106 Cd(60 Ni,3p γ) 2009Sa49

	Н	istory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich, Balraj Singh	NDS 111, 1211 (2010)	12-Apr-2010

Additional information 1.

2009Sa49: E=270 MeV; gas-filled recoil separator RITU, JUROGAM array of 43 EUROGAM-type escape-suppressed Ge detectors,

GREAT spectrometer at Jyvaskyla. Measured E γ , I γ , $\gamma\gamma$, (recoil) $\gamma\gamma$ coin, (recoil) $\alpha\alpha\alpha\gamma$ coin, $\gamma\gamma(\theta)$ (DCO). Recoil-decay

tagging technique. Enriched target. Comparison with cranked-shell model and total Routhian surface (TRS) calculations.

An α peak at 4630 keV from ¹⁶³Ta α decay was seen. Using $\%\alpha$ =0.2 branching, cross section for 3p channel was determined to be \approx 70 mb.

¹⁶³Ta Levels

Quasiparticle notation for band assignments:

A: $\nu 1/2[660], \alpha = +1/2$ from $i_{13/2}$ orbital.

B: $v1/2[660], \alpha = -1/2$ from $i_{13/2}$ orbital.

C: $\nu 3/2[651], \alpha = +1/2$ from $i_{13/2}$ orbital.

D: $\nu 3/2[651], \alpha = -1/2$ from $i_{13/2}$ orbital.

E: $v5/2[523], \alpha = +1/2$ from $h_{9/2}, f_{7/2}$ orbitals.

F: $v5/2[523], \alpha = -1/2$ from $h_{9/2}, f_{7/2}$ orbitals.

a: $\pi 1/2[411], \alpha = +1/2$ from d_{3/2} orbital.

b: $\pi 1/2[411], \alpha = -1/2$ from $d_{3/2}$ orbital.

c: $\pi 7/2[404], \alpha = +1/2$ from $g_{7/2}$ orbital.

d: $\pi 7/2[404], \alpha = -1/2$ from $g_{7/2}$ orbital.

e: $\pi 9/2[514], \alpha = -1/2$ from $h_{11/2}$ orbital.

f: $\pi 9/2[514], \alpha = +1/2$ from $h_{11/2}$ orbital.

E(level) [†]	$J^{\pi \ddagger}$	Comments
0+x [#]	(9/2-)	E(level), J^{π} : presumably the same level as fed in the α decay of ¹⁶⁷ Re g.s. (3.4 s). Additional information 2.
44.9+x [@] 5	$(11/2^{-})$	
333.1+x [#] 4	$(13/2^{-})$	
477.7+x [@] 5	$(15/2^{-})$	
871.2+x [#] 5	$(17/2^{-})$	
1047.0+x [@] 5	$(19/2^{-})$	
1312.7+x ^{&} 5	$(15/2^+)$	
1522.4+x [#] 5	$(21/2^{-})$	
1547.5+x ^a 5	$(17/2^+)$	
1717.5+x [@] 5	$(23/2^{-})$	
1725.9+x ^{&} 5	$(19/2^+)$	
$1946.7 + x^{a} 5$	$(21/2^+)$	
2171.0+x & 5	$(23/2^+)$	
$2248.5 + x^{\#} 5$	$(25/2^{-})$	
$2303.6 + x^{b} 5$	$(25/2^+)$	
$2410.9 + x^{a} 5$	$(25/2^+)$	
2422.7+x ^c 6	$(27/2^+)$	
2458.1+x ^w 5	$(27/2^{-})$	
$2583.8 + x^{b} 6$	$(29/2^+)$	
$2798.9 + x^{\circ} 6$	$(31/2^+)$	
2952.4+x # 6	$(29/2^{-})$	

106 Cd(60 Ni,3p γ)	2009Sa49	(continued)
	20075u-7	(commucu

						_		
E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	J#‡	
3045.5+x ^b 6	$(33/2^+)$	3759.9+x [#] 6	(37/2 ⁻)	4647.5+x ^c 7	$(43/2^+)$	5912.7+x ^b 8	$(49/2^+)$	
3094.3+x [@] 6	$(31/2^{-})$	3931.7+x ^c 7	$(39/2^+)$	4954.1+x [#] 7	$(45/2^{-})$	6017.8+x [@] 8	$(51/2^{-})$	
3295.2+x [#] 6	$(33/2^{-})$	4039.0+x [@] 7	(39/2 ⁻)	5085.8+x ^b 8	$(45/2^+)$	6397.8+x [#] 8	$(53/2^{-})$	
3308.4+x ^c 7	$(35/2^+)$	4319.2+x ^b 7	$(41/2^+)$	5293.6+x [@] 7	$(47/2^{-})$	6799.7+x [@] 8	$(55/2^{-})$	
3515.6+x [@] 6	$(35/2^{-})$	4322.5+x [#] 7	$(41/2^{-})$	5436.5+x ^c 8	$(47/2^+)$	7213.4+x [#] 8	$(57/2^{-})$	
3630.6+x <mark>b</mark> 7	$(37/2^+)$	4628.7+x [@] 7	$(43/2^{-})$	5647.8+x [#] 7	$(49/2^{-})$			

¹⁶³Ta Levels (continued)

[†] From least-squares fit to $E\gamma$'s.

[‡] As proposed by 2009Sa49, based on observation of band structures, DCO ratios for selected transitions, systematics and comparison with cranked shell-model calculations. Note that the authors state that their J^{π} assignments are regarded as tentative. Thus the evaluators give all the assignments in parentheses.

[#] Band(A): Band f to fAB, α =+1/2. Strongly-coupled band built on $\pi 9/2[514]$ Nilsson orbital. This band starts as a 1-qp band but is crossed by a 3-qp band fAB at $J^{\pi} \approx 31/2^{-}$ and $\hbar \omega \approx 0.28$ MeV. Calculated β_2 =0.177, γ =-15° for low-spin states and β_2 =0.170, γ =0° for high-spin states above the backbend.

^(a) Band(a): Band e to eAB, $\alpha = -1/2$. Strongly-coupled band built on $\pi 9/2[514]$ Nilsson orbital. This band starts as a 1-qp band but is crossed by a 3-qp band fAB at $J^{\pi} \approx 31/2^{-}$ and $\hbar \omega \approx 0.28$ MeV See also comments for $\alpha = +1/2$ partner.

& Band(B): Possible $\pi 9/2[514] \otimes 3^-, \alpha = -1/2$. Strongly coupled-band, possible 3^- octupole vibrational band built on $\pi 9/2[514]$, as supported by the relatively large alignment of the band and the relatively low excitation energy of the bandhead. Further pure dipole (possible E1) transition to the yrast band also supports the octupole character of the band.

^{*a*} Band(b): Possible $\pi 9/2[514]#3^-, \alpha = +1/2$. See comments for $\alpha = -1/2$ partner.

^{*b*} Band(C): Band fAE, $\alpha = +1/2$.

^c Band(c): Band eAE, $\alpha = -1/2$.

 $\gamma(^{163}\text{Ta})$

DCO values correspond to 94° and 158° geometry and gates on $\Delta J=2$, quadrupole transitions. Expected values of DCO are: ≈ 1.0 for $\Delta J=2$, quadrupole, ≈ 0.5 for $\Delta J=1$, dipole.

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	Co	omments
(45)		44.9+x	$(11/2^{-})$	0+x (9/2 ⁻)			
118.6 3	26.4 7	2422.7+x	$(27/2^+)$	$2303.6+x (25/2^+)$	D+Q	DCO=0.76 21	
131.9 <i>3</i>	31.6 8	2303.6+x	$(25/2^+)$	2171.0+x (23/2 ⁺)	D+Q	DCO=0.76 19	
141.6 4	10.0 3	3094.3+x	$(31/2^{-})$	2952.4+x (29/2 ⁻)			
144.2 <i>3</i>	34.0 7	477.7+x	$(15/2^{-})$	333.1+x (13/2 ⁻)	D+Q	DCO=0.73 10	
161.1 4	24.4 8	2583.8+x	$(29/2^+)$	2422.7+x (27/2 ⁺)	D+Q [‡]	DCO=0.98 17	
175.9 4	9.2 4	1047.0+x	$(19/2^{-})$	871.2+x (17/2 ⁻)	D+Q	DCO=0.71 11	
178.5 4	3.2 5	1725.9+x	$(19/2^+)$	$1547.5 + x (17/2^+)$			
195.1 2	4.4 5	1717.5+x	$(23/2^{-})$	$1522.4 + x (21/2^{-})$			
201.0 3	30.4 10	3295.2+x	$(33/2^{-})$	3094.3+x (31/2 ⁻)	D+Q	DCO=0.70 8	
209.8 2	4.4 5	2458.1+x	$(27/2^{-})$	2248.5+x (25/2 ⁻)			
215.2 4	23.2 7	2798.9+x	$(31/2^+)$	2583.8+x (29/2 ⁺)	D+Q	DCO=0.75 18	
220.4 2	30.0 9	3515.6+x	$(35/2^{-})$	3295.2+x (33/2 ⁻)	D+Q	DCO=0.81 10	
221.1 3	8.4 <i>3</i>	1946.7+x	$(21/2^+)$	1725.9+x (19/2 ⁺)			
224.6 4	21.6 7	2171.0+x	$(23/2^+)$	$1946.7 + x (21/2^+)$	D+Q [‡]	DCO=0.93 14	
235.1 5	1.2 5	1547.5+x	$(17/2^+)$	$1312.7 + x (15/2^+)$			
240.1 3	9.2 7	2410.9+x	$(25/2^+)$	2171.0+x (23/2 ⁺)			

¹⁰⁶Cd(⁶⁰Ni,3pγ) 2009Sa49 (continued)

γ ⁽¹⁶³Ta) (continued)</sup>

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	Comments
244.3.3	28.0.7	3759.9 + x	$(37/2^{-})$	3515.6+x (35/2 ⁻)	D+O	DCO=0.66 9
246.6.3	20.8 6	3045.5 + x	$(33/2^+)$	2798.9+x (31/2 ⁺)	2.4	
252.1.3	2.4.3	2422.7 + x	$(27/2^+)$	2171.0+x (23/2 ⁺)		
262.9 4	19.2 4	3308.4 + x	$(35/2^+)$	3045.5+x (33/2 ⁺)		
279.1.2	20.8.8	4039.0+x	$(39/2^{-})$	$3759.9 + x (37/2^{-})$		
280.3 5	4.0.5	2583.8+x	$(29/2^+)$	$2303.6+x$ ($25/2^+$)		
283.4 2	19.8 7	4322.5 + x	$(41/2^{-})$	4039.0+x (39/2 ⁻)		
288.1.3	100.0 13	333.1 + x	$(13/2^{-})$	44.9+x (11/2 ⁻)	0	DCO=0.86.8
301.1 4	10.8 6	3931.7+x	$(39/2^+)$	$3630.6+x (37/2^+)$	×	
306.3.3	15.2 7	4628.7 + x	$(43/2^{-})$	$4322.5 + x (41/2^{-})$		
322.3 3	13.2 5	3630.6+x	$(37/2^+)$	$3308.4 + x (35/2^+)$		
325.0.3	11.2.8	4954.1+x	$(45/2^{-})$	$4628.7 + x (43/2^{-})$		
328.4.3	5.2.4	4647.5+x	$(43/2^+)$	$4319.2 + x (41/2^+)$		
333.1 4	10.0 6	333.1+x	$(13/2^{-})$	0+x (9/2 ⁻)		
339.3.4	4.8.6	5293.6+x	$(47/2^{-})$	$4954.1 + x (45/2^{-})$		
342.6 7	1.0 7	3295.2 + x	$(33/2^{-})$	$2952.4 + x (29/2^{-})$		
350.7.5	1.2 4	5436.5+x	$(47/2^+)$	5085.8+x (45/2 ⁺)		
355.2.5	6.0 7	5647.8 + x	$(49/2^{-})$	$5293.6+x (47/2^{-})$		
357.3 6	2.8 4	2303.6 + x	$(25/2^+)$	$1946.7 + x (21/2^+)$		
370.0 2	4.8 6	6017.8+x	$(51/2^{-})$	$5647.8 + x (49/2^{-})$		
376.3 4	2.4.3	2798.9 + x	$(31/2^+)$	$2422.7 + x (27/2^+)$		
379.8 3	2.4 5	6397.8+x	$(53/2^{-})$	$6017.8 + x (51/2^{-})$		
387.7 4	7.2 6	4319.2+x	$(41/2^+)$	$3931.7+x$ ($39/2^+$)		
393.4 2	46.3 9	871.2+x	$(17/2^{-})$	$477.7 + x (15/2^{-})$	D+O	DCO=0.95 10
399.2 4	2.4 7	1946.7+x	$(21/2^+)$	$1547.5 + x (17/2^+)$		
402.3 4	<1	6799.7+x	$(55/2^{-})$	$6397.8 \pm x$ (53/2 ⁻)		
413.3 3	2.4 5	1725.9 + x	$(19/2^+)$	$1312.7+x (15/2^+)$		
414.1 5	1.5 4	7213.4+x	$(57/2^{-})$	6799.7 + x (55/2 ⁻)		
421.3 3	5.6 7	3515.6+x	$(35/2^{-})$	$3094.3 + x (31/2^{-})$		
432.9 4	88.0 13	477.7+x	$(15/2^{-})$	44.9+x (11/2 ⁻)	0	DCO=1.01 9
438.2 3	3.2 5	5085.8+x	$(45/2^+)$	$4647.5 + x (43/2^+)$		
445.2 3	14.0 6	2171.0+x	$(23/2^+)$	$1725.9 + x (19/2^+)$	Q	DCO=1.00 12
						Additional information 3.
461.6 4	7.3 6	3045.5+x	$(33/2^+)$	$2583.8+x (29/2^+)$		
464.1 2	2.0 5	2410.9+x	$(25/2^+)$	$1946.7 + x (21/2^+)$		
464.7 2	6.8 5	3759.9+x	$(37/2^{-})$	$3295.2 + x (33/2^{-})$		
475.3 2	21.2 7	1522.4+x	$(21/2^{-})$	1047.0+x (19/2 ⁻)	D+Q	DCO=0.83 12
476.4 <i>3</i>	1.2 4	5912.7+x	$(49/2^+)$	$5436.5 + x (47/2^+)$		
494.3 2	15.2 4	2952.4+x	$(29/2^{-})$	$2458.1 + x (27/2^{-})$		
509.4 <i>3</i>	10.8 7	3308.4+x	$(35/2^+)$	$2798.9 + x (31/2^+)$		
523.3 4	8.4 <i>3</i>	4039.0+x	$(39/2^{-})$	$3515.6+x (35/2^{-})$		
531.0 2	9.6 8	2248.5+x	$(25/2^{-})$	$1717.5 + x (23/2^{-})$		
538.2 <i>3</i>	35.6 9	871.2+x	$(17/2^{-})$	$333.1 + x (13/2^{-})$		
562.8 3	10.8 5	4322.5+x	$(41/2^{-})$	$3759.9 + x (37/2^{-})$		
569.2 2	79.6 11	1047.0+x	$(19/2^{-})$	$477.7 + x (15/2^{-})$	Q	DCO=1.07 8
585.1 4	7.2 5	3630.6+x	$(37/2^+)$	3045.5+x (33/2 ⁺)		
589.6 <i>3</i>	6.8 4	4628.7+x	$(43/2^{-})$	4039.0+x (39/2 ⁻)		
623.3 <i>3</i>	11.4 6	3931.7+x	$(39/2^+)$	3308.4+x (35/2 ⁺)		
631.7 4	8.4 <i>3</i>	4954.1+x	$(45/2^{-})$	4322.5+x (41/2 ⁻)		
636.5 4	29.5 9	3094.3+x	$(31/2^{-})$	2458.1+x (27/2 ⁻)	Q	DCO=1.17 12
648.6 <i>3</i>	18.8 6	2171.0+x	$(23/2^+)$	1522.4+x (21/2 ⁻)	D	DCO=0.61 20
651.2 2	30.0 9	1522.4+x	$(21/2^{-})$	871.2+x (17/2 ⁻)	Q	DCO=1.25 19
665.1 <i>3</i>	6.0 6	5293.6+x	$(47/2^{-})$	4628.7+x (43/2 ⁻)		
670.5 4	54.0 6	1717.5+x	$(23/2^{-})$	1047.0+x (19/2 ⁻)	Q	DCO=1.13 12
688.5 4	6.4 5	4319.2+x	$(41/2^+)$	3630.6+x (37/2 ⁺)		
693.6 <i>3</i>	3.6 4	5647.8+x	$(49/2^{-})$	4954.1+x (45/2 ⁻)		

Continued on next page (footnotes at end of table)

106 Cd(60 Ni,3p γ) 2009Sa49 (continued)										
γ ⁽¹⁶³ Ta) (continued)										
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]		Comments		
703.9 4	14.8 6	2952.4+x	$(29/2^{-})$	2248.5+x	$(25/2^{-})$					
715.7 4	9.6 6	4647.5+x	$(43/2^+)$	3931.7+x	$(39/2^+)$					
723.9 4	5.2 5	6017.8+x	$(51/2^{-})$	5293.6+x	$(47/2^{-})$					
726.3 <i>3</i>	13.6 5	2248.5+x	$(25/2^{-})$	1522.4+x	$(21/2^{-})$					
740.1 <i>3</i>	44.4 10	2458.1+x	$(27/2^{-})$	1717.5+x	$(23/2^{-})$	Q	DCO=1.08 14			
750.3 4	2.0 3	6397.8+x	$(53/2^{-})$	5647.8+x	$(49/2^{-})$					
766.5 4	3.2 4	5085.8+x	$(45/2^+)$	4319.2+x	$(41/2^+)$					
781.8 5	1.2 3	6799.7+x	$(55/2^{-})$	6017.8+x	$(51/2^{-})$					
789.1 <i>3</i>	4.8 5	5436.5+x	$(47/2^+)$	4647.5+x	$(43/2^+)$					
815.3 4	<1	7213.4+x	$(57/2^{-})$	6397.8+x	$(53/2^{-})$					
826.6 5	2.4 4	5912.7+x	$(49/2^+)$	5085.8+x	$(45/2^+)$					
854.8 <i>4</i>	24.4 7	1725.9+x	$(19/2^+)$	871.2+x	$(17/2^{-})$	D	DCO=0.73 18			
899.6 <i>3</i>	22.4 7	1946.7+x	$(21/2^+)$	1047.0+x	$(19/2^{-})$	D	DCO=0.69 14			
979.9 4	2.8 3	1312.7+x	$(15/2^+)$	333.1+x	$(13/2^{-})$					
1069.7 <i>3</i>	6.0 5	1547.5+x	$(17/2^+)$	477.7+x	$(15/2^{-})$	D	DCO=0.63 22			

[†] From $\gamma\gamma(\theta)$ (DCO), mult=Q corresponds to ΔJ =2, quadrupole (most likely E2), mult=D+Q to ΔJ =1, dipole or dipole+quadrupole, the former most likely E1 and the latter M1+E2.

^{\ddagger} DCO ratio of ≈ 1 suggests a significant dipole and quadrupole admixture, thus the transition is most likely M1+E2.

 106 Cd(60 Ni,3p γ) 2009Sa49 Legend Level Scheme $\begin{array}{ll} \bullet & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: Relative I_{γ} $\exists \frac{\delta_{IS_3}}{4I_{4I_3}}$ $(57/2^{-})$ 7213.4+x $1^{26}, 4^{6}, 5^{2}, 5^{2}$ $(55/2^{-})$ 6799.7+x 1 303,20 $(53/2^{-})$ 6397.8+x $1^{\frac{23}{239}}$ 20-00 426.0 476.424 1.2 $(51/2^{-})$ 6017.8+x $\downarrow^{\frac{69_3}{35_2, \frac{3}{5_2}, \frac{1}{6}}}$ $(49/2^+)$ 5912.7+x $(49/2^{-})$ 5647.8+x 80 2005 2.055 0.0 8,8 $(47/2^+)$ 5436.5+x -33 2.55 2.5 $\frac{1}{3} \frac{5_{3_{1},2_{2}}}{3_{2_{3_{1},2_{3}}}} \frac{1}{8_{4_{4}}}$ $(47/2^{-})$ 5293.6+x <u>~~~</u> 265.5 $(45/2^+)$ 5085.8+x $(45/2^{-})$ 4954.1+x $(43/2^+)$ 4647.5+x $\frac{\left|\begin{array}{c} 3c_{2}c_{3}c_{4}\\ -2c_{3}c_{3}c_{4}c_{3}c_{3}\\ -2c_{3}c_{3}c_{4}c_{3}c_{3}\\ -2c_{3}c_{3}c_{3}c_{4}c_{3}c_{3}\\ -2c_{3}c_{3}c_{3}c_{4}c_{3}c_{3}\\ -2c_{3}c_{3}c_{3}c_{4}c_{3}c_{3}\\ -2c_{3}c_{3}c_{3}c_{4}c_{3}c_{3}\\ -2c_{3}c_{3}c_{4}c_{3}c_{3}\\ -2c_{3}c_{4}c_{3}c_{4}c_{3}\\ -2c_{4}c_{3}c_{4}c_{3}c_{4}\\ -2c_{4}c_{4}c_{3}c_{4}c_{3}\\ -2c_{4}c_{4}c_{4}c_{4}c_{4}\\ -2c_{4}c_{4}c_{4}c_{4}c_{4}\\ -2c_{4}c_{4}c_{4}c_{4}c_{4}\\ -2c_{4}c_{4}c_{4}c_{4}\\ -2c_{4}c_{4}c_{4}\\ -2c_{4}c_{4}c_{4}\\ -2c_{4}c_{4}c_{4}\\ -2c_{4}c_{4}c_{4}\\ -2c_{4}c_{4}c_{4}\\ -2c_{4}c_{4}c_{4}\\ -2c_{4}c_{4}c_{4}\\ -2c_{4}c_{4}c_{4}\\ -2c_{4}c_{4}c_{4}\\ -2c_{4}c_{4}\\ -2c_{4}\\ -2c_{4}$ (43/2-) • 4628.7+x $(41/2^{-})$ 4322.5+x ¹ ⁵²³, ^{6,4} 1, ^{22,3}, ^{6,4} 1, ^{20,6} $(41/2^+)$ ¥ $\frac{1}{3} \frac{5}{0!} \frac{5}{1!}$ 4319.2+x ^{42,6,6},⁶,⁶,¹,^{28,0} (39/2-) 4039.0+x $(39/2^+)$ ¥ 3931.7+x 0.00 0.00 0.00 0.00 0.00 0.00 404 > (37/2⁻) 3759.9+x - S. S. $[-\frac{30}{200}]$ 1 342 6 10 1 2010 0 10 1 0 0 0 0 0 $(37/2^+)$ 3630.6+x -2-5--2-5- $(35/2^{-})$ 3515.6+x 1.0.00 1.0.00 10.00 $(35/2^+)$ 3308.4+x $(33/2^{-})$ 3295.2+x 636.5 141.6 $(31/2^{-})$ 3094.3+x $(33/2^+)$. 3045.5+x $(29/2^{-})$ 2952.4+x $(31/2^+)$ 2798.9+x $(27/2^{-})$ 2458.1+x

¹⁶³₇₃Ta₉₀

 $^{163}_{73}$ Ta₉₀

¹⁶³₇₃Ta₉₀