.4 <i>3</i>	50 17	$5436.5 + x (47/2^+)$	
		826.6 5	100 17	$5085.8+x (45/2^+)$	
6017.8+x	$(51/2^{-})$	370.0 2	92 12	5647.8+x (49/2 ⁻)	
		723.9 4	100 10	5293.6+x (47/2 ⁻)	
6397.8+x	$(53/2^{-})$	379.8 <i>3</i>	100 21	6017.8+x (51/2 ⁻)	
		750.3 4	83 <i>13</i>	5647.8+x (49/2 ⁻)	
6799.7+x	$(55/2^{-})$	402.3 4	<83	6397.8+x (53/2 ⁻)	
		781.8 <i>5</i>	100 25	6017.8+x (51/2 ⁻)	
7213.4+x	$(57/2^{-})$	414.1 5	100 27	6799.7+x (55/2 ⁻)	
		815.3 4	<67	6397.8+x (53/2 ⁻)	

[†] From $\gamma\gamma(\theta)$ (DCO), mult=Q corresponds to ΔJ =2, quadrupole (most likely E2), mult=D+Q to ΔJ =1, dipole or dipole+quadrupole, the former most likely E1 and the latter M1+E2.

^{\ddagger} DCO ratio of \approx 1 suggests a significant dipole and quadrupole admixture, thus the transition is most likely M1+E2.

Level Scheme

Intensities: Relative photon branching from each level

¹⁶³₇₃Ta₉₀

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁶³₇₃Ta₉₀

